Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Antimycobacterial and H₁-antihistaminic activity of 2-substituted piperidine derivatives

Robert Weis^{a,*}, Klaus Schweiger^a, Johanna Faist^a, Erich Rajkovic^a, Andreas J. Kungl^a, Walter M. F. Fabian^b, Walter Schunack^c, Werner Seebacher^a

^a Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria ^b Institute of Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria ^c Institute of Pharmacy, Free University of Berlin, Königin-Luise-Straße 2 + 4, D-14195 Berlin, Germany

ARTICLE INFO

Article history: Received 11 July 2008 Accepted 17 October 2008 Available online 22 October 2008

Keywords: Antihistamines Antimycobacterials Piperidines Tuberculosis

ABSTRACT

2-Substituted derivatives of the antihistaminic agents *Bamipine*, *Diphenylpyraline* and of their 1-phenyl analogues were tested for their antimycobacterial and H₁-antagonistic activities. They are strong H₁-receptor antagonists and also inhibit the growth of mycobacterials with a maximum MIC of 6.25 μ g/mL against *Mycobacterium tuberculosis* H₃₇*Rv*. H₁-receptor antagonistic potency was slightly decreased by substitution in ring position 2 and distinctly diminished by *N*-aryl substitution. The antimycobacterial potency of *Diphenylpyraline* was in general increased by substitution in ring position 2, whereas only a few *Bamipine* derivatives showed markedly improved activity. A correlation between the two activities was not detected for those compounds.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With more than 1.6 million deaths and 8.8 million new cases being reported per year tuberculosis is the leading infectious cause of death today.¹ Due to the spreading of multi-drug-resistant and extensively drug-resistant strains, new antimycobacterial drugs with alternative mechanism of action are urgently needed for the therapy of tuberculosis.² A number of compounds with H₁-receptor antagonistic activity were far more active against *Mycobacterium tuberculosis* than against other bacterials.^{3–5} Since histamine is a growth-promotor for mycobacterials and the growth inhibition was blocked by the addition of histamine, the antimycobacterial activity of antihistaminics has been argued to be linked to their histamine-receptor antagonistic potency.^{4,5} We modified the structures of two of those antihistaminic compounds, *Diphenylpyraline* (1) and *Bamipine* (2), in ring positions 1 and 2 (Fig. 1).

A great number of derivatives of *Diphenylpyraline* and *Bamipine* derivatives with different substitution on the ring nitrogen or at the aromatic ring system have been reported, whereas substitution of the piperidine ring was restricted to a few methyl analogues. Recently, we reported the synthesis of 2-alkyl and 2-aryl substituted derivatives of **1** and **2** and their 1-phenyl analogues which have been prepared via new pathways.⁶⁻⁸ The *Diphenylpyraline* derivatives were tested against *Mycobacterium tuberculosis* $H_{37}Rv$.

In the present paper, the synthesis of some new analogues of *Bamipine* will be described, which were prepared to complete the series for the purpose of comparison. The antimycobacterial activities and the cytotoxic properties of all 2-substituted derivatives of *Bamipine* (2) were examined and compared to those of compounds 1 and 2 in order to elucidate structure–activity relationships. In addition, the H₁-antihistaminic activity of selected compounds was tested and investigated for a possible correlation between those activities.

2. Results

2.1. Chemistry

Considering that enhanced lipophilicity was argued to increase the antimycobacterial activity of antihistamines,⁴ we prepared

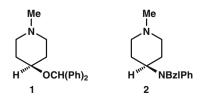


Figure 1. Structures of Diphenylpyraline (1) and Bamipine (2).

^{*} Corresponding author. Tel.: +43 316 380 5379; fax: +43 316 380 9846. *E-mail address*: robert.weis@uni-graz.at (R. Weis).

Compounds with alkyl substituents in ring position 2 showed higher activity.⁷

2-alkyl and 2-aryl derivatives of **1** and **2** as well as the corresponding 1-phenyl analogues. In contrast to the formerly reported syntheses of *Diphenylpyraline* or *Bamipine* derivatives our method is based on the conversion of easily available 4-aminodihydropyridine-2(1*H*)-thiones to 2-substituted piperidines. The syntheses of the *Diphenylpyraline* derivatives **3–7** and of the *Bamipine* derivatives **8–10** have already been reported.^{6–8}

The new 2,2-dimethyl analogues **11–13** of *Bamipine* were obtained by means of slightly modified procedures. The corresponding *N*-arylbenzylamines⁹ were fused with the 4-hydroxypyridine-2(1H)-thione **14**,¹⁰ giving the 4-aminodihydropyridine-2(1H)-thiones **15**, **16** in good yields. Their S-methyl derivatives **17**, **18** were further methylated yielding the 1-methylpyridinium salts **19**, **20**. Compounds **19**, **20** were converted to the 4-anilino piperidines **21**, **22** via hydrogenation with Raney nickel W-2¹¹ at 45 psi. Final N-alkylation with benzyl chloride gave the *Bamipine* derivatives **11**, **12** (Scheme 1).

The corresponding 1-phenyl analogue **13** was synthesized from the 1-substituted 4-anilinodihydropyridine-2(1*H*)-thione **23**,¹² which was converted to its isomeric methoiodides *cis*-**24** and *trans*-**24**. Those were hydrogenated giving the 4-anilino-1-phenylpiperidine **25**, which was alkylated with benzyl chloride affording the 1-phenyl substituted analogue **13** of compound **11**.

The discrimination between the isomeric compounds *cis*-**24** and *trans*-**24** was accomplished via NMR experiments. In the ¹H NMR spectrum the resonance of the 5-H of *cis*-**24** was shifted to lower frequencies due to shielding of the phenyl ring. The assignment was confirmed by an NOE from the 5-H of *cis*-**24** to aromatic ortho protons.

The structures of all new piperidine derivatives were established by NMR spectroscopy as outlined in Ref. 8 All of the new piperidine derivatives gave NOEs between the axial protons in ring positions 3 and 5 as well as between 4 and 6. The preference for the chair conformation of the piperidine rings was confirmed by the characteristic coupling constants of the corresponding ring protons in the ¹H NMR spectra. The distinction between the ¹H- and ¹³C-resonances of axial and equatorial methyl groups in ring position 2 of the piperidine derivatives succeeded by means of NOE experiments. Through-space interactions from the axial protons in ring positions 4 or 6 to protons of the axial 2-methyl groups were observed.

2.2. Antimycobacterial and antihistaminic activity, cytotoxicity

The antimycobacterial activity and the cytotoxicity of *Bamipine* (2) and its derivatives **8–13** have been determined and are compared to those of the corresponding *Diphenylpyraline* analogues **1**, **3–7** in Table 1, which in addition contains the H₁-antihistaminic activity of selected compounds.

3. Discussion

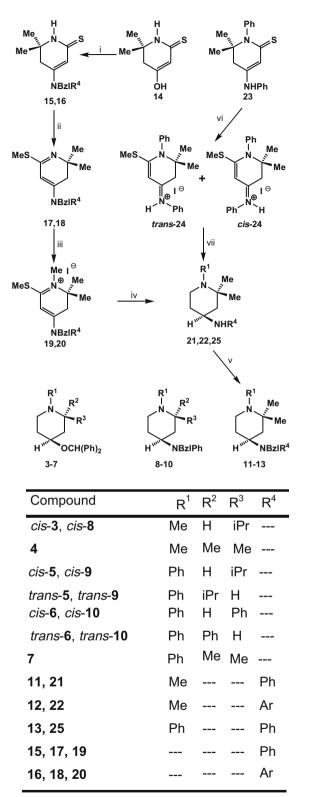
The antimycobacterial activities of *Diphenylpyraline* (1) and *Bamipine* (2) were only slightly changed by dimethylation in position 2 (compounds 4, 11 and 12). However, an additional equatorial isopropyl substituent increased the activity remarkably, as was observed for compounds *cis*-3 and *cis*-8. In the 1-phenyl series the influence of the substitution was not the same in both compared series. The *Diphenylpyraline* derivatives *cis*-5 and *cis*-6 (36–39% inhibition at 6.25 μ g/mL) showed improved potency and *trans*-6 (75% inhibition at 6.25 μ g/mL) had significantly increased activity. Their corresponding analogues in the *Bamipine* series *cis*-9, *cis*-10 and *trans*-10 were less or slightly more active than their parent compound 2. However, compounds *trans*-9 (52% inhibition at 6.25 μ g/mL) and 13 (91% inhibition at 6.25 μ g/mL) were the most active 1-phenyl derivatives of 2, whereas their *Diphenylpyraline*

analogues *trans*-**5** and **7** were among the least active compounds. For the most active compound **13** a minimum inhibitory concentration (MIC) of 6.25 μ g/mL against *M. tuberculosis* H₃₇*Rv* was determined (Table 1).

With the exception of *cis*-**8** all of the tested compounds were less cytotoxic than *Bamipine* (**2**). Fortunately the cytotoxicity of the most active compound **13** is comparable to that of *Diphenylpyraline* (**1**) which is still used in the therapy of rhinitis. However, compared to the antimycobacterial drugs in use (*INH*, *Rifampicin*) the cytotoxicity of the prepared compounds needs further improvement.

The H₁-receptor antagonist potencies of compounds 1, 2, 4, 11 and 13 were examined. Diphenylpyraline (1) was slightly more potent than Bamipine (2). Their 2,2-dimethyl derivatives 4 and 11 were still potent H₁-receptor antagonists, but the dimethylation in position 2 led to loss of activity of about 0.6 log units retaining the *Diphenvlpyraline* analogue **4** as the more effective compound. Both substances showed competitive antagonism at concentrations between 0.3×10^{-7} mol/L and 1×10^{-6} mol/L shifting the dosage-response curve parallel to the right. At concentrations between 0.3 and 1×10^{-5} mol/L the dosage-response curves were depressed indicating non-competitive antagonism. Only slight activity $(-\log K_B = 5)$ was detectable for the 1-phenyl compound 13 at 0.3×10^{-4} mol/L (Table 1). For compounds 1, 2, 4, 11 and 13 molecular modeling studies were undertaken in order to investigate the reasons for the decreased H1-receptor antagonist potency of the prepared 2-substituted and especially the 1-phenyl analogues of compounds 1 and 2. Neutral molecules as well as protonated and diprotonated dications were considered. The conformer populations were not affected by dimethylation at C-2. The loss of activity of about 0.6 log units (1 vs 4, 2 vs 11) can be attributed to steric hindrance and to the changes in the molecular electrostatic and lipophilic potential. Thus, the drop in H₁-receptor antagonist potency in **4** and **11** can be attributed to a "shielding" effect of the 2,2-dimethyl moiety of the positive charge at the protonated N-1 center. The very low H1-antihistaminic activity (loss of >3 log units) of the 1-phenyl compound **13** can be explained by a combination of increased "shielding" of N-1 and diminished basicity (For computational details see Supplementary material).

In both series a 1-phenyl derivative was the most active antimycobacterial agent. Since those compounds possess negligible H₁-antihistaminic activity the presumed linkage between H₁-antihistaminic and antimycobacterial activity has not been confirmed.


4. Conclusion

The H₁-receptor antagonistic activities of *Diphenylpyraline* and *Bamipine* were slightly decreased by substitution in ring position 2 and nearly lost by replacement of the 1-methyl by a 1-phenyl group. In contrast the antimycobacterial activity was nearly always increased by this derivatization. The supposed correlation of antimycobacterial and H₁-receptor antagonistic activity of piperidine derivatives was not observed for the tested analogues of *Diphenylpyraline* and *Bamipine*. Moreover, the compound with the highest activity against *Mycobacterium tuberculosis* H₃₇*Rv* (MIC: 6.25 µg/mL) exhibits neglectable H₁-antihistaminic activity indicating an alternative mechanism of action.

5. Experimental

5.1. Instrumentation and chemicals

Melting points were obtained on a melting point apparatus Dr. Tottoli (Büchi 510) or on a digital melting point apparatus Electrothermal IA 9200 and are uncorrected. IR spectra: infrared spectrometer system 2000 FT (Perkin-Elmer). NMR spectra: Varian

Ar=4-methoxyphenyl; Bzl=benzyl

^aReagents and reaction conditions: (i) NHBzlPh or NHBzlAr, 120 °C, 16h; (ii) (1) CH₃I, CHCl₃, room temperature (rt), 16 h, (2) NaOH, rt, 1 h; (iii) CH₃I, CHCl₃, rt, 16 h; (iv) Raney nickel W-2, EtOH, rt; (v) BzlCl, NaNH₂, PhMe, 110 °C, 6 h; (vi) CH₃I, CHCl₃, rt, 16 h; (vii) Raney nickel W-2, ethanol, 30-45 psi (H₂), rt, 16 h.

Table 1

Antimycobacterial activity (Alamar Blue Assay), cytotoxicity and H1-receptor antagonist activity

Compound	% Inhibition 6.25 μg/mL ^a	MIC µg/mLª	Cytotoxicity (LC50) μg/mL (μM) ^a	H1-receptor guinea-pig ileum (–logKB) ^b
Diphenylpyraline (1)	5	>6.25	107.59	8.79
cis- 3	68	>6.25	98.06	n.t.
4	18	>6.25	104.67	8.19
cis- 5	36	>6.25	69.38	n.t.
trans- 5	7	>6.25	97.06	n.t.
cis- 6	39	>6.25	77.82	n.t.
trans- 6	75	>6.25	111.67	n.t.
7	3	>6.25	65.08	n.t.
Bamipine (2)	29	>6.25	64.08	8.55
cis- 8	66	>6.25	35.93	n.t.
cis- 9	7	>6.25	126.91	n.t.
trans- 9	52	>6.25	>28	n.t.
cis- 10	37	>6.25	>28	n.t.
trans-10	22	>6.25	>28	n.t.
11	31	>6.25	69.46	7.93
12	26	>6.25	81.96	n.t.
13	91	6.25	107.84	5.0
Isoniazid (INH)	_	0.025-0.2	>200	n.t.
Rifampicin	-	0.06-0.5	>200	n.t.

^a Data for compounds **1**, **3–7** were taken from Ref. 7.

^b n.t., not tested.

Gemini 200, Varian Inova 400 (298 K) 5 mm tubes, TMS as internal standard. ¹H- and ¹³C-resonances were assigned using ¹H, ¹H- and ¹H, ¹³C-correlation spectra. Microanalyses: EA 1108 CHNS-O apparatus (Carlo Erba) at the Microanalytical Laboratory at the Institute of Physical Chemistry, University of Vienna; Hydrogenations were performed in a Parr hydrogenation apparatus shaker type 3911. Chromatography: TLC: plates (Merck) silica gel 60 F₂₅₄.

5.2. Syntheses

5.2.1. Synthesis of dihydropyridine derivatives

5.2.1.1. General procedure for the synthesis of 4-(*N***-Benzylarylamino)-6,6-dimethyl-5,6-dihydropyridine-2(1***H***)-thiones (15, 16).** Compound 14^{10} was fused with the corresponding *N*-arylbenzylamine for 16 h at 120 °C in an argon atmosphere. Then the mixture was cooled to room temperature and triturated with EtOH (15 mL). The precipitate was filtered with suction and dried. Then it was stirred for 1 h at 60 °C in CHCl₃ (100 mL). The suspension was cooled to room temperature and filtered. The filtrate was concentrated and recrystallized from EtOH.

5.2.1.1.1. 4-(*N*-Benzylanilino)-6,6-dimethyl-5,6-dihydropyridine-2(1H)-thione (**15**). Compound **14** (7.86 g, 50 mmol) gave with *N*-phenylbenzylamine (10.1 g, 55 mmol) pale yellow crystals of **15**. Mp 214 °C; yield: 10.7 g (66%). IR (KBr) 2960, 1554, 1495, 1448, 1390, 1112, 1103, 703 cm⁻¹. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm) 1.16 (s, 6H, (CH₃)₂), 2.30 (s, 2H, 5-H), 4.93 (s, 2H, NCH₂), 5.36 (s, 1H, 3-H), 7.25–7.43 (m, 10H, aromatic H), 8.64 (s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ (ppm) 26.84 ((CH₃)₂), 38.75 (C-5), 52.91 (C-6), 55.86 (NCH₂), 100.60 (C-3), 126.64, 127.00, 127.24, 127.42, 128.73, 129.70, 137.13, 143.86 (aromatic C), 151.01 (C-4), 189.26 (C-2). Anal. Calcd for C₂₀H₂₂N₂S: C, 74.49; H, 6.88; N, 8.69; S, 9.94. Found: C, 74.44; H, 6.76; N, 8.73; S, 9.68.

5.2.1.1.2. 4-((*N*-Benzyl)-p-anisidino)-6,6-dimethyl-5,6-dihydropyridine-2(1H)-thione (**16**). Compound **14** (7.89 g, 50 mmol) gave with *N*-(4-methoxyphenyl)benzylamine (10.1 g, 55 mmol) pale yellow crystals of **16**. Mp 208 °C; yield: 8.89 g (50%). IR (KBr) 2967, 1565, 1509, 1446, 1397, 1110, 720 cm⁻¹. ¹H NMR (DMSO d_6 , 200 MHz) δ(ppm) 1.16 (s, 6H, (CH₃)₂), 2.27 (s, 2H, 5-H), 3.73 (s, 3H, OCH₃), 4.85 (s, 2H, NCH₂), 5.31 (s, 1H, 3-H), 6.91–7.37 (m, 9H, aromatic H), 8.54 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , 50 MHz) δ(ppm) 26.88 ((CH₃)₂), 38.70 (C-5), 52.82 (C-6), 55.45 (OCH₃), **5.2.1.2. General procedure for the synthesis of 1-unsubstituted 2,2-dimethyl-6-methylthio-2,3-dihydropyridines (17, 18).** To an ice-cooled solution of the dihydropyridinethiones **15, 16** in CHCl₃ (80 mL), a solution of iodomethane in CHCl₃ (20 mL) was added through a dropping funnel within 1 h. The reaction mixture was stirred for 16 h at room temperature, and the solvent was removed in vacuo. The residue was triturated with ethyl acetate, filtered with suction, dried with Na₂SO₄ and recrystallized from CHCl₃/ ethyl acetate. The salts were stirred in 1 M NaOH (90 mL, 90 mmol) for 1 h. Then the suspension was extracted with ether repeatedly. The combined organic layers were washed three times with H₂O and dried with Na₂SO₄. The solvent was removed in vacuo and the residue was recrystallized.

5.2.1.2.1. 4-(*N*-Benzylanilino)-2,2-dimethyl-6-methylthio-2,3-dihydropyridine (**17**). Compound **15** (9.67 g, 30 mmol) gave with iodomethane (5.1 g, 36 mmol) pale yellow crystals of **17**. Mp 89 °C (EtOH); yield: 7.80 g (77%). IR (KBr) 2970, 1604, 1544, 1496, 1397, 1098, 764, 705 cm⁻¹. ¹H NMR (DMSO-d₆, 200 MHz) δ (ppm) 1.06 (s, 6H, (CH₃)₂), 2.10 (s, 2H, 3-H), 2.17 (s, 3H, SCH₃), 4.85 (s, 1H, 5-H), 4.86 (s, 2H, NCH₂), 7.18–7.41 (m, 10H, aromatic H). ¹³C NMR (DMSO-d₆, 50 MHz) δ (ppm) 11.23 (SCH₃), 28.42 ((CH₃)₂), 38.15 (C-3), 55.53 (C-2), 55.72 (NCH₂), 91.86 (C-5), 126.10, 126.64, 126.89, 127.05, 128.60, 129.45, 137.74, 144.37 (aromatic C), 150.74 (C-4), 160.10 (C-6). Anal. Calcd for C₂₁H₂₄N₂S: C, 74.96; H, 7.19; N, 8.32; S, 9.53. Found: C, 75.15; H, 7.49; N, 8.35; S, 9.46.

5.2.1.2.2. 4-(*N*-Benzyl-*p*-anisidino)-2,2-dimethyl-6-methylthio-2,3-dihydropyridine (**18**). Compound **16** (10.58 g, 30 mmol) gave with iodomethane (5.1 g, 36 mmol) pale yellow crystals of **18**. Mp 120 °C (EtOH/H₂O); yield: 8.40 g (76%). IR (KBr) 2966, 1603, 1541, 1509, 1249, 1093, 764, 738 cm⁻¹; ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm) 1.15 (s, 6H, (CH₃)₂), 2.06 (s, 2H, 3-H), 2.31 (s, 3H, SCH₃), 3.78 (s, 3H, OCH₃), 4.73 (s, 2H, NCH₂), 4.94 (s, 1H, 5-H), 6.82–7.32 (m, 10H, aromatic H). ¹³C NMR (DMSO-d₆, 100 MHz) δ (ppm) 11.98 (SCH₃), 28.25 ((CH₃)₂), 38.54 (C-3), 55.38 (OCH₃), 55.76 (C-2), 56.25 (NCH₂), 91.40 (C-5), 114.37, 126.77, 127.08, 128.53, 137.40, 137.54 (aromatic C), 151.47 (C-4), 157.86 (aromatic C), 161.71 (C-6). Anal. Calcd for C₂₂H₂₆N₂OS: C, 72.09; H, 7.15; N, 7.64; S, 8.75. Found: C, 72.08; H, 7.32; N, 7.60; S, 8.66.

5.2.1.3. 4-Anilino-6,6-dimethyl-1-phenyl-5,6-dihydropyridine-2(1*H***)-thione (23).** Compound **23** was prepared from 2,2-dimethyl-N-phenyl-6-phenylimino-3,6-dihydro-2*H*-thiopyran-4-amine by a reported procedure.¹² Mp 214 °C (mp 214 °C¹²). IR (KBr) 2982, 1574, 1529, 1492, 1394, 1147, 693 cm⁻¹; ¹H NMR (DMSO-*d*₆, 200 MHz) δ (ppm) 1.22 (s, 6H, (CH₃)₂), 2.73 (s, 2H, 5-H), 6.08 (s, 1H, 3-H), 7.08–7.42 (m, 10H, aromatic H), 8.82 (s, 1H, NH) ppm. ¹³C NMR (DMSO-*d*₆, 50 MHz) δ (ppm) 26.42 ((CH₃)₂), 41.76 (C-5), 58.43 (C-6), 100.26 (C-3), 122.25, 123.99, 126.93, 128.43, 129.27, 129.86, 139.32, 142.98 (aromatic C), 146.32 (C-4), 191.53 (C-2) ppm.

5.2.1.4. General procedure for the synthesis of 1-substituted **2,2-dimethyl-6-methylthio-2,3-dihydropyridines** (19, 20, *cis*-24, *trans*-24). To a solution of compounds 17, 18, 23 in CHCl₃ (60 mL), a solution of iodomethane in CHCl₃ (10 mL) was added through a dropping funnel within 1 h. The reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated in vacuo and the residue was triturated with EtOH/ethyl acetate. The crystallizate was sucked off and recrystallized.

5.2.1.4.1. 4-(*N*-Benzylanilino)-1,2,2-trimethyl-6-methylthio-2,3dihydropyridiniumiodide (**19**). Compound **17** (6.73 g, 20 mmol) gave with iodomethane (14.2 g, 100 mmol) yellow crystals of **19**. Mp 162 °C (EtOH/ethyl acetate); yield: 9.2 g (96%). IR (KBr) 2972, 1561, 1496, 1338, 1276, 1242, 1080, 697 cm⁻¹; ¹H NMR (DMSO d_6 , 200 MHz) δ (ppm) 1.28 (s, 6H, (CH₃)₂), 2.51 (s, 3H, SCH₃), 2.63 (s, 2H, 3-H), 3.21 (s, 3H, NCH₃), 5.27 (s, 2H, NCH₂), 5.64 (s, 1H, 5-H), 7.25–7.57 (m, 10H, aromatic H). ¹³C NMR (DMSO- d_6 , 50 MHz) δ (ppm) 15.65 (SCH₃), 23.16 ((CH₃)₂), 33.37 (NCH₃), 39.96 (C-3), 57.40 (NCH₂), 60.32 (C-2), 88.52 (C-5), 127.30, 127.55, 127.94, 128.88, 130.06, 135.16, 141.73 (aromatic C), 159.45 (C-4), 173.20 (C-6). Anal. Calcd for C₂₂H₂₇IN₂S: C, 55.23; H, 5.69; I, 26.52; N, 5.86; S, 6.70. Found: C, 55.27; H, 5.78; I, 26.72; N, 5.69; S, 6.65.

5.2.1.4.2. 4-(*N*-Benzyl-*p*-anisidino)-1,2,2-trimethyl-6-methylthio-2,3-dihydropyridiniumiodide (**20**). Compound **18** (10.58 g, 20 mmol) gave with iodomethane (5.1 g, 100 mmol) yellow crystals of **20**. Mp 177 °C (EtOH/ethyl acetate); yield: 9.0 g (89%). IR (KBr) 2973, 1566, 1496, 1346, 1294, 1251, 1171, 1112, 1083, 698 cm⁻¹. ¹H NMR (DMSO-*d*₆, 400 MHz) δ (ppm) 1.28 (s, 6H, (CH₃)₂), 2.51 (s, 3H, SCH₃), 2.60 (s, 2H, 3-H), 3.20 (s, 3H, NCH₃), 3.78 (s, 3H, OCH₃), 5.20 (s, 2H, NCH₂), 5.62 (s, 1H, 5-H), 7.00–7.39 (m, 9H, aromatic H). ¹³C NMR (DMSO-*d*₆, 100 MHz) δ (ppm) 15.66 (SCH₃), 23.06 ((CH₃)₂), 33.25 (NCH₃), 39.39 (C-3), 55.54 (OCH₃), 57.52 (NCH₂), 60.10 (C-2), 88.16 (C-5), 114.93, 127.48, 127.75, 128.37, 128.69, 134.25, 134.96, 158.95 (aromatic C), 159.76 (C-4), 172.92 (C-6). Anal. Calcd for C₂₃H₂₉IN₂OS: C, 54.33; H, 5.75; I, 24.96; N, 5.51; S, 6.31. Found: C, 53.96; H, 5.80; I, 24.94; N, 5.33; S, 6.27.

5.2.1.4.3. 2,2-Dimethyl-6-methylthio-N,1-diphenyl-2,3-dihydropyridin-4(1H)-iminiumiodide (cis-24, trans-24). Compound 23 (6.2 g, 20 mmol) gave with iodomethane (3.4 g, 24 mmol) a mixture of cis-24 and trans-24. Mp 191 °C (CHCl₃/ethyl acetate); yield: 8.8 g (98%). IR (KBr) 2975, 1606, 1573, 1489, 1474, 1459, 1436, 1212, 1182, 1174, 759, 702 cm⁻¹. cis-24 (main component): ¹H NMR (DMSO-d₆, 400 MHz) δ(ppm) 1.32 (s, 6H, (CH₃)₂), 2.36 (s, 3H, SCH₃), 3.16 (s, 2H, 3-H), 5.73 (s, 1H, 5-H), 7.30-7.60 (m, 10H, aromatic H), 11.10 (s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ(ppm) 15.77 (SCH₃), 24.64 ((CH₃)₂), 41.12 (C-3), 61.03 (C-2), 85.93 (C-5), 124.10, 127.53, 129.38, 129.93, 130.00, 130.32, 136.61, 137.54 (aromatic C), 159.42 (C-4), 175.56 (C-6). trans-24 (minor constituent): ¹H NMR (DMSO- d_6 , 400 MHz) δ (ppm) 1.22 (s, 6H, (CH₃)₂), 2.51 (s, 3H, SCH₃), 3.16 (s, 2H, 3-H), 5.96 (s, 1H, 5-H), 7.30–7.60 (m, 10H, aromatic H), 11.10 (s, 1H, NH). ¹³C NMR (DMSO-d₆, 100 MHz) δ(ppm) 15.92 (SCH₃), 24.64 ((CH₃)₂), 37.58 (C-3), 60.84 (C-2), 89.78 (C-5), 124.69, 127.36, 129.49, 129.75, 130.25, 135.97, 137.66 (aromatic C), 162.39 (C-4), 173.27 (C-6). Anal. Calcd for C₂₀H₂₃IN₂S: C, 53.34; H, 5.15; I, 28.17; N, 6.22; S, 7.12. Found: C, 53.26; H, 5.11; I, 28.05; N, 6.01; S, 7.02.

5.2.2. Piperidines

5.2.2.1. *Diphenylpyraline* **analogues (3–7).** Their syntheses have already been reported.⁷

5.2.2.2. General procedure for the synthesis of 1-substituted 4-anilinopiperidines 21, 22, 25. Ten grams of freshly prepared Raney nickel W-2¹¹ were added to a solution of compounds **19, 20** or a mixture of *cis*-**24** and *trans*-**24** in 80 mL of EtOH. The mixture was shaken for 16 h at room temperature in hydrogen atmosphere at 45 psi in a shaker apparatus. The catalyst was sucked off through a sintered disc filter funnel and the residue rewashed with 100 mL of EtOH. The solvent was removed in vacuo and the residue dissolved in CHCl₃ and H₂O. The organic layers were separated and the aqueous phase was extracted once with CHCl₃. The combined organic layers were dried with Na₂SO₄ and the solvent evaporated. The oily base was converted to the dihydrochloride with an ethanolic solution of HCl. The solvent was removed and the residue recrystallized.

5.2.2.2.1. (RS)-(±)-4-Anilino-1,2,2-trimethylpiperidine (21). Compound 19 (2.39 g, 5 mmol) was hydrogenated with Raney nickel W-2.¹¹ The crude base of **21** contained *N*-phenylbenzylamine as by-product which was removed by distillation prior to the preparation of the hygroscopic dihydrochloride. Mp 220 °C (propan-2-ol/ acetone); yield: 1.1 g (73%). IR (KBr) 2939, 2618, 1647, 1603, 1476, 1385, 1320, 1222, 1173, 1124, 1042, 758, 692 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ (ppm) 1.03 (s, 3H, CH_{3ax}), 1.17 (s, 3H, CH_{3eq}), 1.28 (dd, *J* = 12.5, 12.0 Hz, 1H, 3-H_{ax}), 1.43 (dddd, *J* = 12.2, 12.2, 12.2, 4.8 Hz, 1H, 5-H_{ax}), 1.89 (ddd, J = 12.5, 3.5, 2.7 Hz, 1H, 3-H_{eq}), 2.05-2.11 (m, 1H, 5-H_{eq}), 2.27 (s, 3H, NCH₃), 2.55 (ddd, J = 12.2, 12.2, 3.1 Hz, 1H, 6-H_{ax}), 2.71 (ddd, J = 12.2, 4.8, 2.7 Hz, 1H, 6-H_{eq}), 3.44–3.52 (m, 1H, 4-H_{ax}), 6.58 (d, J = 8.0 Hz, 2H, o-aromatic H), 6.67 (t, J = 8.0 Hz, 1H, p-aromatic H), 7.16 (t, J = 8.0 Hz, 2H, *m*-aromatic H). ¹³C NMR (CDCl₃, 100 MHz) δ(ppm) 14.47 (CH_{3ax}), 30.19 (CH_{3eq}), 33.61 (C-5), 37.32 (NCH₃), 46.74 (C-3), 47.25 (C-4), 49.99 (C-6), 54.13 (C-2), 113.15 (o-aromatic C), 117.21 (p-aromatic C), 129.29 (m-aromatic C), 147.08 (i-aromatic C). Anal. Calcd for C₁₄H₂₄Cl₂N₂ ×0.5 H₂O: C, 56.00; H, 8.39; Cl, 23.61; N, 9.33. Found: C, 55.80; H, 8.49; Cl, 23.25; N, 9.16.

5.2.2.2.2. (RS)-(±)-4-(p-Anisidino)-1,2,2-trimethylpiperidine (22). Compound 20 (2.54 g, 5 mmol) was hydrogenated with Raney nickel W-2.¹¹ The crude base of **22** contained *N*-phenylbenzylamine as by-product which was removed by distillation prior to the preparation of the hygroscopic dihydrochloride. Mp 217 °C (ethyl acetate); yield: 1.1 g (68%). IR (KBr) 2928, 2624, 1647, 1598, 1476, 1384, 1321, 1220, 1171, 1114, 1041, 756, 690 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ (ppm) 0.99 (s, 3H, CH_{3ax}), 1.14 (s, 3H, CH_{3eq}), 1.22 (dd, J = 12.6, 12.0 Hz, 1H, 3-H_{ax}), 1.37 (dddd, J = 12.2, 12.2, 12.2, 4.4 Hz, 1H, 5-H_{ax}), 1.86 (ddd, *J* = 12.6, 3.2, 2.1 Hz, 1H, 3-H_{eq}), 2.02-2.08 (m, 1H, 5-H_{eq}), 2.24 (s, 3H, NCH₃), 2.51 (ddd, J = 12.3, 12.3, 2.7 Hz, 1H, 6-H_{ax}), 2.67 (ddd, J = 12.3, 4.4, 2.7 Hz, 1H, 6-H_{eq}), 3.22 (br, 1H, NH), 3.32-3.41 (m, 1H, 4-H_{ax}), 3.72 (s, 1H, OCH₃), 6.55 (d, J = 8.9 Hz, 2H, o-aromatic H), 6.75 (d, J = 8.9 Hz, 2H, m-aromatic H). ¹³C NMR (CDCl₃, 100 MHz) δ14.24 (CH_{3ax}), 30.07 (CH_{3eq}), 33.61 (C-5), 37.13 (NCH₃), 46.75 (C-3), 48.14 (C-4), 49.84 (C-6), 53.79 (C-2), 55.54 (OCH₃), 114.68 (o-aromatic C), 114.74 (m-aromatic C), 141.08 (i-aromatic C), 151.85 (p-aromatic C). Anal. Calcd for C₁₅H₂₆Cl₂N₂O × 0.25 H₂O: C, 55.30; H, 8.20; Cl, 21.76; N, 8.60. Found: C, 55.29; H, 8.20; Cl, 21.81; N, 8.50.

5.2.2.2.3. (RS)-(±)-4-Anilino-2,2-dimethyl-1-phenylpiperidine (25). A mixture of cis-24 and trans-24 (2.25 g, 5 mmol) was hydrogenated with Raney nickel W-2¹¹ giving an oily residue, which was converted to the dihydrochloride of 25. Mp 237 °C (EtOH/ethyl acetate); yield: 1.3 g (74%). IR (KBr) 3058, 2662, 2502, 1598, 1488, 1429, 764, 703 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ(ppm) 1.08 (s, 3H, CH_{3eq}), 1.10 (s, 3H, CH_{3ax}), 1.45 (dd, J = 12.6, 11.4 Hz, 1H, 3-H_{ax}), 1.49 (dddd, J = 12.0, 12.0, 11.7, 4.4 Hz, 1H, 5-H_{ax}), 1.89 (ddd, J = 12.6, 3.6, 2.4 Hz, 1H, 3-H_{eq}), 2.16-2.22 (m, 1H, 5-H_{eq}), 2.94 (ddd, J = 12.0, 4.4, 3.0 Hz, 1H, 6-H_{ea}), 3.44 (br, 1H, NH), 3.48 (ddd, J = 12.0, 12.0, 2.7 Hz, 1H, 6-H_{ax}), 3.60–3.69 (m, 1H, 4-H_{ax}), 6.62–7.29 (m, 10H, aromatic H). ¹³C NMR (CDCl₃, 100 MHz) δ(ppm) 17.26 (CH_{3ax}), 32.21 (CH_{3eq}), 34.33 (C-5), 47.50 (C-3, C-6), 47.67 (C-4), 55.26 (C-2), 113.23, 117.24, 124.48, 127.87, 127.94, 129.33, 147.16, 149.72 (aromatic C). Anal. Calcd for C₁₉H₂₆Cl₂N₂: C, 64.59; H, 7.42; Cl, 20.07; N, 7.93. Found: C, 64.48; H, 7.67; Cl, 19.96; N, 7.79.

5.2.2.3. *Bamipine* analogues (8–10). Their syntheses have already been reported.⁸

5.2.2.4. General procedure for the synthesis of 2,2-dimethyl-substituted analogues of *Bamipine* (11–13). In an atmosphere of nitrogen NaNH₂ was added to a solution of the corresponding 4-anilinopiperidine in 30 mL of benzene. The mixture was stirred on an oil-bath at 110 °C until the evolution of NH₃ ceased. Then

benzyl chloride was added dropwise. After 6 h the mixture was cooled, diluted with 100 mL of benzene, poured into a separatory funnel and shaken twice with H₂O. The organic layer was dried over K₂CO₃ and the solvent removed in vacuo. Excess benzyl chloride was removed beyond 70 °C in high vacuum. The oily base was converted to the dihydrochlorides with an ethanolic solution of HCl. The solvent was removed and the residue recrystallized.

5.2.2.4.1. (RS)-(±)-4-(N-Benzylanilino)-1,2,2-trimethylpiperidine (11). The reaction of compound 21 (0.55 g, 2.5 mmol), $NaNH_2$ (0.12 g, 3.1 mmol) and benzyl chloride (0.40 g, 3.1 mmol) gave an oily residue, which was converted to the dihydrochloride of 11. Mp 211 °C (2-propanol/acetone); yield: 0.70 g (73%). IR (KBr) 2927, 2375, 1630, 1605, 1493, 1477, 1435, 1392, 1379, 1221, 1168, 1119, 1042, 748, 699 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) $\delta(\text{ppm})$ 1.08 (s, 3H, CH_{3ax}), 1.14 (s, 3H, CH_{3eq}), 1.57 (dd, *J* = 12.5, 12.5 Hz, 1H, 3-H_{ax}), 1.68 (ddd, J = 12.5, 3.6, 2.3 Hz, 1H, 3-H_{eq}), 1.73 (dddd, J = 12.2, 12.2, 12.2, 4.7 Hz, 1H, 5-H_{ax}), 1.79–1.85 (m, 1H, 5-H_{eq}), 2.24 (s, 3H, CH₃), 2.57 (ddd, J = 12.2, 12.2, 3.1 Hz, 1H, $6-H_{ax}$), 2.67 (ddd, J = 12.2, 4.7, 2.7 Hz, 1H, $6-H_{eq}$), 4.02–4.10 (m, 1H, 4-H_{ax}), 4.42-4.51 (2d, *J* = 18.0 Hz, 2H, NCH₂), 6.67-7.29 (m, 10H, aromatic H). ¹³C NMR (CDCl₃, 100 MHz) δ(ppm) 13.91 (CH_{3ax}), 30.60 (C-5), 30.75 (CH_{3eq}), 37.33 (NCH₃), 42.58 (C-3), 49.02 (NCH₂), 50.33 (C-6), 51.83 (C-4), 54.18 (C-2), 112.77, 116.51, 126.16, 126.37, 128.35, 129.19, 140.72, 149.27 (aromatic C). Anal. Calcd for C₂₁H₃₀Cl₂N₂: C, 66.13; H, 7.93; Cl, 18.59; N, 7.35. Found: C, 65.88; H, 7.64; Cl, 18.34; N, 7.10.

5.2.2.4.2. (RS)-(±)-4-(N-Benzyl-p-anisidino)-1,2,2-trimethylpiperidine (12). The reaction of compound 22 (0.64 g, 2.5 mmol), NaNH₂ (0.12 g, 3.1 mmol) and benzyl chloride (0.40 g, 3.1 mmol) gave an oily residue, which was converted to the dihydrochloride of 12. Mp 223 °C (EtOH/ethyl acetate); yield: 0.67 g (65%). IR (KBr) 2919, 2365, 1601, 1495, 1482, 1458, 1430, 1400, 1375, 1221, 1174, 1120, 1041, 753, 696 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) $\delta(ppm)$ 1.08 (s, 3H, CH_{3ax}), 1.18 (s, 3H, CH_{3eq}), 1.63 (dd, J = 12.3, 12.3 Hz, 1H, 3-H_{ax}), 1.66–1.88 (m, 3H, 3-H_{eq}, 5-H), 2.28 (s, 3H, NCH₃), 2.59 (ddd, J = 12.6, 11.8, 3.7 Hz, 1H, 6-H_{ax}), 2.72-2.79 (m, 1H, 6-Heg), 3.72 (s, 1H, OCH₃), 3.83-3.92 (m, 1H, 4-H_{ax}), 4.33, 4.42 (2d, J = 17.2 Hz, 2H, NCH₂), 6.67–7.27 (m, 10H, aromatic H). ¹³C NMR (CDCl₃, 100 MHz): δ(ppm) 14.44 (CH_{3ax}), 30.07 (C-5), 30.28 (CH_{3eq}), 37.15 (NCH₃), 42.31 (C-3), 49.91 (NCH₂), 50.40 (C-6), 52.93 (C-4), 55.01 (C-2), 55.64 (OCH₃), 114.60, 115.81, 126.34, 126.47, 128.27, 140.84, 143.46, 151.87 (aromatic C). Anal. Calcd for C₂₂H₃₂Cl₂N₂O: C, 64.23; H, 7.84; Cl, 17.23; N, 6.81. Found: C, 64.44; H, 7.62; Cl, 17.27; N, 6.68.

5.2.2.4.3. (RS)-(±)-4-(N-Benzylanilino)-2,2-dimethyl-1-phenylpiperidine (13). The reaction of compound 25 (0.7 g, 2.5 mmol), NaNH₂ (0.12 g, 3.1 mmol) and benzyl chloride (0.40 g, 3.1 mmol) gave an oily residue, which was converted to the dihydrochloride of 13. Mp 207 °C (propan-2-ol); yield: 0.62 g (56%). IR (KBr) 3049, 2992, 2930, 2355, 1599, 1497, 1468, 1440, 1407, 1379, 1200, 1155, 1128, 1037, 769, 700 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ(ppm) 1.06 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 1.75 (dd, $J = 12.5, 12.5 \text{ Hz}, 1\text{H}, 3-\text{H}_{ax}), 1.77-1.86 (m, 1\text{H}, 3-\text{H}_{eq}, 5-\text{H}_{ax}),$ 1.92-1.97 (m, 1H, 5-H_{eq}), 2.92 (ddd, J = 12.0, 4.2, 3.0 Hz, 1H, 6-H_{eq}), 3.51 (ddd, J = 12.0, 12.0, 2.9 Hz, 1H, 6-H_{ax}), 4.19-4.27 (m, 1H, 4-H_{ax}), 4.48-4.59 (2d, J = 17.9 Hz, 2H, NCH₂), 7.09-7.30 (m, 15H, aromatic H). ¹³C NMR (CDCl₃, 100 MHz) δ(ppm) 16.88 (CH₃), 31.39 (C-5), 32.61 (CH₃), 43.22 (C-3), 47.99 (C-6), 49.12 (NCH₂), 52.20 (C-4), 55.58 (C-2), 112.83, 116.55, 124.52, 126.17, 126.41, 127.84, 127.95, 128.39, 129.23, 140.69, 149.25, 149.69 (aromatic C). Anal. Calcd for C₂₆H₃₂Cl₂N₂: C, 70.42; H, 7.27; Cl, 15.99; N, 6.32. Found: C, 70.15; H, 7.29; Cl, 15.16; N, 6.14.

5.3. Biological tests

5.3.1. Antimycobacterial activity

The primary screening of the antimycobacterial activity of all synthesized analogues of *Diphenylpyraline* and *Bamipine* was conducted *in vitro* at a concentration of 6.25 μ g/mL against *Mycobacterium tuberculosis* H₃₇Rv (ATCC 27294) in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA).¹³ Isoniazid (INH) was used as standard. Compounds effecting >90% inhibition were retested at lower concentrations to determine their minimum inhibitory concentration. The MIC is defined as the lowest concentration effecting a reduction in fluorescence of 90% relative to controls.

5.3.2. Cytotoxicity

The cytotoxic properties of all *Bamipine* analogues were detected indirectly via cell proliferation of a HEK-293 cell line (human embryonic kidney 293 cells) using a colorimetric assay based on the reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to a colored formazan product by proliferating cells.¹⁴ INH was used as standard. The data for the *Diphenylpyraline* derivatives were taken from Ref. 7 which contains a detailed description of the test method.

5.3.3. Antihistaminic activity

The H₁-receptor antagonist potency of selected compounds was determined in whole segments of the guinea-pig ileum as previously described.¹⁵

Acknowledgments

Antimycobacterial data were provided by the Tuberculosis Antimicrobial Aquisition and Coordinating Facility (TAACF) through a research and development contract with the US National Institute of Allergy and Infectious Diseases.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2008.10.042.

References and notes

- Am Ende, C. W.; Knudson, S. E.; Liu, N.; Childs, J.; Sullivan, T. J.; Boyne, M.; Xua, H.; Gegina, Y.; Knudson, D. L.; Johnson, F.; Peloquin, C. A.; Slayden, R. A.; Tonge, P. J. Bioorg. Med. Chem. Lett. **2008**, *18*, 3029.
- World Health Report 2008, www.who.int/tb/publications/global_report/2008/ pdf/fullreport.pdf.
- 3. Meindl, W. Arch. Pharm. 1988, 321, 473.
- 4. Meindl, W. Arch. Pharm. 1989, 322, 493.
- 5. Meindl, W. Arch. Pharm. 1987, 320, 475.
- 5. Weis, R.; Kungl, A. J.; Seebacher, W. Tetrahedron 2003, 59, 1403.
- Weis, R.; Faist, J.; di Vora, U.; Schweiger, K.; Brandner, B.; Kungl, A. J.; Seebacher, W. Eur. J. Med. Chem. 2008, 43, 872.
- 8. Weis, R.; Seebacher, W. Tetrahedron 2003, 59, 1395.
- Willson, F. G.; Wheeler, T. S.. In Organic Syntheses Collect; Gilman, H., Ed.; Wiley: New York, 1932; Vol. I, pp 102–104.
- 10. Zigeuner, G.; Schweiger, K.; Fuchsgruber, A. Monatsh. Chem. 1981, 112, 187.
- Mozingo, R. In Organic Syntheses Collect; Horning, E. C., Ed.; Wiley: New York, 1955; Vol. III, pp 181–183.
- 12. Schweiger, K. Monatsh. Chem. 1983, 114, 581.
- 13. Collins, L.; Franzblau, S. G. Antimicrob. Agents Chemother. 1997, 41, 1004.
- 14. Mosmann, T. J. Immunol. Methods 1983, 65, 55.
- 15. Pertz, H.; Elz, S. J. Pharm. Pharmacol. 1995, 47, 310.