Vibrational spectra of hexabromobenzene and hexaiodobenzene

MASAKO SUZUKI

Department of Chemistry, Faculty of General Education, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan

(Received 20 July 1976)

Abstract—Infrared and Raman spectra of polycrystalline C_6Br_6 and C_6I_6 are measured at both room temperature and liquid nitrogen temperatures. Vibrational assignment of fundamental modes as well as combination bands are established on the basis of normal coordinate analysis.

INTRODUCTION

Vibrational spectra of hexabromobenzene C_6Br_6 and hexaiodobenzene C_6I_6 have been studied by a few investigators [1-3]. DELORME et al [1] reported i.r. spectra of these molecules in the region from $4000-70 \,\mathrm{cm}^{-1}$, and MARSAULT et al [2] measured far i.r. spectra in the region from 200 to 15 cm^{-1} . Raman spectra of C₆Br₆ and C₆I₆ were studied by ABRAMOW-ITZ et al [3]. These authors were interested primarily in the planarity of these hexahalobenzenes. The assignments of intramolecular and lattice vibrations are yet to be settled. To establish the vibrational assignments consistent with those in other hexahalobenzenes, i.r. and Raman spectra of these molecules were remeasured. Normal coordinate analysis has been carried out, and the complete assignments are presented for C_6Br_6 and C_6I_6 .

EXPERIMENTAL

The commercially available sample of C_6Br_6 was purified by repeated recrystallization from saturated benzene solution. C_6I_6 was prepared from benzene, fuming sulfuric acid and solid iodine and recrystallized from boiling nitrobenzene solution as described by RUPP [4] and DURAND *et al* [5]. Result of elementary analysis of C_6I_6 is as follows: expected C 8.65%, found C 8.76%

Raman spectra of powder C_6Br_6 were taken on a JEOL JRS-400D double monochromator using 5145 and 4880 A excitation lines from an argon ion gas laser with an output of 700 mw. For orange polycrystalline C_6I_6 , a Spex Model 1401 double monochromator with 6328 A excitation line from a He-Ne gas laser was used with an output of 50 mw. Raman lines scattered from the surface of C_6I_6 disc were detected.

Infrared spectra of C_6Br_6 and C_6I_6 were recorded on a Hitachi G2 (4000–400 cm⁻¹), EPI-L (700–200 cm⁻¹) and FIS-1 (500–60 cm⁻¹) spectrometers. Far i.r. spectra were also taken on a Hitachi 070 interferometer to check the reproducibility in the region from 200–60 cm⁻¹. Both spectra obtained by using different spectrometers match completely.

Low temperature measurements of i.r. and Raman spectra were made with a conventional cryostat holding liquid nitrogen. Infrared and Raman spectra of C_6Br_6 and C_6I_6 are given in Fig. 1 and 2, respectively.

NORMAL COORDINATE TREATMENT

The planarity of the C_6X_6 type molecules (X = F, Cl, Br, and I) has been the subject of a number of investigations. X-ray diffraction study (6, 7) indicates the puckered D_{3d} structure for the C_6I_6 crystal. However, six iodine atoms are located only 0.04 A off the plane of the benzene ring. An electron diffraction investigation of gaseous C_6Br_6 indicates a distorted configuration [8], while X-ray analysis [9] supported planar configuration in the crystalline state which is isomorphous to crystalline $C_6Cl_6[10, 11]$. Since vibrational frequencies are insensitive to slight geometrical changes of configuration, normal coordinate treatments were undertaken on a planar D_{6h} model. The calculated frequencies may be compared with those for planar $C_6Cl_6[12]$.

According to the group theory, the irreducible representations for the normal modes of C_6X_6 molecule assuming D_{6h} symmetry are: Γ $(D_{6h}) = (2a_{1g} + a_{2g} + 4e_{2g} + 2b_{1u} + 2b_{2u} + 3e_{1u}) + (2b_{2g} + e_{1g} + a_{2u} + 2e_{2u})$, where the symmetry species enclosed in the first set of braces correspond to the

Fig. 1. Raman and i.r. spectra of solid C_6Br_6 at room temperature. (Dotted curves indicate the spectra obtained at liquid nitrogen temperature.)

in-plane modes, and the species in the second braces correspond to the out-of-plane modes. Of these twenty normal modes, seven modes $(2a_{1g} + 4e_{2g} + e_{1g})$ are Raman active, and four $(3e_{1u} + a_{2u})$ are i.r. active. The correlation between D_{6h} and D_{3d} indicates that two b_{2g} modes are Raman active and two b_{1u} and two e_{2u} modes are i.r. active in a puckered D_{3d} structure. Hereafter the notation of symmetry species in D_{6h} symmetry will be used.

Internal symmetry coordinates chosen are the same as those of HARADA *et al.* in the calculation of the benzene molecule [13]. The potential energy is given as [13]:

$$2V_{in} = 2V_{UBFF} + 2\left(o_{cx}\sum_{i=1}^{6}s_{i}s_{i+1} + m_{cx}\sum_{i=1}^{6}s_{i}s_{i+2} + p_{cx}\sum_{i=1}^{3}s_{i}s_{i+3}\right) + 2\left(o_{ccx}\sum_{i=1}^{6}\psi_{i}\psi_{i+1} + m_{ccx}\sum_{i=1}^{6}\psi_{i}\psi_{i+2} + p_{ccx}\sum_{i=1}^{3}\psi_{i}\psi_{i+3}\right)$$

$$+ 2\left(o_{cc}\sum_{i=1}^{6}t_{i}t_{i+1} + m_{cc}\sum_{i=1}^{6}t_{i}t_{i+2} + p_{cc}\sum_{i=1}^{3}t_{i}t_{i+3}\right) + 2\left(o_{ccc}\sum_{i=1}^{6}\phi_{i}\phi_{i+1} + m_{ccc}\sum_{i=1}^{6}\phi_{i}\phi_{i+2} + p_{ccc}\sum_{i=1}^{3}\phi_{i}\phi_{i+3}\right)$$

$$2V_{out} = A \sum_{i=1}^{6} \gamma_i^2 + B \sum_{i=1}^{6} \delta_i^2 + 2C \left(\sum_{i=1}^{6} \gamma_i \delta_i - \sum_{i=1}^{6} \gamma_i \delta_{i-1} \right) + 2D \left(\sum_{i=1}^{6} \gamma_i \delta_{i+1} - \sum_{i=1}^{6} \gamma_i \delta_{i-2} \right) + 2 \left(a_0 \sum_{i=1}^{6} \gamma_i \gamma_{i+1} + a_m \sum_{i=1}^{6} \gamma_i \gamma_{i+2} + a_p \sum_{i=1}^{3} \gamma_i \gamma_{i+3} \right) + 2 \left(b_0 \sum_{i=1}^{6} \delta_i \delta_{i+1} + b_m \sum_{i=1}^{6} \delta_i \delta_{i+2} + b_p \sum_{i=1}^{3} \delta_i \delta_{i+3} \right).$$

Fig. 2. Raman and i.r. spectra of solid C₆I₆ at room temperature.

In the preliminary calculation, the values of force constants adopted are the same as those used for the benzene molecule [13] except K_{cx} , H_{cx} , and F_{cx} , which are listed in Table 1. These values are transferred from CH₃Br, C₂Br₄ and CH₃I [14]. Calculated frequencies are also shown in Table 1.

VIBRATIONAL ASSIGNMENTS

Raman spectra

Although general features of the Raman spectra of C_6Br_6 and C_6I_6 are similar to those reported by ABRAMOWITZ *et al.* [3], we observe a few additional bands at 648, 637, 68, 47, 41, 34, 22, and 20 cm^{-1} for the C_6Br_6 molecule at room temperature. Also, the bands at 489 cm⁻¹ and 125 cm^{-1} they reported are completely missing. For C_6I_6 , a weak band at 592 cm^{-1} was observed, while a sharp band at 383 cm^{-1} [3] was not recorded even at low tempera-

Table 1. Vibrational frequencies and force constants of C_6Br_6 and C_6I_6 in preliminary calculation

	Calculated frequencies	(cm^{-1})
	C ₆ Br ₆	C ₆ I ₆
110	1104, 229	1090,173
) ₇₄	748, 61	746, 45
29 10	300	290
2a	1559, 797, 197, 96	1547, 769, 152, 69
-0 1 ₂₁	117	107
 /1µ	1142, 230	1122, 173
21u	1300, 539, 118	1284, 487, 86
21	561, 46	555, 34
	Force constants (me	d/A)
	C ₆ Br ₆	C ₆ I ₆
K.,	1.757	1.547
Ч.,	0.08	0.07
Far	0.68	0.60

Values of other force constants are the same as used for benzene molecule [13].

ture. No splitting was observed around 592 cm^{-1} at low temperature.

BATES et al. [15] determined the assignments of molecular and lattice vibrations of the C₄Cl₄ crystal from the polarized Raman spectra. They assigned the six bands at 56, 54, 45, 38, 25, and 21 cm⁻¹ at 300 K to the lattice vibrations about the three principal axes of a molecule. X-ray diffraction studies [6, 7, 9, 10, 11] indicate that C₆Cl₆, C₆Br₆, and C₆I₆ crystals have isomorphic structures with space group P21/c and that each contains two molecules in a unit cell with the same packing. Therefore, the patterns of lattice vibrations in C₆Br₆ and C₆I₆ are expected to be parallel to that of C₆Cl₆. As intermolecular forces differ hardly in C_6Cl_6 and in C_6Br_6 , the librational frequencies are determined mainly by the principal moments of inertia. The lower librational frequencies, therefore, are expected for C_6Br_6 . This consideration leads us to the assignment that four sharp bands at 47, 41, 22, and 20 cm^{-1} as well as a broad band at 34 cm^{-1} are due to the librational modes. The band at 68 cm^{-1} is assigned to an intramolecular vibration, namely the b_{2a} CX out-of-plane bending mode which corresponds to the C_6Cl_6 band at 103 cm⁻¹ [15].

The corresponding b_{2g} band for C_6I_6 as well as the librational bands located at lower frequencies

were not observed. This is probably due to the different experimental conditions used for C_6Br_6 and C_6I_6 .

Another b_{2g} fundamental is harder to assign. Normal coordinate analysis indicates that this is a chair type deformation and halogen atoms scarcely move in this mode. The frequency shifts from C₆Cl₆ to C₆I₆ are expected to be small. BATES [15] assigned a band at 678 cm⁻¹ of C₆Cl₆ to this mode. Therefore, the doublet located at 648 and 637 cm⁻¹ of C₆Br₆ and the C₆I₆ band at 592 cm⁻¹ may be assigned to this fundamental. This assignment is less unambiguous, since overtones of the e_{1g} doublet at 326 and 319 cm⁻¹ for C₆Br₆ and/or the C₆I₆ band at 295 cm⁻¹ may also appear in the same frequency range.

In other spectral regions, the present assignment is identical to that given in [3].

Infrared spectra

The i.r. spectra in Figs. 1 and 2 are essentially identical to those obtained by DELORME [1] above 600 cm^{-1} . The spectra also match with the far i.r. spectra of MARSAULT [2] in the region of $200-15 \text{ cm}^{-1}$. There are, however, considerable discrepancies between our spectra and those of Delorme below 500 cm^{-1} . We observed a band at 246 cm^{-1} ,

		C ₆	Cl ₆	C ₆ I	Br ₆	C,	5I ₆		
	Sym. species D _{6h}	R ef. [15] obs.	Ref. [12] calc.	This obs.	work calc.	This obs.	work calc.	Sym. species D _{3d}	
a _{1g}	$\begin{cases} v_1 \\ v_2 \end{cases}$	1226 372	1165 383	1159 232	1130 243	1057 166	1039 177	$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$	
1	{ v7	678	677	{648 (637	648	592	601	v ₃	a_{1g}
0 _{2g}	lν _a	103	98	68	68	59	48	VA	
e _{1g}	{ v ₁₁	345	389	{ 326 { 319	300	295	290	v ₁₃)	
	{v ₁₅	1523	1585	1485	1485	${1430 \\ 1423}$	1430	v ₁₁	
	$\int v_{16}$	883	837	795	785	731	706	v ₁₂	e,
e_{2g}	V17	323	303	208	178	148	134	V14	
	(v18	218	204	148	130	119	99	V15	
a2#	V4	170	197	145	145	144	144	v ₈)	
ь	∫ V5	1080	1067	1031	1036	968	978	υ, (a _{2u}
v_{1w}	<i>۲</i> 6	395	368	246	216	167	154	v10 \$	
	(V12	1344†	1356	1292	1310	1238	1248	V16	
e_{1u}) v ₁₃	694†	661	558	580	455	485	v ₁₇	
	<i>v</i> 14	215	215	${162 \\ 155}$	141	113	108	v 18	e _u
	(V19	521	581	567	560	543	555	V19	
e _{2u}	{v ₂₀	79	79	${}^{48.8*}_{46.4*}$	46	{45.8* {41.6*	34	v_{20}	

Table 2. Assignment of fundamental frequencies of C_6X_6 molecules (in cm⁻¹)

† Ref. [18]. * Ref. [3].

a weak doublet at 162 and 155 cm^{-1} , and a strong band at 145 cm^{-1} in the spectrum of C₆Br₆, while DELORME *et al.* [1] reported bands at 433, 246, 145, and 135 cm^{-1} . The last band is missing from the spectrum of Marsault. Reversal of intensity is also observed for the bands at 558 and 526 cm⁻¹.

Three bands are observed at 167, 144, and 113 cm⁻¹ for C₆I₆. This agrees with the observation by Marsault, while only a band at 113 cm^{-1} was recorded by Delorme. Below 600 cm⁻¹ we used the combined data of Marsault's and our own.

From the normal coordinate analysis of C₆Br₆ two bands at 1292 and 558 cm⁻¹ and a weak doublet at 162 and 155 cm^{-1} are assigned, respectively, to the ring distortion, the CBr stretching, and the CBr deformation vibrations in the $e_{1\mu}$ species. The strong band at 145 cm^{-1} is assigned to the $a_{2\mu}$ CBr bending vibration. Preliminary calculation indicates that two $e_{2\mu}$ and two $b_{1\mu}$ vibrations have frequencies around 561, 46, 1142, and 230 cm^{-1} , respectively. These modes are i.r. active in D_{3d} symmetry, and the observed band at 565 cm⁻¹ is assigned to the e_{2u} boat type deformation, while the bands at 1031 and 246 cm^{-1} are assigned to the b_{1u} triangular deformation and CBr stretching modes respectively. The doublet observed at 48.8 and 46.4 cm^{-1} by Marsault is assigned to the e_{2u} CBr bending mode.

Normal coordinate treatment also indicates that the displacements of halogen atoms in the a_{2u} vibration are very small,* while those in the e_{1u} CX deformation vibrations are comparable to the displacements of carbon atoms. The latter mode is expected to be much more sensitive to the halogen substitutions. The band at 144 cm⁻¹ is assigned to the a_{2u} vibration for C₆I₆ (which corresponds to the 145 cm⁻¹ band in C₆Br₆) and the band at 113 cm⁻¹ to the e_{1u} mode. The bands at 1238 and 455 cm⁻¹ are assigned to the other e_{1u} modes, i.e. the ring distortion and the CI stretching vibrations. The weak band at 229 cm⁻¹ may arise from a combination of 113 cm⁻¹ (e_{1u}) and 119 cm⁻¹ (e_{2g}) bands. The above assignments differ considerably from earlier workers.

The preliminary calculation also indicates that the observed bands at 968, 167, and 543 cm^{-1} are assigned, respectively, to the triangular deformation and the CI stretching vibrations in the b_{1u} species and to the boat type deformation in the e_{2u} species. It is very hard to assign the 167 cm^{-1} band to the e_{1u} mode as indicated by Marsault. The calculation shows that the doublet at 45.8 and 41.6 cm⁻¹ observed by MARSAULT [2] is due to the $e_{2u} CX$

bending mode. The final assignments are listed in Table 2 along with the assignments for C_6Cl_6 [15].

DISCUSSION

Since the assignments for the fundamental frequencies were settled, the least-squares refinement of force constants has been attempted to reproduce the frequencies in the a_{1g} , e_{2g} , e_{1u} , a_{2u} , and b_{2g} species as nearly as possible. The force constants K_{cx} , K_{cc} , H_{cx} , H_{cc} as well as c_{xx} , a cis interaction constant introduced by MANN et al [16, 17] in the normal coordinate analysis in C_2X_4 , are treated as adjustable parameters in the in-plane modes. As for out-of-plane force constants, A, B, a_0 , a_m , a_p , b_0 , b_m , and b_p are taken as variables with the constraints of $\Delta A = \Delta a_m$, $\Delta a_o = \Delta a_p$, $\Delta B = \Delta b_m = -\Delta b_0 = -\Delta b_p$. The constraints leave the e_{2u} and e_{1g} frequencies unchanged: the frequency fits in these species are good in the preliminary calculation. The final results are given in Table 2 and the final set of force constants is given in Table 3.

The overall agreements of the calculated and observed frequencies are quite satisfactory. It is encouraging that the frequency fits in the $b_{1\mu}$ species are improved considerably in the refinement process which supports the present revised assignments. Some frequencies are interpreted as combination bands, and they are listed in Table 4.

The obtained value of K_{CBr} for C_6Br_6 is reasonable considering the corresponding value for fluorobromobenzenes is reported to be 2.9314 md/A [19]. It is in-

Table 3. Values of force constants (final set)

	In-plane f. c. C_6Br_6	(md/A) C ₆ I ₆	Out-	of-plane f. c. C ₆ Br ₆	$(\operatorname{md} \cdot A) \\ C_6 I_6$
K_{cc} K_{cx} F_{cx} F_{cc} m_{cc} m_{cc} m_{cx} m_{cx} m_{cx}	$\begin{array}{c} C_6 Br_6 \\ 4.699 \\ 2.578 \\ 0.260 \\ 0.387 \\ 0.098 \\ 0.241 \\ 0.481 \\ -0.204 \\ 0.377 \\ 0.024 \\ 0.0 \\ -0.006 \\ 0.005 \\ -0.014 \end{array}$	$\begin{array}{c} C_{6}I_{6} \\ 4.313 \\ 1.656 \\ 0.239 \\ 0.387 \\ 0.115 \\ 0.241 \\ 0.481 \\ -0.204 \\ 0.377 \\ 0.024 \\ 0.077 \\ 0.024 \\ 0.0 \\ -0.006 \\ 0.005 \\ -0.014 \end{array}$	A B C D a _o a _m b _o b _o b _m b _p	$\begin{array}{c} C_6 Br_6 \\ \hline 0.4082 \\ 0.4064 \\ 0.0398 \\ -0.0027 \\ 0.0696 \\ -0.0018 \\ 0.0591 \\ -0.0258 \\ 0.0680 \\ -0.0396 \end{array}$	$\begin{array}{c} C_6 I_6 \\ \hline 0.4129 \\ 0.4409 \\ 0.0398 \\ -0.0027 \\ 0.1016 \\ 0.0029 \\ 0.0912 \\ -0.0603 \\ 0.1025 \\ -0.0741 \end{array}$
D _{ccx} D _{ccc} m _{ccc} D _{ccc}	0.007 -0.018 0.0 0.0 0.373	$\begin{array}{c} 0.007 \\ -0.018 \\ 0.0 \\ 0.0 \\ 0.423 \end{array}$			

^{* 0.14} for C_6Br_6 and 0.09 for C_6I_6 relative to the displacements of carbon atoms.

		C ₆ B	r ₆		
	obs.	assignment		obs.	assignment
i.r.	447 (2)	$208 (e_{2q}) + 246 (b_{1u})$		1249 (8)	$1485(e_{2a}) - 246(b_{1u})$
	630(3)	$68(b_{2a}) + 567(e_{2u})$		1336 (4)	$1485(e_{2a}) - 145(a_{2u})$
	677 (3)	$637(b_{2a}) + 48.8(e_{2u})$		1520(2)	$1292(e_{1u}) + 232(a_{1a})$
	865 (2)	$319(e_{1e}) + 558(e_{1u})$		1952 (2)	$1292(e_{1u}) + 648(b_{2a})$
	880 (5)	$1031(b_{1u}) - 148(e_{2a})$			
	965 (2)	$1031 (b_{1u}) - 68 (b_{2a})$	R		
	1057 (2)	$1292(e_{1u}) - 232(a_{1a})$		819(1)	$246(b_{1u}) + 567(e_{2u})$
	1098 (2)	$68(b_{2g}) + 1031(b_{1u})$		1215(1)	$1159(a_{1g}) + 68(b_{2g})$
		C ₆ I	6		
	obs.	assignment		obs.	assignment
i.r.	229 (4)	$119(e_{2a}) + 113(e_{1u})$		702 (4)	$166(a_{1a}) + 543(e_{2u})$
	249 (3)	$295(e_{1e}) - 45.8(e_{2u})$		773 (4)	$731 (e_{2a}) + 41.6 (e_{2u})$
	267 (3)	$119(e_{2a}) + 144(a_{2u})$		834 (5)	$295 (e_{1e}) + 543 (e_{2e})$
	280 (2)	$\int 166(a_{1a}) + 113(e_{1u})$		862 (4)	$968(b_{1u}) - 119(e_{2u})$
	280(2)	$119(e_{2a}) + 167(b_{1u})$		897 (2)	$731(e_{2a}) + 167(b_{1u})$
	215(4)	$\int 166(a_{1a}) + 144(a_{2u})$		921 (2)	$1057(a_{1a}) - 144(a_{2u})$
	313(4)	$148(e_{2a}) + 167(b_{1u})$		980 (3)	$1430(e_{2a}) - 455(e_{1a})$
	339 (2)	$455(e_{1u}) - 119(e_{2a})$		1009 (3)	$1057(a_{1a}) - 45.8(e_{2u})$
	385 (4)	$543(e_{2y}) - 166(a_{1g})$		1074 (3)	$1238(e_{1u}) - 166(a_{1a})$
	440 (4)	$295(e_{1a}) + 144(a_{2u})$		1089 (3)	$968(b_{1u}) + 119(e_{2a})$
	491 (4)	$543(e_{2u}) - 59(b_{2a})$		1119 (4)	$1238(e_{1\mu}) - 119(e_{2\mu})$
	564 (4)	$731(e_{2a}) - 167(b_{1a})$		1171 (2)	$1057(a_{1a}) + 113(e_{1a})$
	574 (3)	$119(e_{2a}) + 455(e_{1u})$		1205 (8)	$1057(a_{1a}) + 144(a_{2u})$
	609 (2)	$148(e_{2a}) + 455(e_{1u})$		1316 (3)	$1430(e_{2a}) - 113(e_{1u})$
	663 (2)	$119(e_{2a}) + 543(e_{2u})$			
	676 (3)	$968(b_{1u}) - 295(e_{1a})$	R		
	692 (2)	$148(e_{2g}) + 543(e_{2u})$		1349 (1)	$1057(a_{1g}) + 295(e_{1g})$

Table 4. Assignment of combination bands of C_6Br_6 and C_6I_6 (in cm⁻¹)

Numbers in the parentheses indicate the relative intensities.

teresting to note that the values of K_{cc} for C_6Br_6 and C_6I_6 are smaller than the value for C_6H_6 (5.237 md/A)[13], and that the force constant c_{xx} , which was completely ignored in C₆H₆, has rather large values for C_6Br_6 and C_6I_6 . As for out-of-plane force constants A and B, they are slightly larger than those found for C_6H_6 (A = 0.3970 mdA)B = 0.3668 mdA [13]. In order to make more quantitative discussion, it is necessary to study a complete set of brominated and iodinated benzenes, as were attempted for that of fluorinated benzenes [20, 21] and that of chlorinated benzenes [22].

In conclusion, all the observed i.r. and Raman bands are assigned to fundamentals as well as combination bands on the basis of normal coordinate analysis assuming a planar D_{6h} configuration. The present assignments for the b_{2g} , a_{2u} , b_{1u} , e_{1u} , and e_{2u} modes differ from those given earlier [1-3]. A few bands can be interpreted as due to i.r. inactive (b_{1u} , e_{2u}) or Raman inactive (b_{2g}) bands in D_{6h} symmetry. This supports a slightly puckered molecular model of D_{3d} symmetry for C₆Br₆ and C₆I₆ crystals as were proposed by previous investigators [1-3]. Acknowledgements—The author wishes to express her sincere gratitude to Prof. T. SHIMANOUCHI, the University of Tokyo, for letting her use the equipment in his laboratory, and his fruitful discussions. The author deeply appreciates Dr. J. HIRAISHI, Government Chemical Industrial Research Institute, Tokyo, for taking far i.r. spectra on Hitachi 070 interferometer in his laboratory. The author is also grateful to Prof. M. KAWANO, Showa University, for his encouragement throughout this work.

REFERENCES

- [1] P. DELORME, F. DENISSELLE and V. LORENZELLI, J. Chim. Phys. 64, 591 (1967).
- [2] J. P. MARSAULT and F. MARSAULT-HERAIL, C. R. Acad. Sci. Paris 273, 464 (1971).
- [3] S. ABRAMOWITZ and I. W. LEVIN, Spectrochim. Acta 26A, 2261 (1970).
- [4] E. RUPP, Ber. Dtsch. Chem. Ges. 29, 1631 (1896).
- [5] J. F. DURAND and M. MANCET, Bull. Soc. Chim. 5^e serie, II, 665 (1935).
- [6] T. L. KHOTSYANOVA and V. I. SMIRNOVA, Sov. Phys. Crystallogr. 13, 682 (1969).
- [7] R. J. STEER, S. F. WATKINS and P. WOODWARD, J. Chem. Soc. C, 403 (1970).
- [8] T. G. STRAND, Acta Chem. Scand. 21, 1033 (1967).
- [9] Y. YAFNER and F. H. HERBSTEIN, J. Chem. Soc. 5290 (1964).

- [10] I. N. STREL'TSOVA and Y. T. STRUCHKOV, J. Struct. Chem. 2, 296 (1961).
- [11] T. L. KHOTSYANOVA, Zh. Strukt. Khim. 7(3), 472 (1966).
- [12] J. R. SCHERER and J. C. EVANS, Spectrochim. Acta 19, 1739 (1963).
- [13] I. HARADA and T. SHIMANOUCHI, J. Chem. Phys. 44, 2016 (1966). I. HARADA, PhD Thesis.
- [14] T. SHIMANOUCHI, Private communication.
- [15] J. B. BATES, D. M. THOMAS, A. BANDY and E. R. LIP-PINCOTT, Spectrochim. Acta 27A, 637 (1971).
- [16] D. E. MANN, T. SHIMANOUCHI, J. H. MEAL, and L. FANO, J. Chem. Phys. 27, 43 (1957).

- [17] D. E. MANN, L. FANO, J. H. MEAL and T. SHIMANOU-CHI, J. Chem. Phys. 27, 51 (1957).
- [18] R. KOPELMAN and O. SCHNEPP, J. Chem. Phys. 30, 597 (1959).
- [19] N. D. PATEL, V. B. KARTHA and N. A. NARASIMHAM, J. Mol. Spectrosc. 48, 185 (1973).
- [20] V. J. EATON and D. STEELE, J. Mol. Spectrosc. 48, 446 (1973).
- [21] R. A. R. PEARCE, D. STEELE, and K. RADCLIFFE, J. Mol. Struct. 15, 409 (1973).
- [22] J. R. SCHERER, Spectrochim. Acta 21, 321 (1965); 23A, 1489 (1967); 24A, 747 (1968).