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Cationic Intermediates in the 
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(q3-Allyl)palladium(~~) Complexes** 
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The Dalladium-catalvzed intramolecular carbocvclization of 
allyl acetates with alkenes is a powerful method for the forma- 
tion of five- and six-membered rings.['*'] Most of these reac- 
tions only proceed satisfactorily in polar solvents such as HOAc 
at 70-IOO'C in the presence of a palladium(0) catalyst with 
PPh, ligation.[* - 3 1  Oppolzer et al. have hypothesized that car- 
bopalladation may proceed by a pericyclic-type reaction of a 
(q'-allyl)palladium(II) complex (palladium-ene reaction, 
Scheme I).'" 21 Although the coordination at the metal center is 
undetermined in most mechanistic proposals, it seems likely 
that, in the presence of excess ligand, the key intermediate is 
coordinated with two donor phosphane ligands, for example as 
in I, which could be in equilibrium with neutral (v'-allyl)- 
palladium(I1) complex I1 (R = Ac). Alternatively, the insertion 
may proceed via (q3-allyl)palladium(~~) complexes 111 or IV.[41 

It would be desirable to perform the cyclization of allylic 
substrates bearing sensitive functionalities under milder and/or 
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Scheme I .  Palladium-ene reaction with possible intermediates 

neutral reaction conditions. In addition, we have observed that 
the usual reaction conditions[51 are not satisfactory for the cy- 
clization of the more highly substituted allyl substrates. We 
therefore decided to examine the reaction under stoichiometric 
conditions. An important motivation for studying the mecha- 
nism of this cyclization in more detail was the prospect of ratio- 
nally developing asymmetric versions with appropriate mono- 
or bidentate chiraf ligands. Here we report that the reaction 
proceeds through cationic complexes of type IV, in which the 
palladium atom is coordinated with only one phosphane ligand. 

The (q3-allyl)pa1ladium(i~) complexes were prepared from 
the allyl trifluoroacetates.[6s 71 Thus, 1 was treated with 
[PdJdba),] .dba (dba = dibenzylideneacetone)[81 in THF/MeCN 
(3/1) at 25 "C to afford 2 in quantitative yield (Scheme 2). The 
13C NMR spectrum of 2 showed resonances for the q3-allyl 
carbon atoms at 6 = 93.3,80.6, and 75.0. The alkene group gave 
rise to signals at 6 = 115.4 and 107.2, which is in agreement with 
the expected values for an $-coordinated olefin (Table l ) . [9-1 'I 
Treatment of 2 with excess NaOAc (acetone, 25 "C) led to com- 
plex 3, which on attempted isolation underwent reductive elim- 
ination to furnish the allylic acetate 4."". '', 1 3 ]  Trifluoracetato 
complexes 5 and 6 were prepared from 2 with one equivalent of 
1,lO-phenanthroline (phen; Et20, 25"C, 10 min, 95%)1141 or 
1,2-bis(diphenylphosphane)ethane (dppe; Et,O, 25 'C, 45 min, 
73%). Complex 7 was prepared in almost quantitative yield 
from 2 with two equivalents of PPh, (CDCI,, 25 "C). Reaction 
of 2 with one equivalent of PPh, afforded 8. The NMR spectra 
of 5-8  clearly showed a noncoordinated alkene." 51 

The trifluoroacetato complex 2 was very stable and failed to 
cyclize after being heated at reflux in [DJbenzene, [D,]acetone, 
or CDCl,. In contrast, the acetato complex 3 yielded 4 and 
metallic palladium after being heated at 6O-7OCC in [D,]ben- 
zene or CDC1,. Complexes 5-7, which are likely precursors to 
complexes of type I, also failed to cyclize under the usual condi- 
tions (0.2-0.02 M solutions) .[I6] 

Complex 8, which was stable in solution at 25 ;C for several 
days, underwent smooth cyclization in [DJbenzene or CDCI, at 
reflux to yield 11 and 12 (1 : 1) in almost quantitative yield. The 
alkene of 8 can presumably displace the trifluoroacetate ligand 
to give cationic 9, which undergoes insertion and /]-hydrogen 



COMMUNICATIONS 

in the cone angle of the 
phosphane[I7] has a detri- ~p~~~~ 112 [Pd2(dba)4j E mental effect on the cycliza- 
tion rate. Thus, addition of 
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9 L = PPh3, A = CF3CO2 
10 L =  PPh3, A =  BF4 

elimination to yield ll['] and a palladium hydride. The more 
stable endocyclic alkene 12 originates from the reaction of the 
palladium hydride with 11 followed by elimination. An increase 

Table 1. Selected physical and spectroscopic data for complexes 2. 8, 10. 13, and 
14 [a]. 

~:'HNMR(~OOMHZ,CDCI,)[~]:~= 8.43(ddd,J=13.0,10.6,7.7Hz,1H),8.24 
(dtd. J =14.8, 10.8.2.4 Hz, 1 H),4.97 ( d , J  =7.4 Hz, 1 H),4.82(d, J = 9.1 Hz, l H ) ,  
4.46(br d,J=8.4Hz,lHf,4.03(d,J=13.3Hz,lH),3.84(~,3H),3.?9(~,3H), 
3.78-3.60 (m, 1 H) ,  3.19 (br. d, J = 14.1 Hz, 1 H) 2.67 (dd, J = 14.9. 2.9 Hz, 1 H). 
1.70-1.40 (m, 1H). 1.43 (dd, J =  8.8, 2.3 Hz, 1 H); "C{'H} NMR (80 MHz. CD- 
Cl,): 6 =170.41. 169.64, 162.18 (4, 2J(C,F) = 34.4Hz), 116.08 (4, 'J(C,P) = 
291.4Hz), 118.36, 107.20, 93.34, 80.68, 74.97, 61.64, 83.39, 83.24, 38.30, 33.71; 
elemental analysis calcd for C,,H,,F,O,Pd: C 37.81, H 3.88; found: C 37.99, H 
3.91. 
8. ' H N M R  (200 MHz, CDCI,)[c]: 6 =7.80-7.30 (m, 18H). 8 70-8.40 (m, l H ) ,  
8.60-8.40(m,1H),8.10-4.98(m,2H),4.78-4.88(m,1H).3.71(s,6H),3.20-3.05 
(m. 1 H), 2.75-2.40 (m, SH), "C{'H} NMR (80 MHz, CDCI,): 6 = 170.70, 133.63 
(d,zJ(C,P)=11.7H~),131.18(d,J(C.P)=41.8Hz),130.72,128.?4(d,3J(C.P)= 
10.0 Hz), 118.23,96.24 (d, 2J(C,P) = 28 Hz), 88.01, 82.81,81.80, 37.88, 38.47 (sig- 
nals for two C atoms not observed). 
10[211: ' H N M R  (200 MHz, CDCI,)[d]: 6 =7.88-7.40 (m, lSH) ,  8.60-8.40 (m. 
lH),S.10-4.80(m, lH).4.78-4.80(m, 1 H),4.29(br d , J =  6.9Hz. 1 H),4.13(br. 
t.J=X.6Hz,1H),3.84(s,3H),3.78(s,3H),3.80-3.18(m,3H),2.70-2.40(m, 
1 H), 2.00-1.80 (m, 1 H) ,  1.70-1 80 (m, 1 H); "C{'H} NMR (80 MHz, CDCI,): 
6=170.83, 169.67, 133.82 (d, 'J(C.P)=ll .ZHz),  131.30 (br. s).  130.36 (d, 
'J(C,P)=48.0Hz), 129.19 (d, 'J(C,P)=IO.OHZ), 117.61 (d, 2J(C,P)=4.7Hz),  
108.65 (br. s), 98.86 (br. s), 82.09, 78.74, 63.94, 83.37, 83.20. 33.22; "P{'H} NMR 
(121 MHz, CDCI,): 6 = 22.3 
13. 'HNMR(200 MHz.CDC1,): 6 = 8.48-8.20(m, 1 H), 8.18-4.90(m, 3H).4.31 
(br. d. J=15.5Hz. l H ) ,  3.92 (d, J = 9 . 2 H z .  IH).  381  (s, 3H), 3.77 (s. 3H).  

3.20(br.d,J=16.0Hz,1H),2.83(dd,J=14.7,3.0Hz,1H), 

102.21, 92.28, 80.08, 77.18. 62.48, 83.31, 83.16, 34.91, 33.97; elemental analysis 
calcd for C,,H,,CIO,Pd: C 39.26, H 4.67; found: C 39.64, H 4.62. 
14: 'H NMR (200 MHz, CDCI,) [el: 6 = 8.70-5.82 (m, 1 H), 8.82-8.33 (m, 1 H), 

(br. s. 2H, H20),4.10(d,  J=13.3  Hz, 1 H), 3.91 (td, J=11.4,  2.8 Hz, 1 H). 3.81 (s, 
3H) .3 .78(~ .3H) .3 .09(br  d , J = 1 8 . 4 H z , 1 H ) , 2 . 8 1 ( d d . J = 1 8 . 2 . 2 . 7 H z , l H ) ,  
1.80-1.5 (m, l H ) ,  1.84 (dd, J=14.8 ,  12.0Hz. 1H); "C{'H} NMR (SOMHz, 
CDCI,):6 =170.53. 169.68, 116.96. 111.69,94.49, 84.45.76.81.60.92. 53.40, 38.27, 
33 56. 

[a] NMR spectra obtained at 28'C. Confirmed by [b] a C o s y  (CDC],, 2 8 ; ~ )  
(CDCI,, 28 "C) spectra. [d] COSY and HMQC 

([D,lacetone, 0 'C) spectra. [el a NOESY (CDCI,, 28 'c)  spectrum. 

13C{'H} NMR (80 MHz, CDCI,): 6 =170.05. 169.90, 114.07. 

8.18 (d. J =7.8 Hz, 1 H), 4.83 (d. J =  9.3 Hz, 1 H), 4.88 (d, J = 16.8 Hz, 1 H) ,  4.81 

fc] cosy and 

5 : L-L = phen 
6 L-L = d w  
7 :  L = 2 PPh3 

one equivalent of a bulky 
ligand such as PCy, or P(o- 
MeC,H,), led to slower cy- 
clizations in CDCI, .['*I On 
the other hand, poorer 
donor ligands (for example 
P(OMe),, P(OPh),, or 
AsPh,) led to incomplete 
conversions into 11 and 12. 
The best results were ob- 
tained by treatment of 8 
with NaBF, in CH,Cl,: the 
cyclization of 8, presumably 
proceeding via 10, at 30°C 
gave pure 11 in 62 % yield 
(24 h, 82 O h  conversion by 
'H NMR spectroscopy) . [ I 9 ]  

Isolation of the key 
cationic intermediates 9 or 
10 could not be achieved 
from 8, since the cyclization 

proceeded at a rate similar to that of ligand substitution. An 
alternative synthesis of 10 was realized from 13 (Table I ) ,  which 
was readily prepared in quantitative yield from 2 and excess 
LiCl in acetone (Scheme 2). Complex 13[201 showed no propen- 
sity to cyclize after being heated in CDCl,. Treatment of 13 with 
AgBF, gave cationic 14, in which the metal is coordinated with 
one water molecule (Table 1).r211 Addition of one equivalent of 
PPh, led quantitatively to 10, whose structure was confirmed by 
NMR spectroscopy. 'H- I3P HOESY correlation demonstrat- 
ed that the palladium center is coordinated with the phosphane, 
alkene, and allyl group (q3 ,  Figure In contrast with 14, 
which failed to undergo cyclization, a smooth reaction was ob- 
served for 10 (CH,Cl,, 30 "C), giving a mixture of five-mem- 
bered ring c a r b o ~ y c l e s . ~ ~ ~ ~  

The results summarized in Scheme 2 suggested that the 
cyclization of 1 could be effected under neutral conditions with 
a palladium catalyst containing just one equivalent of phos- 
phane as ligand. Indeed, 1 was converted into 11 (75-79% 
yield, contaminated with about 5 %  of 12) in the presence of 
5 mol% [Pd,(dba),].dba and 10 mol% PPh, or PCy, in toluene 
at 100 "C for 24 h.r241 The inertness of complexes with bidentate 
ligands (for example 5 and 6) towards insertion was also demon- 
strated under catalytic conditions.[251 

These results indicate that formation of intermediates of type 
IV is the key to successful cyclization. When allyl acetates are 
used as the starting materials under catalytic conditions, both 
oxidative addition and formation of cationic IV are unfavorable 
processes. In these cases, the acidic solvent probably promotes 
the reaction by protonation of the acetate ligand, thereby facil- 
itating formation of IV. Although this study does not exclude 
the involvement of internal q'-allyl species as intermediates in 
the catalytic cycle,[26, 2 7 1  the results are in accordance with direct 
insertion of the q3-allyl group into the alkene. Our conclusions 
are supported by the recent, independent work of Keim et al. 
and Brookhart et a1.,r281 which demonstrate that insertion of 
ethylene proceeds smoothly on cationic (q3-allyl)palladium 
complexes. 

We have found that cyclization of substrates such as 1 may 
proceed under neutral conditions. Cationic complexes, which 
are key intermediates in the palladium-catalyzed reactions of 
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Figure 1. 'H -"P HOESY spectrum of 10 ([D,]acetone, 0 C) showing correlations between the phosphorous atom 
and H1-,\~17. HX-cr.>. H8-trans. and H1-onti. Assignments are based on a COSY spectrum. 

allyl substrates.iZ91 are also involved in the insertion of alkenes 
into (q3-allyl)palladium complexes. Development of a chiral 
version of this palladium-catalyzed cyclization is underway. 
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