Syntheses, structures and reactions of a series of β -diketiminatoyttrium compounds \dagger

Xuehong Wei,^{*a,b*} Yanxiang Cheng,^{*a,c*} Peter B. Hitchcock^{*a*} and Michael F. Lappert^{**a*}

Received 16th April 2008, Accepted 2nd July 2008 First published as an Advance Article on the web 26th August 2008 DOI: 10.1039/b806451b

This paper describes the synthesis and selected reactions of a series of crystalline mono(β diiminato)yttrium chlorides 3a, 3b, 4a, 4b, 5a, 5b, 5c and 9. The X-ray structure of each has been determined, as well as of $[YCl(L^4)_2]$ (6), $[Y(L^1)_2OBu^1]$ (7) and $[Y{CH(SiMe_3)_2}(thf)(\mu-$ Cl)₂Li(OEt₂)₂(μ -Cl)]₂ (8). The N,N'- κ^2 - β -diiminato ligands were [{N(R)C(Me)}₂CH]⁻ [R = C₆H₄Pr⁻-2 (L¹); $\mathbf{R} = C_6 H_4 Bu^t - 2$ (L²); $\mathbf{R} = C_6 H_3 Pr_2^i - 2.6$ (L³)], $[\{N(SiMe_3)C(Ph)\}_2 CH)]^-$ (L⁴) and $[{N(C_6H_3Pr_2^i, -2, 6)C(H)}_2CPh]^-$ (L⁵). Equivalent portions of Li[L^x] and YCl₃ in Et₂O under mild conditions yielded $[Y(\mu-Cl)(L^x)(\mu-Cl)_2Li(OEt_2)_2]_2 [L^x = L^1 (3a) \text{ or } L^2 (3b)]$ and $[Y(\mu-Cl)(L^3)(\mu-Cl)Li(OEt_2)_2(\mu-Cl)]_2$ (4a) or its thf (instead of Et₂O) equivalent 4b. Each of the $Li(OEt_2)_2Cl_2$ moleties is bonded in a terminal (3) or bridging (4) mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of L^3 than L^1 or L^2 . Under slightly more forcing conditions, YCl₃ and Li(L^2) (via 3b) gave the lithium-free complex [YCl₂(L^2)(thf)₂] (5b). Two isoleptic compounds 5a and 5c (having in place of L^2 in 5b, L^3 and L^5 , respectively) were obtained from YCl₃ and an equivalent portion of $K[L^3]$ and $Na[L^5]$, respectively; under the same conditions using $Na[L^4]$, the unexpected product was $[YCl(L^4)_2]$ (6) (*i.e.* incorporating only one half of the YCl₃). A further unusual outcome was in the formation of 8 from 3a and 2 Li[CH(SiMe₃)₂]. Compound $[Y(L^5){N(H)-}$ $C_6H_3Pr^i_2-2,6$ (thf)(μ_3 -Cl)₂K]₂·4Et₂O (9), obtained from 5c and K[N(H)C₆H₃Prⁱ₂-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.

Introduction

β-Diiminates are important spectator ligands in coordination chemistry. Their use depends on their strong binding to metals, their widely tunable steric and electronic features by varying the substituents at the nitrogen and carbon atoms and the diversity of their bonding modes. In the present context, however, their general formula is limited to that shown in L^1-L^5 , their binding to yttrium is invariably N, N'-chelating and their bonding mode is monoanionic and π-delocalised. Ligands L^1-L^4 are βdiketiminates and L^5 is a β-dialdiminate.

R ³		R^1	R^2	R^3
B^2 C B^2	L ¹ :	2-Pr ⁱ C ₆ H ₄	Me	н
c	L ² :	2-Bu ^t C ₆ H₄	Me	н
(-)	L ³ :	2,6-Pr ⁱ ₂ C ₆ H ₃	Me	н
B^{1} B^{1} B^{1}	L ⁴ :	Me ₃ Si	Ph	н
	L ⁵ :	2,6-Pr ⁱ ₂ C ₆ H ₃	н	Ph

 β -Diiminates of the majority of the natural elements have been described. In our 2002 review, however, such yttrium compounds were notable by their absence.¹ Subsequently, various L^3 derivatives have been described: $[YI_2(L^3)(thf)]$ (thf = tetrahydrofuran),² [YI₂(L³)(dme)] (dme = 1,2-dimethoxyethane),² $[{YI(L^3)(\mu-OMe)}_2]^2$ $[YCl(L^3)(\mu-Cl)_3Y(L^3)(thf)] \cdot 2PhMe^3$ and $[Y(\eta^3-C_3H_5)_2(L^3)]$.⁴ Furthermore, various yttrium compounds have featured as catalysts for ring-opening polymerisation of methyl methacrylate (MMA) or ɛ-caprolactone, or copolymerisation of carbon dioxide and an epoxide. Examples include [Y(OOCR)₃] with ZnEt₂ and glycerol for CO₂/epoxide copolymerisation, 5a,b [Y{(NPrⁱ)₂CN(SiMe₃)₂}₂NPrⁱ₂]⁶ or [Y{(η^3 - $C_{3}H_{3}SiMe_{3})_{2}SiPh_{2}_{2}(\mu-K)(thf)_{0.5}(OEt_{2})_{1.5}]_{\infty}^{7}$ for poly-MMA or poly- ε -caprolactone formation, and I (R = Me, n = 2; R = Bu^t, n = 3) for polylactide synthesis.⁸ The complex [Y(η^5 -C₄PMe₂-3,4- $Bu_{2}^{t}-2,5)(CH_{2}C_{6}H_{4}NMe_{2}-2)_{2}]$ with $[Ph_{3}C][B(C_{6}F_{5})_{4}]$ was a catalyst for the syndiospecific polymerisation of styrene.9 The above considerations have provided the stimulus for the present excursion into β -diiminatoyttrium chemistry.

Results and discussion

The β -diketimines H[{N(C₆H₄R-2)C(Me)}₂CH] [R = Prⁱ (1a) (= HL¹);¹⁰ R = Buⁱ (1b) (= HL²)] were prepared from acetylacetone

^aDepartment of Chemistry, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk; Fax: +44-1273-677193; Tel: +44-1273-678316

^bThe School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China

^cState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

[†] CCDC reference numbers 684941–684951. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b806451b

Scheme 1 Reagents and conditions: i, LiBuⁿ, C₆H₁₄; ii, YCl₃, Et₂O, -30 °C.

and the relevant amine 2-RC₆H₄NH₂, using the literature procedure outlined for H[{N(C₆H₃Prⁱ₂-2,6)C(Me)}₂CH] (\equiv HL³).¹¹ The lithium salts Li[L¹] (**2a**) (which had previously been prepared *in situ* as the first step *en route* to a zinc β-diketiminato derivative)¹⁰ and Li[L²] were obtained from the appropriate β-diketimine and LiBuⁿ (i in Scheme 1); crystalline Li[L³] (**2c**) and its 1:1-diethyl ether or thf adducts had already been described.¹² The crystalline pentacyclic dimeric lithio(trichloro)(β-diketiminato)yttrium compounds **3a** or **3b** were synthesised (ii in Scheme 1) from equimolar portions of the respective compound **2a** or **2b** and yttrium(III) chloride.

The central $[(\mu-Cl)M(\mu-Cl)_2Li]_2$ motif of **3a** and **3b** (M = Y) resembles that found in the crystalline compounds **J** (M = Nd, Sm*, Eu*, Ho, Yb*; those marked with an asterisk were X-ray-characterised), obtained from Li[N(SiMe_3)_2] and the corresponding compound MCl₃ in thf.¹³

In contrast to step ii of Scheme 1, based on Li[L¹] or Li[L²], treatment of YCl₃ with an equimolar portion of the more bulky lithium β -diketiminate 2c¹² afforded [eqn (1)] the crystalline compounds 4a or 4b. Their central [YCl₃Li]₂ motif differs from that in 3a or 3b. Whereas in the latter each such moiety occupies a terminal site with respect to each yttrium atom, in 4a and 4b each functions as a bridge between its two yttrium atoms. Apart from the substituents on the nitrogen atoms, compounds 3 and 4 might be regarded as isomers.

By using one of the heavier alkali metal salts, $K[L^3]$ or $Na[L^5]$ as a β -diiminato ligand-transfer reagent, a similar YCl₃/M[L] reaction in thf afforded (i in Scheme 2) the crystalline alkali metal-free, mononuclear dichloroyttrium β -diiminate **5a** or **5c**. A different outcome, again, resulted from treatment under mild conditions of equivalent portions of Na[L⁴] and YCl₃, which furnished (ii in Scheme 2) the crystalline chloroyttrium bis(β -diketiminate) [YCl(L⁴)₂] (**6**). Related to **5a** and **5c**, the corresponding compound [YCl₂(L²)(thf)₂] (**5b**) was obtained (iii in Scheme 2) by prolonged gentle heating of **3b**, with elimination of lithium chloride.

Scheme 2 Reagents and conditions: i, for **5a**: $K[{N(C_6H_3Pri_2-2,6)C(Me)}_2-CH]$, Et₂O, -30 °C, crystd thf–Et₂O–C₆H₁₄; for **5b**: **3b**, 60 °C, 12 h, crystd thf–Et₂O; for **5c**: Na[{N(C₆H₃Pri_2-2,6)C(H)}_2Ph], thf, 20 °C; ii, Na[{N(SiMe₃)C(Ph)}_2CH, thf, 20 °C, crystd thf–Et₂O; iii, C₆H₁₄, 60 °C, crystd C₆H₁₄–Et₂O–thf.

Regarding the binuclear β -diiminato-Y/Li chlorides **3a**, **3b**, **4a** and **4b**, there are some related 4f metal complexes in the recent literature. These include **K(a)**,¹⁴ **K(b)**,¹⁴ **K(c)**¹⁵ and **K(d)**¹⁴ obtained from Li[L⁶] and an equivalent portion of LnCl₃ in thf; treatment of **K(b)** with H[{N(C₆H₃Me₂-2,6)C(Me)}₂CH] (= HL⁶) in toluene yielded [SmCl(L⁶)(µ-Cl)₃Sm(L⁶)(µ-Cl)Li(L⁶)(thf)].¹⁴ The compound [YCl(L³)(µ-Cl)₃Y(L³)(thf)]·2PhMe (mentioned in the Introduction) was prepared from equivalent portions of [YCl₃(thf)] and the lithium β -diketiminate in toluene at 90 °C.³ Other tetrachlorobis(β -diketiminatolanthanide) complexes reported recently include [Ln(L⁶)(thf)(µ-Cl)₃Ln(Cl)(L⁶)] (Ln = Sm, Yb), obtained from the appropriate compound **K(b)** or **K(d)** in toluene.¹⁴ The corresponding Sm₂-(L³)₂ complex was prepared from SmCl₃ and K(L³) in thf.¹⁶ As for compounds **5a**, **5b** and **5c**, there are recent precedents for mononuclear β -diketiminatometal (M) dichlorides (M = Sc or Ln): [ScCl₂(L³)(thf)],¹⁷ [Ln(L^x)Cl₂(thf)₂] (Ln(L^x) = Yb(L³),¹⁸ Sm(L⁶),^{19a} Yb(L⁶),^{19a,b,c,d} and Ln[N(C₆H₃Prⁱ₂-2,6)C(Me)C(H)C(Me)N(C₆H₄Cl-4)] (Ln = Sm, Yb)^{19a,c}), and [YbCl₂(L³)(dme)].²⁰

The formation of the five-coordinate $bis(\beta-diketiminato)$ yttrium chloride **6** from equivalent portions of YCl₃ and Na[L⁴] (ii in Scheme 2) is surprising. It is attributed to disproportionation of the kinetically labile YCl₂(L⁴) [eqn (2)]. An analogous situation involving an L⁴-containing Ln compound was previously observed when the 1:1 reaction of [Ce(L⁴)₂Cl] with LiCH(SiMe₃)₂ gave a 1:2 product apparently *via* the ligand redistribution of the labile intermediate Ce(L⁴)Cl{CH(SiMe₃)₂} [eqn (3)]; it was suggested that [Ce(L⁴)₂{CH(SiMe₃)₂}] was too sterically hindered to exist.²¹

$$2\text{YCL}_2(\mathbf{L}^4) \rightarrow [\text{YCl}(\mathbf{L}^4)_2] (\mathbf{6}) + \text{YCl}_3 \tag{2}$$

$$2[\operatorname{CeCl}(\mathbf{L}^{4})_{2}] + 2\operatorname{LiCH}(\operatorname{SiMe}_{3})_{2} \rightarrow [\operatorname{Ce}\{\operatorname{CH}(\operatorname{SiMe}_{3})_{2}\}_{2}(\mathbf{L}^{4})] + [\operatorname{CeCl}(\mathbf{L}^{4})_{2}]$$
(3)

Treatment of the β-diketimine H[L¹] with K[N(SiMe₃)₂] yielded (ii in Scheme 3) K[L¹]. The latter with half an equivalent each of successively YCl₃ and K[OBu^t] furnished (iii in Scheme 3) in modest yield X-ray quality crystals of [Y(L¹)₂OBu^t] (7). Several bis(β-diketiminato)lanthanide(III) compounds (but no alkoxides) have been reported, including [Ln(L⁴)₂Cl] (Ln = Ce,^{21,22} Pr,²¹ Nd,²¹ Sm,²¹ Yb²¹), [Ln(L⁷)₂Br] [L⁷ = {N(Pr)C(Ph)}₂CH; Ln = Sm, Gd],²³ and [Tm(L³)₂]X [X = BPh₄, B(C₆F₅)₄].²⁴

X-Ray-quality crystals of **8** (i in Scheme 3) in moderate yield were obtained from $[Y(\mu-Cl)(L^1)(\mu-Cl)_2Li(OEt_2)_2]_2$ (**3a**) and Li[CH(SiMe_3)_2]. It is interesting that, under the very mild reaction conditions used, the alkyl ligand displaced the β -diketiminate, especially as the alternative leaving groups (the bridging chlorides) were unaffected. This is a very rare occurrence. Another example is

that shown in eqn (3), which, however, was attributed to the steric hindrance to the formation of $[Ce{CH(SiMe_3)_2}(L^4)_2]$;²¹ and from $[{Y(\eta^5-C_5H_4R)_2(\mu-Cl)}_2] + 2LiMe$ in thf the only product isolated was $Li[C_5H_4R]$ [R = (+)-neomenthy].²⁵ Another possible route to **8** is that the first formed product from **3a** and the lithium alkyl was $Y(L^1)(\mu-Cl)_2Li{CH(SiMe_3)_2}$ (suggested by a referee), which upon redistribution yields equivalent portions of **8** and $Y(L^1)Cl{CH(SiMe_3)_2}$ (which may have decomposed) and $Li(L^1)$.

Addition of an equivalent portion of potassium 2,6-diisopropylanilide to $[Y(L^5)Cl_2(thf)_2]$ (**5c**) in diethyl ether at ambient temperature yielded [eqn (4)] the crystalline compound $[Y(L^5){N(H)C_6H_3Pr^i_2-2,6}(thf)(\mu_3-Cl)_2K]_2\cdot4Et_2O$ (9). Heterobimetallic K–M [M = a group 3 or lanthanide(III) metal] complexes containing halide bridges between such two metals are exceedingly rare. Examples include the X-ray-characterised compounds $[Dy(\eta^5-C_5H_2Bu'_3-1,2,4)_2(\mu-Cl)_2K(18-crown-6)]$,²⁶ $[Ln(\eta^5-C_5Me_5)_2(\mu-Cl)_2K(thf)]_{\infty}$ (Ln = Ce,²⁷ Sm^{28a,b}) and $[Lu{CH(SiMe_3)_2}_3(\mu-Cl)K(\eta^6-PhMe)_2]$.²⁹

Molecular structures of the crystalline compounds 3a, 3b, 4a, 4b, 5a, 5b, 5c, 6, 7, 8 and 9

Each of the compounds, except **8**, is a mono- or bis- (**6**, **7**) diiminatoyttrium complex, having the N,N'-centred ligand bonded to the metal in a terminal, chelating (κ^2) fashion. The endocyclic geometrical parameters of their six-membered YNCCCN rings are shown in Table 1. The conformation of each such ring is that

Scheme 3 Reagents and conditions: i, $2Li[CH(SiMe_3)_2]$, C_6H_{14} , 0 °C, crystd thf– $Et_2O-C_6H_{14}$; ii, $K[N(SiMe_3)_2]$, PhMe; iii, YCl_3 , Et_2O , -30 °C and KOBu^t, C_6H_{14} .

	6
	7
, 5c, 6, 7 and 9ª	9
4a, 4b, 5a, 5b,	5c
ties of 3a, 3b,	5b
) ₂ CR ³ }] moiet	5a
$\alpha - \delta$ (°) in the [Y { κ^2 -(N(R ¹)(R ²)	4b
(Å) and angles	4a
ocyclic bond distances a-e	3b
Table 1 Endo	3a

	3a	3b	4a	4b	5a	5b	5c	9	7	6
-	2.315(6), 2.300(7)	2.3427(19)	2.344(4), 2.361(4)	2.377(4)	2.380(3)	2.357(2)	2.3766(17)	2.3611(19), 2.3079(19)	2.395(8), 2.358(2)	2.400(2)
1,	2.317(6), 2.300(6)	2.3768(11)	2.356(4), 2.340(4)	2.367(4), 2.341(4)	2.360(3)	2.343(2)	2.3746(18)	2.3137(19), 2.3611(19)	2.347(2), 2.380(2)	2.473(2)
. 0	1.350(10), 1.332(10)	1.330(3)	1.336(6), 1.326(6)	1.337(7), 1.335(7)	1.334(5)	1.328(3)	1.324(3)	1.332(3), 1.338(3)	1.324(3), 1.335(3)	1.325(3)
2	1.353(10), 1.342(10)	1.339(3)	1.330(6), 1.343(6)	1.337(7), 1.331(7)	1.330(5)	1.330(4)	1.320(3)	1.330(3), 1.329(3)	1.333(3), 1.327(3)	1.317(3)
٤.	1.414(11), 1.403(11)	1.410(3)	1.397(7), 1.406(7)	1.394(8), 1.402(8)	1.395(5)	1.407(4)	1.400(3)	1.422(3), 1.412(3)	1.407(3), 1.405(3)	1.401(4)
•	1.388(12), 1.402(12)	1.399(3)	1.403(7), 1.396(7)	1.388(8), 1.385(8)	1.396(5)	1.398(4)	1.403(3)	1.415(3), 1.425(3)	1.405(3), 1.415(3)	1.408(4)
ł	1.16, 1.17	0.91	0.84, 0.88	0.93, 0.80	0.59	0.77	0.11	1.67, 1.67	1.09, 1.27	0.68
0.	0.12, 0.11	0.05	0.12, 0.14	0.12, 0.13	0.08	0.02	0.01	0.23, 0.23	0.13, 0.17	0.13
×	80.1(2), 78.5(2)	78.94(7)	81.58(14), 82.60(13)	82.45(15), 81.15(16)	79.94(10)	79.34(8)	80.52(6)	79.87(7), 80.31(7)	77.45(6), 77.91(16)	75.65(7)
3	117.7(5), 119.2(5)	124.39(16)	121.3(3), 123.3(3)	119.6(3), 122.7(4)	125.8(2)	125.70(18)	126.88(14)	97.55(14), 99.60(14)	120.95(14), 116.44(13)	128.53(18)
ŝ	117.6(6), 119.2(6)	122.17(15)	120.9(3), 119.2(3)	118.7(3), 122.6(4)	126.7(2)	125.50(18)	126.91(14)	100.93(14), 98.58(14)	122.32(13), 117.37(13)	127.02(17)
~	123.5(8), 126.6(8)	123.6(2)	125.1(4), 124.7(4)	125.3(5), 124.7(5)	125.0(3)	124.0(3)	129.3(2)	124.2(2), 123.6(2)	124.1(2), 124.57(19)	129.5(2)
~	124.3(7), 123.9(7)	125.1(2)	125.2(5), 125.5(5)	125.1(5), 124.8(5)	124.5(3)	124.2(3)	129.3(2)	123.3(2), 123.8(2)	123.44(19), 123.1(2)	128.3(3)
<i>.</i> с	129.9(7), 129.8(7)	130.7(2)	131.4(5), 131.3(5)	132.1(5), 131.4(5)	131.5(4)	130.9(3)	126.5(2)	127.7(2), 128.0(2)	129.5(2), 129.1(2)	123.5(2)
Pa	rameters $a-e$ and $\alpha-\delta$ ar	e defined as foll	ows:							
				t	~	`	ر <i>`</i>			

of a shallow boat; the central NCCN moiety is planar, with the Y and the apical carbon being out (Y > C) of that plane. The overall deviation from the plane is greatest for YL^4 (6) and least for YL^5 (5c, 9); and for related compounds: YL^1 (3a) > YL^2 (3b) and YL^2 (5b) > YL^3 (5a). Each Y–N and Y–N' bond length is closely similar for these compounds, the disparity being greatest for YL^2 (3b) and YL^5 (9). The average Y–N bond length in the YL^5 dialdiminato complex 9 is by far the longest, unlike in the YL^5 complex 5c, and in both the C1–C2–C3 angle is the narrowest.

The structures of the isoleptic crystalline compounds $[Y(\mu-Cl)(L^x)(\mu-Cl)_2Li(OEt_2)_2]_2$ (**3a** ($L^x = L^1$; Fig. 1) and **3b** ($L^x = L^2$; Fig. 2) are similar, but there are significant differences as evident both from Table 1 ($L^1 vs L^2$) and Table 2 [for endocyclic Y(L^x) data, see Table 1]. Each of **3a** and **3b** has a central YCIY'CI' rhombus, but only **3b** is centrosymmetric. For both, the endocyclic angles are narrower at the Y atoms than at the Cl atoms. The four Y–Cl bond lengths in **3a** are closely similar, whereas the two in **3b** differ substantially; likewise the difference in the angles at Y/Y' and Cl/Cl' is greater in **3b** (*ca.* 11°) than **3a** (*ca.* 3°). The yttrium atoms are the spiro centres of YCIY'Cl' and YCI''LiCI''' rings. Whereas

Fig. 2 Molecular structure of crystalline 3b (20% thermal ellipsoids).

 $\label{eq:constraint} \textbf{Table 2} \quad \text{Selected bond distances (Å) and angles (°) for the [Li(\mu-Cl)_2Y(\mu-Cl)]_2 moiety of \textbf{3a} and \textbf{3b} and \textbf{3b$

3a				3b ^{<i>a</i>}	
Y1–Cl1	2.705(2)	Y2-C11	2.684(2)	Y–Cl1′	2.6727(6)
Y1-Cl4	2.696(20	Y2–Cl4	2.707(2)	Y–Cl1	2.7462(6)
Y1-Cl2	2.611(2)	Y2-C15	2.616(2)	Y-C13	2.6169(6)
Y1-Cl3	2.660(2)	Y2-C16	2.660(2)	Y–Cl2	2.6294(6)
Li2-Cl2	2.391(15)	Li1–Cl5	2.391(17)	Li–Cl2	2.443(5)
Li2-Cl3	2.391(15)	Li1–Cl6	2.385(16)	Li–Cl3	2.384(4)
Y1-C11-Y2	101.55(6)	Y1-Cl4-Y2	101.17(6)	Y–Cl–Y'	104.48(2)
Cl1-Y1-Cl4	78.55(6)	Cl1-Y2-Cl4	78.73(6)	Cl1–Y–Cl1′	75.52(2)
Cl1-Y1-Cl2	171.26(7)	Cl4-Y2-Cl5	170.21(7)	Cl1'-Y-Cl3	158.09(2)
Cl1-Y1-Cl3	91.20(7)	Cl4-Y2-Cl6	88.60(7)	Cl1-Y-Cl3	83.341(19)
Cl2-Y1-Cl4	94.64(7)	Cl1-Y2-Cl5	96.30(7)	Cl1-Y-Cl2	87.37(2)
Cl3-Y1-Cl4	83.17(7)	Cl1-Y2-Cl6	89.10(7)	Cl1'-Y-Cl2	100.85(2)
Cl2-Y1-Cl3	83.17(7)	C15-Y2-C16	82.86(7)	C12-Y-C13	83.61(2)
Y1-Cl2-Li2	92.0(4)	Y2-Cl5-Li1	91.9(4)	Y-Cl2-Li	88.44(10)
Y1-C13-Li2	90.8(4)	Y2-Cl6-Li1	91.0(4)	Y-Cl3-Li	90.01(11)
Cl2-Li2-Cl3	94.1(5)	Cl5–Li1–Cl6	93.9(6)	Cl2–Li–Cl3	92.83(15)
N1-Y1-Cl1	96.22(16)	N3-Y2-Cl4	96.15(16)	N1-Y-C11	107.07(5)
N1-Y1-Cl4	91.30(17)	N3-Y2-Cl1	89.88(17)	N1-Y-C11′	94.75(5)
N1-Y1-Cl3	172.57(16)	N3-Y2-C16	174.83(16)	N1-Y-C12	161.05(5)
N1-Y1-Cl2	89.34(16)	N3-Y2-C15	92.23(16)	N1-Y-C13	85.92(5)
N2-Y1-Cl1	83.88(17)	N4-Y2-Cl4	85.61(16)	N2-Y-C11	158.67(5)
N2-Y1-Cl4	159.49(17)	N4-Y2-Cl1	159.90(17)	N2-Y-C11′	83.67(5)
N2-Y1-Cl3	101.77(19)	N4-Y2-Cl6	103.92(18)	N2-Y-C12	92.06(5)
N2-Y1-Cl2	103.77(17)	N4-Y2-Cl5	101.05(16)	N2-Y-C13	117.81(5)

^{*a*} Symmetry transformations to generate equivalent atoms: '-x + 1/2, -y + 3/2, -z.

in **3a** the Y2Cl5Li1Cl6 ring is planar and the Y1Cl2Li2Cl3 ring is almost planar, in **3b** the YCl2LiCl3 ring is distinctly puckered, Cl3 being 0.72 Å out of the YCl2Li plane (*cf.*, for **3a**, Cl3 is 0.04 Å out of the Y1Cl2Li2 plane). Each of the yttrium atoms is at the centre of a distorted octahedron; the angle at the mutually transoid atoms for **3a** decrease in the sequence N1/Cl3 > Cl2/Cl1 \gg N2/Cl4 for Y1 and N3/Cl6 > Cl4/Cl5 \gg N4/Cl1 for Y2. In **3b** the mutually transoid pairs (N1/Cl2, N2/Cl1, Cl1'/Cl3) subtend at the yttrium atom more closely similar angles (*ca.* 159.5 ± 1.5°), whereas in **3a** they range from *ca.* 159.5 to *ca.* 172.5° for Y1 and *ca.* 159.5 to *ca.* 174.8° for Y2.

The structures of the isoleptic crystalline complexes [Y(µ- $Cl(L^{3}){(\mu-Cl)Li(Lg)_{2}(\mu-Cl)}_{2} [Lg = thf (4a), Fig. 3; OEt_{2} (4b),$ Fig. 4a] are closely similar, as shown by the selected [excluding the $Li(Lg)_2$ fragments] geometrical parameters in Table 3; for endocyclic $Y(L^3)$ data, see Table 1. As for **3a** and **3b**, the central core of 4a and 4b is a Y1Cl1Y2Cl2 rhombus; like for 3b, the two Y-Cl bond lengths of 4a and 4b differ significantly (by ca. 0.07 Å). Essentially orthogonal to this plane is an eight-membered macrocycle, Li1Cl3Y1Cl4Li2Cl6Y2Cl5, shown for 4b in Fig. 4b. As evident from the latter, this ring approximates to a boat with the atoms Li1 and Li2 out of the only slightly puckered Cl3Y1Cl4Cl6Y2Cl5 moiety (4a, the Cl1 and Cl2 are transposed relative to 4b). Each of the Y1 and Y2 atoms is at the centre of a strongly distorted octahedron, with the atoms N1/Cl2, N2/Cl1 and Cl3/Cl4 being mutually transoid with respect to Y1 (at 166 \pm 1.9°) and N3/Cl1, N4/Cl2 and Cl5/Cl6 with respect to Y2 (at $167 \pm 2.5^{\circ}$) for **4a** (*cf.* $164 \pm 1.5^{\circ}$ for **4b**).

The structures of the isoleptic crystalline complexes $[Y(L^x)Cl_2(thf)_2]$ $[L^x = L^3$ (5a), L^2 (5b), L^5 (5c)] are shown in Fig. 5, 6 and 7, respectively. Selected geometric parameters for the N1N2YCl1Cl2O1O2 fragments are shown in Table 4 [for

Fig. 3 Molecular structure of crystalline 4a (20% thermal ellipsoids).

endocyclic Y(L^x) data, see Table 1]. The pairs of Y–O and Y– Cl bonds are closely similar for **5b** and **5c**, but for **5a** the former are significantly longer and the latter shorter. The yttrium atom in each is at the centre of a severely distorted octahedron. The mutually transoid atoms are N1/O1, N2/O2 and Cl1/Cl2 for **5a** and **5b**, while for **5c** the O1 and O2 atoms are transposed; *trans* angles subtended at Y range from *ca*. $167 \pm 8^{\circ}$ (**5a**), $171 \pm 2^{\circ}$ (**5b**) and $170 \pm 6^{\circ}$ (**5c**). The geometric parameters of **5a** are similar to those for [Yb(L²)Cl₂(dme)].²⁰

The structures of the crystalline five-coordinate bis(β -diketiminato)yttrium compounds [Y(L⁴)₂Cl] (6) and [Y(L¹)₂(OBuⁱ)] (7) are illustrated in Fig. 8 and 9, respectively; selected exocyclic geometric parameters for the YXN1N2N3N4

Fig. 4 (a) Molecular structure of crystalline **4b** (20% thermal ellipsoids) (top); (b) ORTEP representation of the Li1Cl3Y1Cl4Li2Cl6Y2Cl5 fragment of **4b** (bottom).

fragment of each are listed in Table 5 [for endocyclic $Y(L^x)_2$ data, see Table 1]. The data for **6** are similar to those of $[Nd(L^4)_2Cl]$,²¹

Fig. 5 Molecular structure of crystalline 5a (20% thermal ellipsoids).

allowing for the larger size of Nd^{3+} than Y^{3+} . The yttrium atom in both 6 and 7 is in a distorted trigonal bipyramid having N1 and N4 as the axial atoms.

The structure of the crystalline centrosymmetric complex $[Y(X)(\mu-Cl)(O)(\mu-Cl)_2Li]_2$ (8) is shown in Fig. 10. Selected geometric parameters for its core (X = C), together with its isoleptic analogue J (X = N) are listed in Table 6. The YCl2LiCl3 ring (as well as the YCl1Y'Cl1' ring) is planar with the endocyclic angles centred at Y \gg Cl2 > Cl3 > Li (ranging from *ca.* 84° at Y and *ca.* 94° at Li). Each yttrium atom is at the centre of a distorted octahedron, the *trans* angles being *ca.* 163.5 ± 4.5°; the angles at mutually transoid atoms decrease in the sequence C/Cl1' > O1/Cl2 > Cl1/Cl3.

The structure of the crystalline centrosymmetric complex $[Y(L^5)\{N(H)C_6H_3Pr^i{}_2\text{-}2,6\}(thf)(\mu_3\text{-}Cl)_2K]_2$ (9) is shown in

Table 3 Selected bond distances (Å) and angles (°) for the $[(N)(N)(\mu-Cl)Y(\mu-Cl)Li(\mu-Cl)]_2$ fragment of **4a** and **4b**

4a				4b			
Y1-C11	2.7543(13)	Y2-C11	2.7590(13)	Y1-C11	2.6793(14)	Y2-C11	2.6766(13)
Y1-C12	2.6740(13)	Y2-Cl2	2.6811(14)	Y1-C12	2.7397(14)	Y2-Cl2	2.7554(14)
Y1-C13	2.6189(15)	Y2-Cl6	2.6129(14)	Y1-C13	2.6326(15)	Y2-C15	2.6223(15)
Y1-Cl4	2.6180(14)	Y2-C15	2.6088(14)	Y1–Cl4	2.6286(15)	Y2-Cl6	2.6223(15)
Li2-Cl3	2.353(13)	Li1-Cl5	2.329(10)	Li1-Cl3	2.339(10)	Li2-Cl4	2.385(12)
Li1–Cl4	2.342(10)	Li2-Cl6	2.330(11)	Li1–Cl5	2.361(10)	Li2-Cl6	2.388(13)
Y1-C11-Y2	100.12(4)	Cl3-Li2-Cl6	118.9(5)	Y1-Cl1-Y2	102.66(4)	Cl3-Li1-Cl5	113.7(4)
Y1-Cl2-Y2	104.25(4)	Cl4-Li1-Cl5	122.6(4)	Y1-C12-Y2	99.10(4)	Cl4-Li2-Cl6	117.1(5)
Cl1-Y1-Cl2	77.91(4)	Cl1-Y2-Cl2	77.71(4)	Cl1-Y1-Cl2	79.20(4)	Cl1-Y2-Cl2	78.97(4)
Cl1-Y1-Cl3	83.50(5)	Cl1-Y2-Cl6	85.43(4)	Cl1-Y1-Cl3	99.21(5)	Cl2-Y2-Cl5	83.54(5)
Cl1-Y1-Cl4	84.44(4)	Cl1-Y2-Cl5	82.90(4)	Cl1-Y1-Cl4	87.41(5)	Cl2-Y2-Cl6	84.04(5)
Cl2-Y1-Cl3	89.09(5)	Cl2-Y2-Cl6	96.28(5)	Cl2-Y1-Cl3	84.59(5)	Cl1-Y2-Cl5	87.10(5)
Cl2-Y1-Cl4	97.11(4)	Cl2-Y2-Cl5	88.96(5)	Cl2-Y1-Cl4	84.62(5)	Cl1-Y2-Cl6	95.76(5)
Cl3-Y1-Cl4	164.98(5)	Cl5-Y2-Cl6	165.90(5)	Cl3-Y1-Cl4	166.06(5)	Cl5-Y2-Cl6	166.48(5)
Y1-Cl3-Li2	119.1(3)	Y2-Cl6-Li2	115.0(3)	Y1-Cl3-Li1	118.6(2)	Y2-Cl5-Li1	124.9(2)
Y1-Cl4-Li1	109.9(2)	Y2-Cl5-Li1	114.5(2)	Y1-Cl4-Li2	121.9(3)	Y2-Cl6-Li2	118.4(3)
N1-Y1-Cl1	113.45(11)	N3-Y2-Cl2	88.01(10)	N1-Y1-C11	84.26(11)	N3-Y2-Cl1	88.09(11)
N1-Y1-Cl2	167.47(10)	N3-Y2-Cl1	164.89(10)	N1-Y1-C12	163.05(11)	N3-Y2-Cl2	165.02(11)
N1-Y1-Cl3	87.12(10)	N3-Y2-Cl6	91.32(10)	N1-Y1-C13	89.23(11)	N3-Y2-Cl6	89.84(11)
N1-Y1-Cl4	89.49(10)	N3-Y2-C15	101.96(10)	N1-Y1-Cl4	103.51(11)	N3-Y2-C15	103.49(11)
N2-Y1-Cl1	163.72(9)	N4-Y2-Cl2	169.51(10)	N2-Y1-Cl1	165.84(11)	N4-Y2-Cl1	167.06(12)
N2-Y1-Cl2	87.82(10)	N4-Y2-C11	112.02(10)	N2-Y1-Cl2	113.16(11)	N4-Y2-Cl2	112.61(12)
N2-Y1-Cl3	104.28(10)	N4-Y2-Cl6	88.62(10)	N2-Y1-Cl3	89.18(11)	N4-Y2-Cl6	91.37(11)
N2-Y1-Cl4	89.66(10)	N4-Y2-C15	88.44(10)	N2-Y1-Cl4	86.96(11)	N4-Y2-C15	88.49(11)

Fig. 6 Molecular structure of crystalline 5b (50% thermal ellipsoids).

Fig. 7 Molecular structure of crystalline 5c (50% thermal ellipsoids).

Fig. 11a. Selected geometric data are listed in Table 7 [for endocyclic YL^5 data, see Table 1]. The eight atoms comprising the central core is shown in Fig. 11b, which contains two planar

Fig. 8 Molecular structure of crystalline 6 (50% thermal ellipsoids).

Fig. 9 Molecular structure of crystalline 7 (50% thermal ellipsoids).

rings: the outer KYK'Y' and the inner Cl2Cl1Cl2'Cl1'; each Cl atom bridges one Y and two K atoms. Each six-coordinate yttrium

Table 4	Selected bond	distances (Å)) and angles (°) for the	N1N2YCI1Cl2	O1O2 fragment	of 5a, 5b and 5c
---------	---------------	---------------	----------------	------------	-------------	---------------	------------------

	5a	5b	5c
Y-Cll	2.5487(14)	2.5773(7)	2.5724(6)
Y–Cl2	2.5631(13)	2.5892(7)	2.5823(6)
Y-01	2.426(3)	2.4015(18)	2.3586(16)
Y-02	2.433(5)	2.3790(18)	2.381(4)
N2-Y-C11, N2-Y-C12	96.76(8), 98.76(8)	93.51(6), 93.42(6)	99.87(4), 92.75(4)
N1-Y-Cl1, N1-Y-Cl2	101.64(8), 94.75(7)	100.50(5), 88.36(5)	92.63(4), 99.69(5)
N1-Y-O1, N1-Y-O2	175.55(10), 88.33(13)	171.02(7), 95.68(7)	96.45(6), 176.80(13)
N2-Y-O1, N2-Y-O2	97.03(10), 168.15(15)	101.53(7), 173.78(7)	175.88(6), 97.70(13)
Cl1-Y-Cl2	159.14(5)	169.65(2)	163.63(2)
Cl1-Y-O1, Cl1-Y-O2	81.89(8), 87.21(14)	88.42(5), 83.99(5)	83.29(4), 84.83(10)
Cl2-Y-O1, Cl2-Y-O2	82.44(8), 80.39(13)	82.67(5), 89.85(5)	84.65(4), 83.18(10)

Table 5 The Y–X bond distances (Å) and angles (°) for the Y(X)N1N2N3N4 fragment of $6~(\rm X=Cl)$ and $7~(\rm X=O)$

	6 ^{<i>a</i>}	7 ^{<i>b</i>}
Y–X	2.5566(6)	2.015(2)
N1-Y-N3	97.31(7)	93.96(7)
N1-Y-N4	178.48(7)	166.65(6)
N1-Y-X	89.11(5)	96.72(6)
N2-Y-X	114.29(5)	122.18(6)
N2-Y-N4	101.56(7)	95.03(6)
N2-Y-N3	125.66(7)	108.96(6)
N4–Y–X	89.81(5)	96.62(6)
N3-Y-X	120.04(5)	128.87(7)

 a X = Cl. b X = O.

Fig. 10 Molecular structure of crystalline 8 (20% thermal ellipsoids).

atom is at the centre of a distorted octahedron; the *trans* angles range from *ca.* 162.5° (N2/N3) to *ca.* 170° (N1/Cl1), the third mutually *trans*-pair is O1/Cl2 (N1 and N2 belong to the L⁵ ligand).

In conclusion, the synthesis and characterisation of eleven new crystalline Y complexes (3a, 3b, 4a, 4b, 5a, 5b, 5c, 6, 7, 8, 9) is presented. Except for 8 and 9, they are (κ^2 - β -diiminato)yttrium chlorides, obtained from YCl₃ and an alkali metal β -diiminate M[L^x], for which L^x = L¹-L⁵: [{N(R)C(Me)}₂CH]⁻ [R = C₆H₄Prⁱ-2 (L¹); R = C₆H₄Bu¹-2 (L²); R = C₆H₃Prⁱ₂-2,6 (L³)], [{N(SiMe_3)C(Ph)}₂CH]⁻ (L⁴) and [{N(C₆H₃Prⁱ₂-2,6)C(H)}₂CPh]⁻ (L⁵). Several have unusual structures: [Y(µ-Cl)(L^x)(µ-Cl)₂Li(OEt₂)₂]₂ [L^x = L¹ (3a), L²

Table 6 Selected bond distances (Å) and angles (°) for the $[M(X)(\mu-Cl)(O)(\mu-Cl)_2Li]_2$ fragment of 8 (X = C) and J (X = N)¹³

8 (M = Y, X = C)	$J (M = Sm, X = N)^{13}$
2.340(3)	2.421(3)
2.412(5)	2.284(2)
2.6665(13), 2.8107(12)	2.7276(7), 2.8937(7)
2.6169(12), 2.6272(13)	2.6928(8), 2.7276(7)
2.427(11), 2.368(10)	2.347(9), 2.359(7)
102.56(4)	102.92(2)
77.44(4)	77.08(2)
94.03(15)	93.22(10)
91.34(12), 168.17(12)	97.12(6), 171.11(8)
99.17(12), 105.86(12)	102.33(6), 105.42(8)
83.61(9), 81.13(9)	82.85(5), 79.48(5)
164.39(9), 84.63(9)	160.73(5), 88.35(5)
104.27(4), 87.39(4)	99.21(3), 82.67(2)
159.77(4), 84.53(4)	159.06(3), 82.35(3)
90.7(2), 91.7(3)	88.73(3), 89.21(3)
93.8(3)	98.9(3)
83.77(4)	83.02(3)
	$\begin{array}{l} {\bf 8} ({\rm M}={\rm Y},{\rm X}={\rm C}) \\\\ \hline 2.340(3) \\ 2.412(5) \\ 2.6665(13), 2.8107(12) \\ 2.6169(12), 2.6272(13) \\ 2.427(11), 2.368(10) \\\\ \hline 102.56(4) \\ 77.44(4) \\ 94.03(15) \\ 91.34(12), 168.17(12) \\ 99.17(12), 105.86(12) \\ 83.61(9), 81.13(9) \\ 164.39(9), 84.63(9) \\ 104.27(4), 87.39(4) \\ 159.77(4), 84.53(4) \\ 90.7(2), 91.7(3) \\ 93.8(3) \\ 83.77(4) \end{array}$

Symmetry transformation to generate equivalent atoms for 8: '-x + 1, -y + 1, -z + 1.

(3b)], $[Y(\mu-Cl)(L^3)(\mu-Cl)Li(thf)_2(\mu-Cl)]_2$ (4a) or its (OEt₂) analogue (4b), $[Y\{(CH(SiMe_3)_2)(thf)(\mu-Cl)_2Li(OEt_2)_2\}_2(\mu-Cl)]_2$ (8) and $[Y(L^5)\{N(H)C_6H_3Pr^i_2-2,6\}(\mu_3-Cl)_2K]_2\cdot4Et_2O$ (9). Equivalent portions of YCl₃ and Na[L^x] gave $[Y(L^3)Cl_2(thf)_2]$ (5a) and $[Y(L^5)Cl_2(thf)_2]$ (5c) but, unexpectedly, $[YCl(L^4)_2]$ (6). The compound $[Y(L^1)_2(OBu^i)]$ (7) is the first bis(β -diketiminato)metal (M) alkoxide (M = a group 3 or 4f metal). Formation of 8 via 3a and 2Li[CH(SiMe_3)_2] is remarkable in that displacement by the carbanion of L¹ rather than Cl⁻ was preferred.

Experimental

General remarks

All manipulations were performed under argon using standard Schlenk techniques. Hexane and toluene were dried using sodium–potassium alloy. Diethyl ether and thf were dried and distilled from sodium–benzophenone and stored over a sodium mirror under argon. Deuterated solvents (C_6D_6 , C_5D_5N and C_4D_8O) were freeze–thaw degassed and stored over dried 4 Å molecular sieves under an argon atmosphere. The compounds Li[CH(SiMe_3)₂],³⁰ H[{N(C₆H₄R-2)C(Me)}₂CH] [R = Prⁱ (1a), Buⁱ (1b)],¹⁰ Li[{N(C₆H₃Prⁱ₂-2,6)C(Me)}₂CH] (2c),¹² Na[L⁵]³¹ and K[N(H)C₆H₃Prⁱ₂-2,6]³² were prepared as described in the literature

 $\label{eq:table_transform} \begin{array}{l} \textbf{Table 7} & \text{Selected bond distances (Å) and angles (°) for the } [NNY \{N(H)C_6H_3Pr^i_2\text{-}2,6\}(thf)(\mu\text{-}Cl)_2K]_2 \ fragment of \textbf{9} \\ \textbf{9} & \text{1} \\ \textbf{9} & \text{1} \\ \textbf{1} \\ \textbf{1$

Y-N3	2.259(2)	N3-Y-N1	91.81(8)	Cl1-Y-O1	82.99(5)	Cl1′–K–Cl2	68.83(2)
Y-Cl1	2.6134(7)	N3-Y-N2	162.65(8)	Cl2-Y-O1	165.17(5)	Cl1'-K-Cl2'	68.26(2)
Y–Cl2	2.6093(7)	N3-Y-C11	97.47(7)	Cl1-Y-Cl2	85.68(2)	Y-Cl1-K	82.67(2)
Y-O1	2.435(2)	N3-Y-Cl2	84.66(7)	N3-K-Cl1	69.29(5)	Y-Cl1-K'	98.80(3)
N3-C34	1.395(4)	N3-Y-O1	106.26(8)	N3-K-Cl2	61.76(5)	Y-Cl2-K	83.66(2)
K-Cl1	3.332(1)	N1-Y-O1	90.61(7)	N3-K-Cl1'	128.07(5)	Y-Cl2-K'	98.45(3)
K-Cl2	3.285(1)	N2-Y-O1	86.14(7)	N3-K-Cl2'	137.03(5)	K-Cl1-K'	76.21(2)
K–Cl1′	3.156(1)	N1-Y-Cl1	169.90(6)	C11-K-C12	64.92(2)	K-Cl2-K'	76.64(2)
K–Cl2′	3.173(1)	N2-Y-Cl1	96.05(5)	Cl1'-K-Cl2'	68.26(2)	Y-N3-C34	163.8(2)
		N1-Y-Cl2	99.21(6)	Cl1-K-Cl1'	103.79(2)		
		N2-Y-Cl2	85.57(5)	Cl1-K-Cl2'	68.04(2)		

Symmetry transformation used to generate equivalent atoms: '-x + 1, -y + 1, -z.

Fig. 11 (a) Molecular structure of crystalline **9** (50% thermal ellipsoids) (top); (b) ORTEP representation of the central KYK'Y'Cl1Cl1'Cl2Cl2' core of **9** (bottom).

and LiBu, K[N(SiMe₃)₂], K[OBu¹] and YCl₃ were commercial samples (Aldrich). The NMR spectra were recorded on a Bruker DPX 300 (300.1 MHz for ¹H, 75.5 MHz for ¹³C and 116.6 MHz for ⁷Li) and referenced externally (⁷Li, using LiCl) or internally to the residual solvent resonances. Unless otherwise stated, all NMR spectra were measured at 293 K in C₆D₆ and other than ¹H were proton-decoupled. Melting points were taken in sealed capillaries. Elemental analyses were determined by Medac Ltd., Brunel University.

Preparations

The lithium β -diketiminates Li[{N(C₆H₄R-2)C(Me)}₂CH] [R = **Prⁱ** (2a), Bu^t (2b). The precursor β-diketimines 1a (Found: C, 82.3; H, 9.01; N, 8.30%. C₂₃H₃₀N₂ requires: C, 82.6; H, 9.04; N, 8.37%) and 1b (Found: C, 82.4; H, 9.26; N, 7.44%. C₂₅H₃₄N₂ requires: C, 82.9; H, 9.45; N, 7.73%) were prepared by literature procedures.¹² For **1a**: ¹H-NMR: δ 1.13 (d, 12 H, CHMe₂), 1.76 (s, 6 H, CCH₃), 3.35 (hept, 2 H, CHMe₂), 4.87 (s, 1 H, CH), 6.84 (m, 2 H, C₆H₄), 7.01 (m, 4 H, C₆H₄), 7.18 (m, 2 H, C₆H₄), 12.87 ppm (s, 1 H, NH); ¹³C-NMR: δ 20.77 (CH₃), 23.34 (CHMe₂), 28.47 (CHMe₂), 97.19 (CH); 124.15, 124.69, 125.95, 126.23, 141.63, 143.81 (C_6H_4), 160.08 ppm (CN). For **1b**: ¹H-NMR: δ 1.37 (s, 18 H, CMe₃), 1.74 (s, 6 H, CH₃), 4.90 (s, 1 H, CH); 6.80 (d, 1 H), 6.82 (d, 1 H), 6.95 (d, J = 1.46 Hz, 1 H), 6.98 (d, 1 H), 7.02 (d, 1 H), 7.05 (d, 1 H)H), 7.29 (d, 1 H), 7.32 (d, 1 H) (C_6H_4), 12.88 ppm (s, 1 H, NH);¹³C-NMR: δ 21.14 (CH₃), 30.61 (CMe₃), 35.65 (CMe₃), 99.12 (CH); 124.12, 126.26, 128.33, 142.21, 144.22 (C₆H₄), 167.36 ppm (CN).

Compound **2b.** n-Butyllithium (8.6 cm³ of a 1.6 mol dm⁻³ solution in C₆H₁₄) was added dropwise to a solution of **1b** (5.0 g, 13.81 mmol) in n-hexane (40 cm³) at 0 °C. The mixture was stirred at 20 °C for 2 h, then cooled to 0 °C and filtered. The pale yellow **2b** (4.5 g, 89%) (Found: C, 81.1; H, 8.98; N, 7.24%. C₂₅H₃₃LiN₂ requires: C, 81.5; H, 9.03; N, 7.60%), mp 113–115 °C, was obtained from the precipitate after washing with cold hexane (3 × 10 cm³) and drying *in vacuo*. ¹H-NMR: δ 1.32 (s, 18 H, CMe₃), 1.85 (s, 6 H, CH₃), 4.79 (s, 1 H, CH); 6.66 (d, 2 H), 7.03 (m, 2 H), 7.09 (d, 2 H), 7.40 ppm (d, 2 H, C₆H₄); ¹³C-NMR: δ 21.13 (CH₃), 31.36 (CMe₃), 35.48 (CMe₃), 94.65 (CH); 122.51, 126.39, 126.92, 141.93, 153.57 (C₆H₄), 163.22 ppm (CN); ⁷Li-NMR: δ –2.14 ppm.

Compound **2a**. Compound **2a** (86%) (Found: C, 80.6; H, 8.31; N, 8.02%. C₂₃H₂₉LiN₂ requires: C, 81.2; H, 8.59; N, 8.23%) was obtained from **1a** + LiBuⁿ in a similar fashion to **2b**. ¹H-NMR: δ 1.11 (d, 12 H, CHMe₂), 1.84 (s, 6 H CH₃), 3.32 (hept, 2 H, CHMe₂), 4.80 (s, 1 H, CH); 6.76 (m, 2 H), 7.04 (m, 4 H), 7.23 ppm (d, 2 H, C₆H₄); ¹³C-NMR: δ 20.77 (CH₃), 23.38 (CHMe₂), 28.01 (CHMe₂), 93.96 (CH); 122.92, 124.81, 125.84, 126.06, 141.18, 152.13 (C₆H₄), 163.49 ppm (CN); ⁷Li-NMR: δ –2.10 ppm.

The potassium β-diketiminate (K[L¹]). Potassium bis(trimethylsilyl)amide (1.60 g, 8.02 mmol) was added in small portions to a solution of the β-diketimine 1a (2.68 g, 8.02 mmol) in toluene (35 cm³) at 0 °C. The resulting mixture was stirred for 12 h at *ca.* 20 °C, then cooled to -25 °C and filtered. The precipitate was washed with hexane (3 × 15 cm³) and dried *in vacuo* yielding the off-white powder (K[L¹]) (2.57 g, 86%) (Found: C, 74.4; H, 7.68; N, 7.36%. C₂₃H₂₉KN₂ requires: C, 74.1; H, 7.85; N, 7.52%). ¹H-NMR: δ 1.08 (d, 12 H, CH*Me*₂), 1.76 (s, 6 H, CH₃), 3.26 (hept, 2 H, *CHMe*₂), 4.68 (s, 1 H, CH); 6.72 (m, 2 H), 6.98 (m, 4 H), 7.08 ppm (d, 2 H, C₆H₄); ¹³C-NMR: δ 20.07 (CH₃), 22.98 (CH*Me*₂), 28.00 (*C*HMe₂), 91.56 (CH); 122.63, 124.36, 125.57, 125.95, 141.02, 152.01 (C₆H₄), 161.38 ppm (CN).

The compounds $[Y(\mu-Cl){(N(C_6H_4R-2)C(Me))_2CH}(\mu-Cl)_2Li (OEt_2)_2]_2$ [R = Prⁱ (3a), Bu^t (3b)]. Yttrium(III) chloride (0.88 g, 4.53 mmol) was added in small portions to a solution of 2a (1.54 g, 4.53 mmol) in diethyl ether (30 cm³) at -30 °C. The resulting mixture was warmed slowly to ca. 20 °C and stirred for 12 h. The volatiles were removed in vacuo and the residue was extracted into diethyl ether (40 cm³). The filtered extract was concentrated in vacuo to ca. 15 cm³ and stored at -25 °C to yield colourless crystals of 3a (2.19 g, 71%) (Found: C, 54.0; H, 7.14; N, 4.08%. C₆₂H₉₈Cl₆Li₂N₄O₄Y₂ requires: C, 54.4; H, 7.22; N, 4.10%), mp 77 °C (decomp.). ¹H-NMR: δ 1.04 (t, 12 H, Et₂O), 1.14 (d, 12 H, CHMe₂), 1.68 (s, 6 H, CH₃), 3.23 (q, 8 H, Et₂O), 3.34 (hept, 2 H, $CHMe_2$, 5.09 (s, 1 H, CH), 6.66 (m, br, 4 H, C₆H₄), 7.24 ppm (br, 4 H, C₆H₄); ¹³C-NMR: δ15.29 (Et₂O), 20.73 (CH₃), 22.49 (CHMe₂), 29.32 (CHMe₂), 98.04 (CH); 124.12, 124.49, 125.95, 126.28, 140.63, 143.82 (C₆H₄), 164.26 ppm (CN); ⁷Li-NMR: δ –2.35 ppm.

Compound **3b**. (3.05 g, 63%) (Found: C, 55.2; H, 7.42; N, 4.08%. $C_{66}H_{106}Cl_6Li_2N_4O_4Y_2$ requires: C, 55.7; H, 7.50; N, 3.93%), mp 71 °C (decomp.). ¹H-NMR: δ 1.07 (t, 12 H, Et₂O), 1.70 (s, 18 H, CMe₃), 1.75 (s, 6 H, CH₃), 3.23 (q, 8 H, Et₂O), 5.10 (s, 1 H, CH), 6.64 (m, br, 4 H, C₆H₄), 7.26 ppm (br, 4 H, C₆H₄); ¹³C-NMR: δ 15.52 (Et₂O), 25.39 (CH₃), 31.66 (CMe₃), 33.65 (CMe₃), 65.82 (Et₂O), 98.35 (CH); 125.28, 125.58, 130.59, 130.93, 137.84, 140.56 (C₆H₄), 166.62 ppm (CN); ⁷Li-NMR: δ 0.75 ppm.

The compounds $[Y(\mu-Cl){(N(C_6H_3Pr_2^i-2,6)C(Me))_2CH}{(\mu-Cl)}$ Cl)Li(Lg)₂(μ -Cl) $]_2$ [Lg = thf (4a), OEt₂ (4b)]. Yttrium(III) chloride (0.30 g, 1.55 mmol) was added in small portions to a solution of lithium β -diketiminate Li[L³] (0.66 g, 1.55 mmol) in diethyl ether (20 cm³) at -30 °C. The mixture was allowed to warm to ca. 20 °C and stirred for 18 h, whereafter the volatiles were removed in vacuo. The residue was extracted into hexane (40 cm³)thf (10 cm³). The filtered extract was concentrated to ca. 15 cm³ and stored at-25 °C, yielding colourless blocks of 4a (0.61 g, 52%) (Found: C, 57.4; H, 7.06; N, 3.69%. C₇₄H₁₁₄Cl₆Li₂N₄O₄Y₂ requires: C, 58.2; H, 7.52; N, 3.67%), mp 126 °C (decomp.). ¹H-NMR: δ 0.87 (t, 8 H, thf), 1.16 (d, 12 H, J = 6.59, CHMe₂), 1.28 (d, 12 H, J = 6.59 Hz, CHMe₂), 1.90 (s, 6 H, CH₃), 2.67 (m, 8 H, thf), 3.41 (hept, 4 H, CHMe₂), 5.00 (s, 1 H, CH), 7.07 ppm (m, br, 6 H, C_6H_3); ¹³C-NMR: δ 23.14 (CH₃), 23.46 (thf), 24.40 (CHMe₂), 24.70 (CHMe2), 28.06 (CHMe2), 67.86 (thf), 92.89 (CH); 122.99, 123.21, 140.81, 149.48 (C₆H₃), 163.48 ppm (CN); ⁷Li-NMR: δ 0.58 ppm.

A solution of the lithium β-diketiminate **2c** (1.30 g, 3.06 mmol) in diethyl ether (20 cm³) was added to a suspension of YCl₃ (0.62 g, 3.18 mmol) in Et₂O at *ca.* 20 °C. The mixture was stirred for 2 d, then filtered. The light brown filtrate was concentrated to *ca.* 10 cm³ and stored at –27 °C, furnishing colourless crystals of **4b** (1.22 g, 51%) (Found: C, 57.9; H, 8.30; N, 3.64%. C₇₄H₁₂₂Cl₆Li₂N₄O₄Y₂ requires: C, 58.0; H, 8.41; N, 3.56%), mp 121–122 °C (decomp.). ¹H-NMR: δ 1.16 (d, 24 H, CH*Me*₂), 1.20 (d, 24 H, CH*Me*₂), 1.62 (s, 12 H, CH₃), 3.33 (m, 8 H, OEt₂), 5.07 (s, 2 H, CH), 7.11–7.24 ppm (m, 12 H, C₆H₃); ¹³C-NMR: δ 15.0 (OEt₂), 23.46 (CH₃), 24.9 (CH*Me*₂), 25.3 (CH*Me*₂), 28.9 (*C*HMe₂), 65.8 (OEt₂), 99.1 (CH); 124.4, 126.4, 143.1, 143.9 (C₆H₃), 167.8 ppm (CN),⁷Li-NMR: δ –2.34 ppm.

The dichloroyttrium β -diketiminates $[YCl_2\{(N(R^1)C(R^2))_2 CR^{3}$ {(thf)₂] [R² = Me, R³ = H and R¹ = C₆H₃Prⁱ₂-2,6 (5a) or $C_6H_4Bu^{t}-2$ (5b); $R^1 = C_6H_3Pr_2^{i}-2.6$, $R^2 = H$, $R^3 = Ph$ (5c)]. Yttrium(III) chloride (0.38 g, 1.95 mmol) was added in small portions to a stirred suspension of the potassium β -diketiminate $K[L^3]$ (0.88 g, 1.93 mmol) in diethyl ether (20 cm³) at -78 °C. The mixture was set aside at ca. 20 °C for 18 h, then filtered. Removal of volatiles in vacuo from the filtrate yielded a yellow powder, which upon crystallisation from hexane (20 cm³)-thf (5 cm³) at -25 °C afforded colourless crystals of 5a (0.79 g, 57%) (Found: C, 61.3; H, 8.02; N, 3.79%. C₃₇H₅₇Cl₂N₂O₂Y requires: 61.6; H, 7.96; N, 3.88%), mp 143 °C (decomp.). ¹H-NMR: δ 1.16 (d, 12 H, J = 6.59 Hz, $CHMe_2$), 1.26 (d, 12 H, J = 6.59 Hz, $CHMe_2$), 1.38 (t, 8 H, thf), 1.71 (s, 6 H, CH₃), 3.62 (hept, 4 H, CHMe₂), 3.74 (q, 8 H, thf), 5.15 (s, 1 H, CH), 7.08 ppm (m, br, 6 H, C_6H_3); ¹³C-NMR: δ 20.51 (CH₃), 23.14 (CHMe₂), 25.69 (thf), 28.45 (CHMe₂), 67.64 (thf), 94.00 (CH); 123.31, 123.42, 141.03, 148.61 (C₆H₃), 164.78 ppm (CN).

A suspension of **3b** (1.52 g, 1.07 mmol) in n-hexane (40 cm³) was heated to 60 °C with stirring for 12 h. The hot mixture was filtered. Volatiles were removed from the filtrate *in vacuo* and the residue was extracted into hexane (30 cm³)–diethyl ether (10 cm³)– thf (5 cm³). The extract was concentrated *in vacuo* to *ca*. 15 cm³ and stored at –25 °C to afford colourless crystals of **5b** (1.12 g, 79%) (Found: C, 55.6; H, 7.26; N, 4.20%. C₃₃H₄₉Cl₂N₂O₂Y requires: C, 59.55; H, 7.42; N, 4.21%), mp 158 °C (decomp.). ¹H-NMR: δ 1.18 (br, 8 H, thf), 1.65 (s, 18 H, CMe₃), 1.72 (s, 6 H, CH₃), 3.62 (br, 8 H,

thf), 5.01 (s, 1 H, CH); 7.02 (br, 4 H), 7.42 (d, 2 H), 7.52 ppm (br, 2 H, C_6H_4); ¹³C-NMR: δ 25.29 (CH₃), 25.54 (thf), 33.49 (CMe₃), 37.20 (CMe₃), 71.12 (thf), 98.19 (CH); 125.16, 128.32, 130.45, 144.41, 146.32 (C_6H_4), 166.84 ppm (CN).

A solution of the sodium β -diketiminate Na[L⁵] (1.37 g, 2.80 mmol) in thf (20 cm³) was added dropwise to a stirred suspension of YCl₃ (0.55 g, 2.81 mmol) in thf (10 cm³) at ca. 20 °C. The mixture was set aside for 24 h, volatiles were removed in vacuo and the residue was extracted into diethyl ether. The extract was concentrated to ca. 10 cm³ and maintained at -25 °C, vielding yellow crystals of **5c** (1.77 g, 82%) (Found: C, 62.1; H, 6.28; N, 3.59%. C41H57Cl2N2O2Y requires: C, 64.0; H, 7.46; N, 3.64%; C₃₇H₄₉Cl₂N₂OY requires: C, 63.7; H, 7.08; N, 4.02% (*i.e.* 5c-thf)); MS: m/z, 624 ([M – 2thf]⁺, 100%), mp 141–148 °C (decomp.). ¹H-NMR: δ 1.15 (d, 12 H, J = 6.7, CHMe₂), 1.17 (s, 8 H, thf), 1.58 (d, 12 H, J = 6.7, CHM e_2), 3.59 (s, 8 H, thf), 4.23 (heptet, 4 $H, J = 6.7, CHMe_2$, 7.03 (t, 2 H, J = 7.4, p-H of C₆H₃), 7.05–7.23 (m, CH), 7.48 (d, 2 H, J = 7.8, *m*-H of C₆H₃), 7.97 ppm (d, 2 H, J = 2.0 Hz, *m*-H, of C₆H₃); ¹³C-NMR: δ 23.2 (CHMe₂), 25.2 (CHMe₂), 26.3 (thf), 28.5 (CHMe₂), 71.2 (thf), 106.9 (CPh); 124.1, 124.9, 143.0, 144.9, 147.9 (Ph and C₆H₃), 164.4 ppm (NCH).

The compound [YCl{(N(SiMe₃)C(Ph))₂CH}₂] (6). A solution of the sodium β-diketiminate Na[L⁴] (3.13 g, 8.05 mmol) in thf (20 cm³) was added to a stirred suspension of YCl₃ (1.68 g, 8.60 mmol) in thf (10 cm³) at *ca.* 20 °C. The mixture was set aside for 48 h, volatiles were removed *in vacuo* and the residue was extracted into diethyl ether. The extract was concentrated to *ca.* 30 cm³ and maintained at 25 °C, furnishing yellow crystals of **6** (2.17 g, 64% based on Na[L⁴]). Recrystallisation from Et₂O provided X-ray quality crystals (Found: C, 59.2; H, 7.04; N, 6.50%. C₄₂H₅₈ClN₄Si₄Y requires: C, 59.0; H, 6.83; N, 6.55%), mp 152– 153 °C. ¹H-NMR (C₄D₈O): δ 0.05 [s, 36 H, Si(CH₃)₃], 5.35 (s, 2 H, CH), 7.14–7.56 ppm (m, 20 H, C₆H₃); ¹³C-NMR (C₄D₈O): δ 1.4 [Si(CH₃)₃], 1.9[Si(CH₃)₃], 3.0[Si(CH₃)₃], 3.6[Si(CH₃)₃], 97.6 (CH); 126.8, 127.8, 128.5,128.6, 128.9, 129.1, 129.4, 130.5, 130.6 ppm (C₆H₅, CN).

The compound $[Y{(N(C_6H_4Pr^i-2)C(Me))_2CH}_2OBu^t]$ (7). Yttrium(III) chloride (0.55 g, 2.81 mmol) was added in small portions to a solution of the potassium β -diketiminate K[L¹] (2.07 g, 5.56 mmol) in diethyl ether (50 cm3) at -30 °C. The resulting mixture was stirred for 30 min at ca. 20 °C, whereafter KOBut (0.31 g, 2.77 mmol) was slowly added; stirring was continued for 24 h, followed by filtration. Volatiles were removed in vacuo; the residue was extracted into hexane. The extract was concentrated in vacuo to ca. 20 cm³ and stored at 0 °C, yielding pale yellow crystals of 7 (0.78 g, 34%) (Found: C, 71.9; H, 8.03; N, 6.42%. C₅₀H₆₇N₄OY requires: C, 72.4; H, 8.15; N, 6.76%), mp 171 °C (decomp.). ¹H-NMR: $\delta 0.46$ (s, 9 H, OCMe₃), 1.14 (d, 12 H, CHMe₂), 1.39 (d, 12 H, CHMe₂), 1.72 (s, 12 H, CH₃), 3.34 (heptet, 4 H, CHMe₂), 4.90 (s, 2 H, CH); 6.13 (br, 4 H), 6.89 (t, 4 H), 6.93 (t, 4 H), 7.25 ppm (d, 4 H, C_6H_4); ¹³C-NMR: δ 23.91 (CH₃), 24.33 (CHMe₂), 24.90 (CHMe2), 27.75 (CHMe2), 32.97 (OCMe3), 71.90 (OCMe3), 95.68 (CH); 125.04, 126.11, 126.19, 141.67, 148.61 (C₆H₄), 165.74 ppm (CN).

The compound $[Y{CH(SiMe_3)_2}(thf){(\mu-Cl)_2Li(OEt_2)_2}(\mu-Cl)]_2$ (8). Li[CH(SiMe_3)_2] (0.36 g, 2.17 mmol) was added in small portions to a solution of compound **3a** (1.48 g, 1.08 mmol) in hexane (50 cm³) at 0 °C. The resulting mixture was stirred for 48 h at *ca*. 20 °C. Volatiles were removal *in vacuo*. The residue was extracted into hexane (40 cm³)–diethyl ether (20 cm³)–thf (10 cm³). The extract was concentrated to *ca*.15 cm³ and stored at –25 °C. After 12 h, this yielded colourless crystals of **8** (0.51 g, 41%) (Found: C, 38.5; H, 7.98%; C₃₈H₉₄Cl₆Li₂O₆Si₄Y₂ requires: C, 3 9.2; H, 8.14%), mp 94 °C (decomp.). ¹H-NMR (C₆D₆–C₅D₅N): δ –0.40 (s, 1 H, CH), –0.09 [s, 18 H, Si(CH₃)₃], 1.06 (t, 12 H, OEt₂), 1.41 (t, 4 H, thf), 3.23 (q, 8 H, OEt₂), 3.54 ppm (t, 4 H, thf); ¹³C-NMR (C₆D₆–C₅D₅N): δ –0.05 (CH), 1.36 [Si(CH₃)₃], 15.52 (OEt₂), 25.73 (thf), 65.82 (OEt₂), 67.77 ppm (thf); ⁷Li-NMR (C₆D₆–C₅D₅N): δ –1.84 ppm.

 $[Y{N(H)C_6H_3Pr_2^{i}-2,6}{(N(C_6H_3Pr_2^{i}-2,6)-1)}]$ The compound $C(H)_2CPh$ {(thf){ μ -Cl}₂K}]₂·4Et₂O (9). The potassium amide $K[N(H)C_6H_3Pr_2^{i}-2,6]$ (0.45 g, 2.09 mmol) was added in small portions to a solution of the dichloroyttrium β -diketiminate 5c (1.51 g, 1.96 mmol) in diethyl ether (30 cm³) at ca. 20 °C. The mixture was stirred for 24 h, then filtered. The filtrate, when concentrated and cooled at -27 °C, yielded the yellow crystalline 9 (1.20 g, 67%) (Found: C, 64.6; H, 7.55; N, 4.63%. C₉₈H₁₃₄Cl₄K₂N₆O₂Y₂ (ether-free) requires: C, 64.6; H, 7.41; N, 4.61%), mp 95–96 °C (decomp.). X-Ray quality crystals of 9 were obtained by crystallisation from Et₂O. ¹H-NMR (C₄D₈O): δ 0.85 (d, 24 H, J = 6.6, CHM e_2), 0.99 (d, 12 H, J = 6.6, CHM e_2), 1.04 [t, 24 H, O(CH₂CH₃)₂], 1.13 (d, 12 H, J = 6.6, CHMe₂), 1.25 (d, 24 H, J = 6.6, CH Me_2), 1.69 (t, 8 H, thf), 2.89 (m, 4 H, CHMe₂), 3.30 (q, 16 H, O(CH₂CH₃)₂), 3.54 (t, 8 H, thf), 3.63 (m, 8 H, $CHMe_2$), 3.94 (br, 2 H, NH), 6.13 (t, 2 H, J = 7.4, C_6H_3), 6.58 (d, 4 H, J = 7.4 Hz, C_6H_3), 6.80–7.18 (m, 22 H, C₆H₅), 7.56 ppm (s, 4 H, CH); ¹³C-NMR (C₄D₈O): δ 14.9, 22.1, 22.6, 23.2, 23.6, 25.5, 26.3, 27.5, 28.4 [CHMe₂, O(CH₂CH₃)₂, thf], 65.5, 67.4 [O(CH₂CH₃)₂, thf], 105.2, 112.7 (CPh); 121.3, 122.2, 123.1, 123.6, 125.1, 125.2, 128.3, 135.0, 143.2, 144.2, 151.2 (C₆H₃, C₆H₅), 162.6 ppm (NCH).

Crystal data and refinement details for 3a, 3b, 4a, 4b, 5a, 5b, 5c, 6, 7, 8 and 9

Diffraction data were collected on a Nonius Kappa CCD diffractometer using monochromated Mo-K α radiation, λ 0.71073 Å at 173(2) K. Crystals were coated in oil and then directly mounted on the diffractometer under a stream of cold nitrogen gas.

In **3a** diffraction was weak but with no apparent disorder in the structure. In 4a all the thf ligands were included with 1,2 distance restraints and for the O2 thf disordered components were included with isotropic C atoms. In 4b the Et₂O ligands were poorly defined and with disordered components for one thf. They were included with isotropic C atoms and 1,2 distance restraints and with an isotropic O atom for the disordered ligand. In 5a and in 5c the disordered components of the O2 thf ligand were included with isotropic displacement parameters and 1,2 distance restraints. In 8 the Et_2O ligands were poorly defined, discrete alternative positions defined only for C18; they were included with isotropic C atoms and 1,2 distance restraints. In all figures only the larger occupancy orientation is shown for disordered ligands. Absorption corrections using MULTISCAN were applied. Drawings are ORTEP-3 for Windows, with 20% ellipsoids for 3a, 3b, 4a, 4b, 5a, and 8 and 50% ellipsoids for 5b, 5c, 6, 7, and 9. The structures were refined on all F^2 atoms with H

Table 8 Crystal and	d structure refir	nement data for 3a,	3b, 4a, 4b, 5a, 5b, 5c	c, 6, 7, 8, and 9							
Compound	3a	3b	4a 4	4	5a	5b	5c	9	7	×	
Formula	C ₆₂ H ₉₈ Cl ₆ Li ₂ N ₄ -	C ₆₆ H ₁₀₆ Cl ₆ Li ₂ N ₄ O ₄ Y ₂ .	C ₇₄ H ₁₁₄ Cl ₆ Li ₂ N ₄ O ₄ Y ₂ .	C74H122Cl6Li2N4O4Y2.	$C_{37}H_{57}Cl_2N_2O_2Y$	C ₃₃ H ₄₉ Cl ₂ N ₂ O ₂ Y.	$C_{4l}H_57Cl_2N_2O_2Y$	C42H58CIN4Si4Y	C ₅₀ H ₆₇ N ₄ OY	C ₃₈ H ₉₄ Cl ₆ Li ₂ N ₂ -	C ₉₈ H ₁₃₄ Cl ₄ K ₂ N ₆ O ₂ Y ₂ .
W	0412.041100 1441.96	C4110O 1498.07	1602.21	1572.22	721.67	739.67	769.70	855.64	828.59	06.314.1.2 1163.89	2122.41
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Friclinic
Space group	<i>P</i> 2 ₁ / <i>n</i> (No. 14).	C2/c (No. 15)	PI (No.2)	P21/n (No. 14)	Pbca (No. 61)	P21/n (No. 14)	C2/c (No. 15)	P1 (No. 2)	P21/n (No. 14)	P21/c (No. 14).	PĪ (No. 2)
a/Å	11.5518(3)	30.2936(30)	12.3174(20)	12.9001(20)	15.4162(1)	4.2932(2)	34.5375(4)	11.8676(2)	12.5959(1)	14.8150(3)	12.9490(1)
b/Å	26.9951(7)	13.7202(20)	15.3330(20)	26.5237(5)	24.0744(3)	13.5936(1)	11.3522(1)	12.4721(2)	17.9182(2)	20.0248(3)	14.4721(2)
c/Å	25.3522(7)	22.7889(2)	25.3952(50)	25.2112(4)	20.4590(2)	20.4397(3)	23.4944(3)	15.7658(3)	21.0703(2)	10.6476(2)	17.0897(2)
$\alpha/^{\circ}$			95.054(1)					84.567(10)			70.257(1)
β/°	95.090(1)	122.693(1)	99.880(1)	94.508(1)		94.757(1)	117.072(1)	86.136(1)	98.21(1)	99.532(1)	73.489(10)
γ/°			113.161(1)					89.915(1)			81.903(1)
$U/Å^3$	7873.5(4)	7971.26(16)	4279.75(12) 8	8599.5(3)	7593.07(13)	3957.67(9)	8202.3(2)	2317.77(7)	4706.78(8)	3115.18(10)	2886.47(6)
Z	4	4	2	4	8	4	8	2	4	2	_
Abs. coeff./mm ⁻¹	1.71	1.70	1.58	1.58	1.71	1.64	1.59	1.45	1.28	2.22	1.22
Unique reflections, $R_{\rm int}$	13 084, 0.082	6999, 0.047	14 282, 0.054	15060, 0.065	6673, 0.080	9026, 0.066	9338, 0.059	8497, 0.045	10 732, 0.062	5466, 0.067	10 598, 0.050
Reflections with $I > 2\sigma(I)$	9362	6035	10 976	10586	5210	6967	7598	7731	8417	4454	3871
Final R indices $[I > 2\sigma(I)]$ R ₁ , wR ₂	0.099, 0.192	0.034, 0.071	0.064, 0.142	0.066, 0.159	0.061, 0.104	0.047, 0.093	0.043, 0.089	0.035, 0.079	0.044, 0.081	0.055, 0.192	0.047, 0.095
R indices (all data) R_1 , w R_2	0.139, 0.208	0.045, 0.075	0.090, 0.155	0.107, 0.181	0.084, 0.113	0.072, 0.102	0.060, 0.096	0.042, 0.081	0.067, 0.088	0.074, 0.139	0.062, 0.102

atoms in riding mode using SHELXL-97.³³ Further details are in Table 8.

CCDC reference numbers 684941–684951.

For crystallographic data in CIF or other electronic format see DOI: 10.1039/b806451b

Acknowledgements

For postdoctoral fellowships we thank BASF (Ludwigshafen) and Drs H. Görtz and G. Luinstra for the award to X. W., the Royal Society for a Sino–British Fellowship to Y. C., and Dr A. V. Protchenko for valuable comments.

References

- 1 L. Bourget-Merle, M. F. Lappert and J. R. Severn, *Chem. Rev.*, 2002, 102, 3031.
- 2 S. T. Liddle and P. L. Arnold, Dalton Trans., 2007, 3305.
- 3 L. F. Sanchez-Barba, D. L. Hughes, S. M. Humphrey and M. Bochmann, *Organometallics*, 2006, **25**, 1012.
- 4 L. F. Sanchez-Barba, D. L. Hughes, S. M. Humphrey and M. Bochmann, *Organometallics*, 2005, **24**, 3792.
- 5 (a) C.-S. Tan and T.-J. Hsu, *Macromolecules*, 1997, **30**, 3147; (b) Z. Quan, X. Wang, X. Zhao and F. Wang, *Polymer*, 2003, **44**, 5605.
- 6 Y. Yao, Y. Luo, J. Chen, Z. Zhang, Y. Zhang and Q. Shen, J. Organomet. Chem., 2003, 679, 229.
- 7 T. J. Woodman, M. Schormann, D. L. Hughes and M. Bochmann, *Organometallics*, 2004, 23, 2972.
- 8 M. Ma, T. P. Spaniol and J. Okuda, Dalton Trans., 2003, 4770.
- 9 F. Jaroschik, T. Shima, X. Li, K. Mori, L. Ricard, X.-F. Le Goff, F. Nief and Z. Hou, *Organometallics*, 2007, 26, 5654.
- 10 M. Cheng, D. R. Moore, J. J. Reczek, B. M. Chamberlain, E. B. Lobkowsky and G. W. Coates, *J. Am. Chem. Soc.*, 2001, **123**, 8738.
- 11 J. Feldman, S. J. McLain, A. Parthasarathy, W. J. Marshall, C. T. Calabrese and S. D. Arthur, *Organometallics*, 1997, 16, 1514.
- 12 M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky and P. P. Power, J. Chem. Soc., Dalton Trans., 2001, 3465.
- 13 H.-X. Li, Q.-F. Xu, J.-X Chen, M.-L. Cheng, Y. Zhang, W.-H. Zhang, J.-P. Lang and Q. Shen, J. Organomet. Chem., 2004, 689, 3438.

- 14 Z.-Q. Zhang, Y.-M. Yao, Y. Zhang, Q. Shen and W.-T. Wong, *Inorg. Chim. Acta*, 2004, 357, 3173.
- 15 Z.-Q. Zhang, Q. Shen, Y. Zhang, Y.-M. Yao and J. Lin, *Inorg. Chem. Commun.*, 2004, 7, 305.
- 16 C. Cui, A. Shafir, J. A. R. Schmidt, A. G. Oliver and J. Arnold, *Dalton Trans.*, 2005, 1387.
- 17 (a) L. W. M. Lee, W. E. Piers, M. R. J. Elsegood, W. Clegg and M. Parvez, *Organometallics*, 1999, **18**, 2947; (b) L. K. Knight, W. E. Piers and R. McDonald, *Chem.-Eur. J.*, 2000, **6**, 4322; (c) P. G. Hayes, W. E. Piers, L. W. M. Lee, L. K. Knight, M. Parvez, M. R. J. Elsegood and W. Clegg, *Organometallics*, 2001, **20**, 2533.
- 18 Q. Shen and Y.-M. Yao, J. Organomet. Chem., 2002, 647, 180.
- 19 (a) Y.-M. Yao, Y.-J. Luo, R. Jiao, Q. Shen, K.-B. Yu and L.-H. Wong, *Polyhedron*, 2003, **22**, 441; (b) Y.-M. Yao, M. Xue, Y.-J. Luo, Z. Zhang, R. Jiao, Y. Zhang, Q. Shen, W. Wong, K.-B. Yu and J. Sun, *J. Organomet. Chem.*, 2003, **678**, 108; (c) Y.-J. Luo, Y.-M. Yao, Y. Zhang, Q. Shen and K.-B. Yu, *Chin. J. Chem.*, 2004, **22**, 187; (d) Y. Zhang, Y.-M. Yao, Y.-J. Luo, Q. Shen, Y. Cui and K.-B. Yu, *Polyhedron*, 2003, **22**, 1241.
- 20 Y.-M. Yao, Z. Zhang, H. Peng, Y. Zhang, Q. Shen and J. Lin, *Inorg. Chem.*, 2006, 45, 2175.
- 21 P. B. Hitchcock, M. F. Lappert and S. Tian, J. Chem. Soc., Dalton Trans., 1997, 1945.
- 22 A. G. Avent, C. F. Caro, P. B. Hitchcock, M. F. Lappert, Z. Li and X.-H. Wei, *Dalton Trans.*, 2004, 1567.
- 23 D. Drees and J. Magull, Z. Anorg. Allg. Chem., 1994, 620, 814.
- 24 P. B. Hitchcock, M. F. Lappert and A. V. Protchenko, *Chem. Commun.*, 2003, 757.
- 25 W.-P. Leung, F.-Q. Song, F. Xue, Z.-Y. Zhang and T. C. W. Mak, J. Organomet. Chem., 1999, 582, 292.
- 26 F. Jaruschik, F. Nief, H. Zhang and L. Rickard, Organometallics, 2007, 26, 1123.
- 27 W. J. Evans, J. Olofson, H. Zhang and J. L. Atwood, Organometallics, 1988, 7, 62.
- 28 (a) W. J. Evans, R. A. Keyer and J. W. Ziller, *Organometallics*, 1993, 12, 2618; (b) M. T. Gamer, G. Canseco-Melchor and P. W. Roesky, *Z. Anorg. Allg. Chem.*, 2003, 629, 2113.
- 29 C. J. Schaverien and J. B. van Mechelen, Organometallics, 1991, 10, 1104.
- 30 N. Wiberg and G. Wagner, Chem. Ber., 1986, 119, 1455.
- 31 Y. Cheng, P. B. Hitchcock, M. F. Lappert and M. Zhou, *Chem. Commun.*, 2005, 752.
- 32 F. Basuli, J. Tomaszewski, J. C. Huffman and D. J. Mindiola, Organometallics, 2003, 22, 4705.
- 33 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.