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Summary: The lithiated N-heterocyclic carbene-phosphini-
dene adduct L0:P-H (3; L0:=:C{[N(2,6-Pri2C6H3)]2CHCLi-
(THF)3}) unexpectedly resulted from the reaction of lithium
metal with the carbene-stabilized diphosphorus species L:P-P:L
(2; L:=:C{N(2,6-Pri2C6H3)CH}2). Compound 2was previously
prepared by the potassium graphite reduction of L:PCl3 (1).

Free phosphinidenes (R-P), highly reactive group 15 ana-
logues of carbenes,1-5 typically have triplet ground states and
are studied at low temperature.6 Transition-metal complexation
is an effective means to stabilize these short-lived species. The
transition-metal complexes of phosphinidenes prefer singlet
ground states,7 where phosphinidenes may act as two- or four-
electron donors.1 However, the phosphorus valence shell in free
phosphinidenes is unsaturated. This enables adduct formation
with electron pair donors, in particular Lewis base ligands2 such
as phosphines8 and N-heterocyclic carbenes (NHCs).9,10

In contrast to the diverse chemistry of substitutedphosphini-
denes,2,3,5 studies of the parent H-P molecule have largely
been computational.7,11,12 With a triplet ground state and a 22
kcal/mol triplet-singlet energy gap, diatomic H-P is a highly
reactive molecule.13 The synthesis and characterization of
its carbene complex [(CH3)2N]2CdP-H (I; Figure 1) were
achieved more than two decades ago.14-16 Consistent with an

elongated carbon-phosphorus double bond (1.740(1) Å),16

[(CH3)2N]2CdP-H may be regarded formally as an acyclic
diaminocarbene (I)-parent phosphinidene adduct.17 While
such N-heterocyclic carbene (II)-PH complexes have been
investigated theoretically,11,12 experimental data have yet to be
reported. We recently utilized N-heterocyclic carbenes18-21 to
stabilize a series of highly reactive low-oxidation-state main-
group molecules, including the parent diborene(2) (H-Bd
B-H),22,23 disilicon (Si2),

24 diphosphorus (P2),
25 diarsenic

(As2),
26 and a neutral Ga6 octahedron.27 We now report

the syntheses,28 structures,28 and computations29 of carbene-
stabilized phosphorus trichloride, L:PCl3 (1; L: = :C{N(2,6-
Pri2C6H3)CH}2) and the first lithiated NHC (III) parent phos-
phinidene adduct, L0:P-H (3; L0:=:C{[N(2,6-Pri2C6H3)]2CH-
CLi(THF)3}). While both I and II are well-known and exten-
sively investigated carbene ligands, III, in contrast, may be
regarded as a newanionicN-heterocyclic dicarbene, an anionic
C3N2 ringwith twocarbene centers: one is ananionic versionof
an “abnormal” carbene (aNHC) center,30 while the other is a
neutral carbene center.
The reaction of the carbene ligand (L:) with PCl3 in hexane

affords the hypervalent L:PCl3 complex 1 in almost quanti-
tative yield. Potassium graphite reduction of 1 gave the
diphosphorus carbene complex L:P-P:L (2).25 Phosphini-
dene 3 was isolated as yellow crystals from the reaction of 2
with lithium metal (Scheme 1). Although the mechanism is† Part of the Dietmar Seyferth Festschrift. This paper is dedicated to
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unclear, the formation of 3 involves both the cleavage of the
central P-P bond of 2 and the lithium-mediated C-H
activation of the imidazole ring. While the selective activa-
tion of aromatic C-Hbonds by lithium has been achieved,31

the lithiation of NHC ligands has not been reported.
The imidazole 1H NMR resonance of 1 resides at 6.51 ppm.

The 31PNMR resonance shifts from 219 ppm for PCl3
32 to 16.9

ppm for 1 due to the electron donation from the NHC ligand
(L:) to the phosphorus atom. In amanner similar to that for the
arsenic atom in L:AsCl3,

26 the four-coordinate phosphorus
atom in 1 adopts a trigonal-bipyramidal geometry (Figure 2;
only one set of structural data of the disordered PCl3 core is
shown28). While two Cl atoms occupy the axial positions, the
ipso-C of the lithiated NHC ligand, one Cl atom, and one lone
pair share the three equatorial sites. The 1.879 Å (average) P-C
bond length is comparable to other phosphorus-carbon single
bonds.25 The P-Cl(2) bond distance (2.471 Å, average) is
significantly longer than that of P-Cl(3) (2.238 Å, average)
and of P-Cl(1) (2.032 Å, average).
The 1HNMRof3 shows the imidazole resonance at 6.24ppm;

theP-Hdoublet (δ1.86ppm, 1J(PH)=167Hz) is shiftedupfield
compared to that reported for [(CH3)2N]2CdP-H (δ 3.10 ppm,
1J(PH)=159 Hz).14 This is probably because the net electron-
donating ability of the ligand III in 3 is stronger than that of I in
[(CH3)2N]2CdP-H. The presence of the P-H fragment in 3
also is confirmed unambiguously by the 1H-coupled-31P NMR
spectrum.The 31Pdoublet at-143.0ppm(1J=171Hz) is upfield
when compared to that (δ -62.6 ppm, 1J(PH) = 159 Hz) of
[(CH3)2N]2CdP-H14 and those (δ 23.8 ppm, 1J(PH)=138Hz;

δ 34.3 ppm, 1J(PH)=174 Hz) of P-hydrogeno-C-phosphino-
phosphaalkenes.33

The tetrahedrally solvated Liþ 3 (THF)3 cation completes the
trigonal-planar geometry aroundatomC(3) in 3 (Figure 3). The
natural charge distribution at Liþ (þ0.84) and P-H (-0.21)
supports the in-plane anionic character of theNHC fragment in
3,29 but this does not appear to significantly influence the nature
of the P-C bond.
While being shorter than the P-C single bond distances (1.879

Å (average) for 1; 1.828(2) and 1.856(2) Å for L00P(BH3)2Ph,
L00=:C{N(2,4,6-Me3C6H2)CH}2),

10 theP-Cbond in3 (1.763(2)
Å) compares well to that computed for [CH(CH3)N]2CP-H
(1.770 Å)12 and is slightly longer than the experimental value for
[(CH3)2N]2CdP-H(1.740(1) Å).15Perhapsexpectedly, theP-C
bond distance in 3 is much longer than the PdCdouble bonds in
P-hydrogeno-C-phosphinophosphaalkenes (1.713(2) Å)33 and in
H2CdP-H (1.675 Å, computed).34

Much like the case for N-heterocyclic carbene stabilized phos-
phinidenes9,10 andbisphosphinidenes,25 two extremeP-Cbond-
ing modes of lithiated 3 may be considered: a carbene-phos-
phinidene adduct (3A) and a phosphaalkene (3B). The pro-
nouncedhigh-field 31P chemical shift of 3 (-143.0 ppm), coupled
with the elongated P-Cbond (1.763(2) Å; see above) also favor
3A as the predominant formulation. The 102� (average) C-P-
Hbondangle in 3 is comparable to the 103(1)� in [(CH3)2N]2Cd
P-H15 and to the computed 94.0� in [CH(CH3)N]2CP-H.12

Density functional theory (DFT) computations at the
B3LYP/DZP level on the simplified L00:P-H model (3-H;

Figure 1. Examplesofdiaminocarbenes stabilizing theH-Pmole-
cule: (I) acyclic diaminocarbene; (II) N-heterocyclic carbene
(NHC); (III) lithiated N-heterocyclic carbene (lithium omitted
for clarity).

Scheme 1. Syntheses of Compounds 1, 2, and 3

Figure 2. Molecular structureof1 (thermal ellipsoids represent30%
probability; hydrogen atoms omitted for clarity). Selected bond dis-
tances (Å) and angles (deg): P(1)-C(1)=1.871(11), P(1)-Cl(1)=
2.018(8), P(1)-Cl(2)=2.492(10), P(1)-Cl(3)=2.235(10); C(1)-
P(1)-Cl(1)=102.5(4), C(1)-P(1)-Cl(2)=86.5(4), C(1)-P(1)-
Cl(3)=91.6(5), Cl(1)-P(1)-Cl(2)=90.0(5), Cl(1)-P(1)-Cl(3)=
76.9(4), Cl(2)-P(1)-Cl(3)=166.1(5).
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L00:=:C[(NH)2CHCLi(THF)3]) support the bonding analysis
of 3.29 The computed bond distances (P-C=1.775 Å, C-Li=
2.095 Å) and 180�H-P-C-N torsion angle match the experi-
mental values of 3 (P-C=1.763(2) Å, C-Li=2.116(5) Å) and
180�H(1)-P(1)-C(1)-N(2) torsionangle.The steric repulsion
between one of the bulky 2,6-diisopropylphenyl groups in 3 and
the P-H hydrogen atom is responsible for the C-P-H bond
angle in 3 (102�, average) being larger than that computed for
3-H (93.2�).
Localized molecular orbitals (LMOs) (Figure 4) and natural

bondorbital (NBO) analysis support the bonding descriptionof
3A. TheC-Liσbond is strongly polarized to carbon,which has
40.5% s and 59.5% p character (LMO a). The localized phos-
phorus MOs include a P-C σ bond (LMO b), a P-H σ bond
(LMO d), and two lone pairs (LMOs c and e). LMO e has
mainly s character (68.1% s, 31.9%p), whereas LMO c is essen-
tially pure p character (0.0% s, 99.8% p, 0.2% d). Notably, the
latter involvesmodest pπback-donation to the p orbital of ipso-
C of the lithiated NHC ligand (71.2% P and 28.8% C compo-
nents). This back-donation interaction is weaker than that
reported for 2 (64.8% P and 35.2% C components).25

In addition, the P-C σ-bond polarization of 65.7% to-
ward carbon and 34.3% toward phosphorus in 3-H is very

similar to that in 2 (64.8% C and 35.2% P). Notably, the
Wiberg bond index (WBI) of the P-C bond of 3-H (1.332) is
even less than that of 2 (1.397). These computational results
reveal that the pπ-bonding interaction between the ipso-
carbon of the lithiated NHC ligand and phosphorus is not
developed effectively, further supporting 3A as the predomi-
nant depiction of 3.
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Figure 4. Localized molecular orbitals (LMOs) of 3-H: (a)
C-Li σ-bonding orbital; (b) P-C σ-bonding orbital; (c)
lone pair orbital (mainly p character) with some pπ back-
donation to the Cipso p orbital of the lithiated NHC ligand;
(d) P-H σ-bonding orbital; (e) lone pair orbital (mainly P s
character).

Figure 3. Molecular structureof3 (thermal ellipsoids represent30%
probability; hydrogenatomsoncarbonsomitted for clarity). Selected
bond distances (Å) and angles (deg): P(1)-C(1)=1.763(2), P(1)-
H(1)=1.232(19), Li(1)-C(3)=2.116(5);C(1)-P(1)-H(1)=102(2),
N(1)-C(1)-P(1) = 127.19(16), N(2)-C(1)-P(1) = 129.14(17),
C(2)-C(3)-N(2) = 101.27(18), C(2)-C(3)-Li(1) = 120.7(2),
N(2)-C(3)-Li(1) = 135.68(19).


