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Abstract: The reduction of readily available optically active b-sul-
tones bearing a b-trichloromethyl substituent proceeds chemoselec-
tively at three different sites via C–Cl, C–O or S–O bond cleavage
and allows for the formation of highly enantioenriched b-hydroxy-
sulfinic acids and allylsulfonic acids.
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Functionalized enantiopure molecules are attractive syn-
thetic building blocks for the preparation of chemical li-
braries, if they are readily accessible and if reliable and
generally applicable methods exist for their transforma-
tion into diverse compound classes using defined
chemoselective reaction pathways occurring without ra-
cemization or epimerization.

As part of our program directed towards the development
of catalytic asymmetric methodologies providing chiral
sulfur containing building blocks, we have recently re-
ported the first enantioselective synthesis of b-sultones 1,
the sulfonyl analogues of b-lactones.1 A [2+2]-cyclocon-
densation of sulfonyl chlorides and electron-poor alde-
hydes such as chloral provides the strained four-
membered rings in a highly enantio- and syn-selective
process, which is catalyzed by a Lewis base–Lewis acid
combination of the dimeric cinchona alkaloid derivative
(DHQ)2PYR (dihydroquinine-2,5-diphenyl-4,6-pyrimi-
dinediyl diether) and either Bi(OTf)3 or In(OTf)3

(Scheme 1). We demonstrated that enantioenriched b-sul-
tones are attractive building blocks since regioselective
nucleophilic ring opening with hydroxide, alcohol, amine
or Grignard reagents provided almost enantio- and diaste-
reomerically pure b-hydroxysulfonic acids, sulfonates,
sulfonamides or sulfones 2 in a divergent manner. More-
over, a trichloromethyl group at the b-position could be
utilized to introduce additional functionalities. Depending
upon the reaction conditions, either mono or dichloro de-
rivatives 3 and 4, respectively, could be selectively
formed by dechlorination.

In this letter we describe that b-sultones 1 can be
chemoselectively reduced at three different reaction sites.
In addition to partial dechlorination one can either reduce
the cyclic sulfonic esters to provide b-hydroxysulfinic ac-

ids by S–O bond cleavage or generate allylsulfonic acids
by C–O bond fission, in both cases taking advantage from
the high ring strain of the four-membered heterocycle.

Sulfinic acid derivatives are of fundamental importance in
asymmetric synthesis2 and are very versatile synthetic in-
termediates.3 Chiral sulfinate esters have, for example,
been intensively used as the primary source for chiral sulf-
oxides.4 Moreover, they have elicited interest in medicinal
chemistry.5 Homochiral b-hydroxysulfinic acids were re-
cently reported by AstraZeneca as potent drug candidates
for the treatment of reflux disease.6

We found that exposure of syn-configured a,b-disubstitut-
ed b-sultones 1 to LiAlH4 in Et2O at ambient temperature
provides b-hydroxysulfinic acids 5 within a few minutes
in good yield and without epimerization (Table 1).7

To evade overreduction to the corresponding thiol, a large
excess of the hydride source and extended reaction times
had to be avoided. The free acids were obtained by purifi-
cation with an ion-exchange resin. Although sulfinic acids
have been reported to be unstable even in the absence of
oxygen due to disproportionation, the here reported b-hy-
droxysulfinic acids 5 are remarkably stable and do not
have to be stored as a salt. After several months at –18 °C
under N2 the material was basically unchanged.

The reduction conditions were also compatible with a 2-
chloroethyl substituent at the a-position. Sulfinic acid 5d
could either be isolated after acidic workup or cyclized to

Scheme 1 Catalytic asymmetric synthesis of b-sultones 1 and fur-
ther conversion into b-hydroxysulfonic acids, esters, amides or sulfo-
nes 2
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g-sultine 6 by quenching with water. To our knowledge
this is the first reported example for the formation of a g-
sultine by nucleophilic displacement of a halide with a
sulfinate oxygen.8 g-Sultines were recently reported as a
new class of flavor compounds. 3-Propyl-g-sultine was,
for example, identified in the extracts of the yellow pas-
sion fruit as enantiomerically pure epimeric mixture with
respect to the configuration at S.9 In our case a 2.9:1 dia-
stereomeric mixture was formed, which was separable by
column chromatography. In the major epimer the S=O
bond adopts the axial position as determined by X-ray
crystal structure analysis (Figure 1).10,11 The five-mem-
bered ring adopts a distorted envelope conformation in the
solid state and the hydroxyl units form intermolecular
rather than intramolecular hydrogen bonds with the sulfi-
nyl moieties.12

If the reduction of b-sultones 1 was performed under hy-
drogenation conditions using a catalytic amount of Pd/C
(2 mol%) in EtOH [p(H2) = 1 atm], dichloroallylsulfonic
acids 7 were obtained without significant racemization of
the remaining stereocenter (Table 2). Only few enantiose-
lective methods for the synthesis of a-substituted sulfonic
acids have been reported so far,13 although enantiomeri-
cally pure sulfonic acid derivatives often display interest-
ing biological activities.14 While chloroethyl-substituted
acid 7d was formed in 80% yield (entry 4), all the other
examples proceeded in high yield. Further dechlorination,
hydrogenation or isomerization of the generated C=C
double bond were much slower under the described reac-
tion conditions than the initial reaction.

Two mechanistic scenarios might account for the product
formation which are depicted in Scheme 2: the reaction
could either proceed by oxidative addition of Pd(0) to the
trichloromethyl group followed by b-elimination (path A)
or alternatively oxidative addition might involve the four-
membered ring system providing an oxypalladacycle in-
termediate (path B). In both cases Pd(II) would be formed

Table 1 Chemoselective Reduction of b-Sultones 1 with LiAlH4

Entry 5 R Yield (%)a drb

1 5a Me 73 20:1

2 5b Et 90 >50:1

3 5c n-Pr 77 >50:1

4 5d (CH2)2Cl 71 >50:1

5 5e Bn 86 >50:1

a Isolated yield.
b Determined by 1H NMR.
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Figure 1 X-ray crystal structure of the major g-sultine isomer 6
with an axial S=O group

Table 2 Chemoselective Hydrogenation of b-Sultones 17

Entry 7 R Yield 
(%)a

1: ee 
(%)b

7: ee 
(%)b

1 7a Me 97 87 85

2 7b Et 97 >99 >99

3 7c n-Pr 95 89 86

4 7d (CH2)2Cl 80 94 94

5 7e Bn 88 99 99

6 7f (CH2)2O-p-MeOC6H4 99 >99 >99

a Isolated yield.
b Determined by chiral column HPLC (Daicel OD-H) after esterifica-
tion with TMS-diazomethane.
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which is then reduced with H2 to regenerate Pd(0). HCl
generated during this process protonates the correspond-
ing Pd-sulfonate intermediates. At this point we cannot
exclude one of these two mechanisms.

Monochloroallylsulfonic acids 11 were not available by
hydrogenation of the dichloromethyl-substituted b-sul-
tones 10, which were prepared from 1 by selective partial
dechlorination with Bu3SnH (Scheme 3), due to overre-
duction of the generated C=C double bond. However,
treatment of 10 with Zn and HOAc in THF at 60 °C fur-
nished 11 without racemization of the remaining stereo-
center as a mixture of the E- and Z-isomer (2.5–3.2:1).7

In conclusion, we have shown that the reduction of opti-
cally active b-sultones bearing a trichloromethyl group at
the b-position can proceed chemoselectively at three dif-
ferent sites and without significant racemization or
epimerization. In addition to the dechlorination with
Bu3SnH, b-hydroxysulfinic acids15 and allylsulfonic
acids16 are now readily available in highly enantioen-
riched form by a direct operationally simple synthetic ap-
proach. These compounds would be difficult to access by
alternative routes.
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1.42–1.59 (m, 1 H, CHHCHS), 1.07–1.36 (m, 2 H, 
CH2CH3), 0.75 (t, J = 7.3 Hz, 3 H, Me). 13C NMR (75 MHz, 
D2O): d = 125.4 (C=C), 124.7 (C=C), 61.3 (CSO3H), 31.5 
(CH2CHS), 19.1 (CH2CH3), 12.8 (Me). IR (ATR): 2958, 
1622, 1198, 1080 cm–1. HRMS (ESI): m/z [M – H]– calcd for 
C6H10O3SCl2: 230.9655; found: 230.9654. [a]D

26.4 –79.53 ± 
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0.14 (c = 1.20, H2O; sample with ee = 86%). 7d: 1H NMR 
(300 MHz, D2O): d = 5.83 (d, J = 10.4 Hz, 1 H, CH=CCl2), 
3.99 (td, J = 3.7, 10.4 Hz, 1 H, CHS), 3.64 (td, J = 5.4, 10.9 
Hz, 1 H, CHHCl), 3.37–3.38 (m, 1 H, CHHCl), 2.23–2.36 
(m, 1 H, CHHCHS), 1.96–2.28 (m, 1 H, CHHCHS). 13C 
NMR (75 MHz, D2O): d = 126.0 (C=C), 124.0 (C=C), 59.0 
(CSO3H), 41.7 (CH2Cl), 32.5 (CH2CHS). IR (ATR): 2539, 
1621, 1193, 1060 cm–1. HRMS (ESI): m/z [M – H]– calcd for 
C5H7O3SCl3: 250.9109; found: 250.9109. [a]D

28.5 –134.18 ± 
0.07 (c = 1.37, MeOH; sample with ee = 94%). 7e: 1H NMR 
(300 MHz, D2O): d = 7.20–7.35 (m, 5 H, CHPh), 5.94 (d, J = 
10.3 Hz, 1 H, CH=CCl2), 4.09 (m, 1 H, CHS), 3.37 (dd, J = 
3.1, 13.7 Hz, 1 H, CHHPh), 2.82 (m, 1 H, CHHPh). 13C 
NMR (75 MHz, D2O): d = 139.7 (CPh,q), 131.7 (2 × CPh), 
131.1 (2 × CPh), 129.3, 127.9, 127.2 (C=C), 65.5 (CSO3H), 
38.5 (CH2Ph). IR (ATR): 3029, 1621, 1216, 1154, 1038 
cm–1. HRMS (ESI): m/z [M – H]– calcd for C10H10O3SCl2: 
278.9655; found: 278.9654. [a]D

23.8 –75.97 ± 0.13 (c = 0.95, 
MeOH; sample with ee = 99%). 7f: 1H NMR (300 MHz, 
D2O): d = 6.75–6.85 (m, 4 H, CHPh), 5.84 (d, J = 10.6 Hz, 1 
H, CH=CCl2), 3.90–4.05 (m, 2 H, CHS, CH2OAr), 3.75–
3.87 (m, 1 H, CH2Cring), 3.63 (s, 3 H, OMe), 2.23–2.39 (m, 1 

H, CH2CHS), 1.81–1.97 (m, 1 H, CH2CHS). 13C NMR (75 
MHz, D2O): d = 153.2 (CPh), 151.9 (CPh), 125.2 (C=C), 124.4 
(C=C), 116.4 (2 × CHPh), 114.8 (2 × CHPh), 65.9 (CH2O), 
58.9 (CSO3H), 55.7 (OMe), 29.5 (CH2CHS). IR (ATR): 
3422, 1621, 1509, 1216, 1167, 1032 cm–1. HRMS (ESI): 
m/z [M – H]– calcd for C12H14O5SCl2: 338.9866; found: 
338.9866. [a]D

20.3 –80.63 ± 0.26 (c = 0.55, MeOH; sample 
with ee >99%). 11b: 1H NMR (300 MHz, D2O; E-isomer): 
d = 6.34 (d, J = 13.4 Hz, 1 H, CH=CHCl), 5.81 (dd, J = 10.3, 
13.4 Hz, 1 H, CH=CHCl), 3.38 (dt, J = 3.7, 10.3 Hz, 1 H, 
CHS), 1.88–2.04 (m, 1 H, CHHCHS), 1.50–1.66 (m, 1 H, 
CHHCHS), 0.86 (t, J = 7.5 Hz, 3 H, Me). 1H NMR (300 
MHz, D2O; Z-isomer): d = 6.45 (d, J = 7.2 Hz, 1 H, 
CH=CHCl), 5.74 (dd, J = 7.2, 10.3 Hz, 1 H, CH=CHCl), 
3.95 (dt, J = 3.2, 10.3 Hz, 1 H, CHS), 1.88–2.04 (m, 1 H, 
CHHCHS), 1.50–1.66 (m, 1 H, CHHCHS), 0.87 (t, J = 7.5 
Hz, 3 H, Me). 13C NMR (75 MHz, D2O; E-isomer): d = 127.9 
(C=C), 123.0 (C=C), 64.1 (CSO3H), 22.7 (CH2CHS), 10.6 
(Me). 13C NMR (75 MHz, D2O; Z-isomer): d = 126.3 (C=C), 
123.6 (C=C), 60.5 (CSO3H), 23.2 (CH2CHS), 10.4 (Me). IR 
(ATR): 2973, 1694, 1115 cm–1. HRMS (ESI): m/z [M – H]– 
calcd for C5H9O3SCl: 182.9888; found: 182.9889.
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