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Abstract: A method has been developed for the direct N-substitu-
tion of aporphines comprising the N-oxidation–N-deprotection–N-
alkylation sequence. This methodology was found to be insensitive
to the change in the substitution pattern of rings A or D, therefore it
is presumed to be applicable also for aporphines derived from total
synthesis and natural sources.
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Aporphines are isolated in increasing number from natu-
ral sources.1 This group of isoquinoline alkaloids can be
prepared by total synthesis,2 and by semisynthesis from
natural-occurring morphinans via acid-catalyzed rear-
rangement of the morphinan ring.3

Aporphines display a variety of interesting pharmacolog-
ical properties.4 The SAR studies indicate that in particu-
lar substituents at N-6 influences binding affinity and
selectivity to dopamine D1- and D2-agonist receptors.5

Selected D2-receptor agonists are shown in Table 1.

Apomorphine (1) itself displays dopaminergic properties
and it is used in certain pharmaceuticals. Compounds 2, 4,
6, 8, and 10 are even more potent.

N-Methyl aporphines can be prepared by acid-catalyzed
rearrangement of N-methyl morphinandienes.6 Other N-
alkyl groups can be introduced by demethylation followed
by re-alkylation. However, the N-demethylation requires
so harsh conditions that a C8=C14 bond in the morphinan-
diene skeleton usually does not survive.7

Hence, there is a demand for a more efficient approach.
The present paper describes a new protocol, which gives
access to a series of important N-alkylated aporphines by
demethylation of N-methylaporhines followed by re-alky-
lation.

There has been no practical method for the direct N-de-
methylation and consequent N-alkylation of aporphines,8

however, some successful attempts were published re-
garding the synthesis of noraporphines. Begtrup’s group
applied the cleavage of N–Bn bond by catalytic hydroge-
nation.9 They performed N-deprotection of an aporphine
obtained by the rearrangement of the previously N-benzy-
lated morphinan. Garrido and co-workers studied the oxi-

dative behavior of apomorphine in aqueous media giving
raise to some norapomorphines as a result of anodic oxi-
dation.10 This investigation aimed the better understand-
ing of the biological interactions of apomorphine rather
than providing some practical procedure for the N-substi-
tution.

We explored the possibilities of adoption of the oxida-
tion–cleavage-alkylation sequence of Scammells et al.,
originally developed for morphinans, to aporphine back-
bone to obtain pharmacologically more interesting N-pro-
pyl congeners.11

Table 1 Some Important D2 Agonists

Compd R Alk D2 Binding affinity (nM)

1 H Me 11.1

2 H Pr 0.80

3 OH Me 0.38

4 OH Pr 0.05

5 OMe Me 1.12

6 OMe Pr 0.17

7 F Me 6.45

8 F Pr 0.071

9 Br Me 17.7

10 Br Pr 0.89
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Table 2 Oxidation of 2-Bromoapocodeine (14)

Procedure Temp (°C) Time (h) Yield (%)a

H2O2 r.t. 18 11

MCPBA 60 7 6

H2O2, Mg(OH)2, PhCN 60 24 36

H2O2, Na2WO4 r.t. 3.5 61

a Isolated yields after column chromatography, averages of three runs.
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The main concern regarding the oxidative N-deprotection
of aporphine skeleton was its sensitivity to this kind of
chemical effect. It is well known that the nondegradative
oxidation of aporphines leads to 7-oxoaporphines with
several oxidizing agents ranging from chromium trioxide
in pyridine12a to manganese(III) acetate.12b Since the mod-
ification of the N-substituent was planned on apocodeines
having semiprotected catechol motifs, the oxidation of
ring D was considered a minor issue under mild condi-
tions. Scammells’ method offered the choice between the
application of large excess of hydrogen peroxide (11
equiv) and almost quantitative amount of m-chloroper-
benzoic acid (MCPBA, 1.1 equiv). Both oxidizing agents
were tested according to the original methods11 in terms of
the potency of formation of the desired N-oxide and unfa-
vorable oxidation products. In these test reactions and fur-
ther optimization steps 2-bromoapocodeine (14) was
used.13 It was found that these long-term oxidation proce-
dures produced N-oxide in low yield and considerable
amount of side product was obtained in the form of insol-
uble dark tar in the crude product mixture (Table 2).

After reviewing recent literature we identified two prom-
ising catalytic procedures offering significantly milder
conditions. The first one suggested the application of het-
erogeneous catalysis with H2O2, basic minerals, and ben-
zonitrile as an additive in water–methanol solvent.14

During workup it was noted that the amount of the dark,
overoxidized side product decreased, however, the isolat-
ed yield for N-oxide remained under 40%. Therefore our
attention turned to the application of a shorter, room-tem-
perature procedure utilizing Na2WO4 as a catalyst.15 In or-
der to increase the solubility of our apocodeine 14 the
original aqueous media was changed to water–1,4-diox-
ane (1:2). The yield of the reaction remarkably increased
and the amount of the side product remained at an accept-
able level.

After this optimization step the method was expanded to
a variety of apocodeines 11–20 in order to synthesize N-

oxides (Table 3) leading either to previously highlighted
N-propyl norapomorphines 4, 6, 8, and 10 or other, hith-
erto unknown, apomorphines 51–56 (Scheme 1) with po-
tential pharmacological interest.16,17

The HCl salts of N-oxides 21–30 were N-deprotected ac-
cording to Scammells’ procedure applying FeSO4·7H2O
in methanol at 0 °C.11 Noraporphine hydrochlorides 31–
40 were then re-alkylated with propyl iodide in the pres-
ence of three equivalents of potassium carbonate in meth-
anol. Finally, the O-demethylation of norapocodeines 41–
50 into the pharmacologically more interesting norapo-
morphines 4, 6, 8, 10, and 51–56 was carried out by meth-
anesulfonic acid and methionine18 reagent mixture. The
neuropharmacological characterization of the stable HCl
salts of novel apomorphines 51–56 is still in progress.

Scheme 1 Direct N-substitution of aporphines. Reagents and conditions: (i) H2O2, Na2WO4, 52–67%; (ii) FeSO4·7H2O, 82–91%; 
(iii) PrI/K2CO3, 75–82%; (iv) MeSO2OH, methionine, 77–87%.
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Table 3 Yields of the N-Deprotection Steps

Compd Isolated yield (%)a

N-Oxide formation N-Deprotection

11 52 85

12 54 82

13 63 87

14 61 82

15 67 90

16 55 91

17 59 82

18 63 84

19 60 87

20 59 84

a Reported yields are averages of 3 runs.
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In conclusion we have presented a procedure for direct N-
substitution of aporphines comprising the N-oxidation–N-
deprotection–N-alkylation sequence. This methodology
was found to be insensitive to the change in the substitu-
tion pattern of rings A or D, therefore it is presumed to be
applicable for aporphines also from total synthesis and
natural sources.
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