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The efficient palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of (2S)-isopropyl-5-iodo-2,3-
dihydro-4(H)-pyrimidin-4-one with, arylethynyl-, heteroarylethynyl-, and alkylethynyltrifluoroborate
salts is reported. The standard protocol was evaluated and optimized in order to gain access to suitable
precursors of enantiopure 2-substituted b-amino acids. The scope and limitations of this methodology are
discussed.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The cross-coupling reaction between organic halides, or related
electrophiles, with organometallic reagents constitutes one of the
most direct methods for the formation of C–C bonds.1 In particular,
the Suzuki-Miyaura and the Sonogashira palladium-catalyzed
cross-coupling reactions of organoboron compounds with organic
halides are remarkably useful tools in organic synthesis. These
reactions have been extensively employed in academic laborato-
ries as well as in pharmaceutical and other fine-chemical indus-
tries to synthesize a large variety of organic molecules.2

In this context, organoboron compounds are among the most
widely used organometallic reagents for carbon–carbon bond for-
mation.3 Among the most commonly used organoboron com-
pounds are boronic acids and boronate esters; nevertheless, these
compounds present some drawbacks, including their low stability,
the rather high price of some derivatives, as well as their high sen-
sitivity to air and moisture. To solve these limitations, alternative
organoboron reagents have recently been developed in the form
of potassium organotrifluoroborate salts.4 These reagents have
turned out to be quite stable in the presence of air and moisture,
they usually exist as crystalline solids, are easily prepared from
inexpensive starting materials, and actually exhibit greater
nucleophilicity.4
ll rights reserved.
As part of their efforts to synthesize enantiomerically pure
2-substituted b-amino acids, Juaristi et al. recently reported the
convenient preparation of a suitable precursor, (2S)-isopropyl-5-
iodo-2,3-dihydro-(4H)-pyrimidin-4-one, (S)-1, by decarboxylation
of perhydropyrimidinone-6-carboxylic acid with diacetoxyiodo-
benzene (DIB) and iodine in the presence of BF3�Et2O (Scheme 1).5,6

Iodopyrimidinone (S)-1 was successfully employed in Sono-
gashira cross-coupling reactions that afforded the corresponding
acetylenic intermediates, which were hydrogenated and hydro-
lyzed to afford highly enantioenriched a-substituted b-amino acids
(Scheme 2).6

We report herein an alternative procedure for the synthesis
of (2S)-isopropyl-5-alkynylpyrimidin-2-ones by means of the
Suzuki-Miyaura palladium-catalyzed cross-coupling reaction be-
tween (2S)-isopropyl-5-iodo-2,3-dihydro-(4H)-pyrimidin-2-one
and potassium alkynyltrifluoroborates,7,8 using palladium acetate
as the catalyst.

2. Results and discussion

The starting material (2S)-isopropyl-5-iodo-2,3-dihydro-(4H)-
pyrimidinone, (S)-1, and alkynyltrifluoroborate salts 2a–r were
prepared using procedures described in the literature.5,8 With the
required reagents in hand, we proceeded to examine the cross-
coupling reaction of iodoenone (S)-1 with phenylethynyl-
trifluoroborate (2a) as model substrates (Table 1).

Of the various palladium catalysts tested, Pd(OAc)2 and PdCl2

proved most satisfactory in terms of the product yield and reaction
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Scheme 1. Preparation of enantiopure 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-one (S)-1.
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Scheme 2. Hydrogenation of the unsaturated C–C moieties in the Sonogashira
products followed by acid hydrolysis to afford highly enantioenriched a-substituted
b-amino acids.6

Table 1
Cross-coupling reaction of 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrim-
idin-4-one, (S)-1, with potassium phenyltrifluoroborate, 2a, to afford the acetylenic
derivative (S)-3a. Screening of the catalyst

N

N
OH

C6H5

O

I
N

N
OH

C6H5

O

+
Catalyst

1,4-Dioxane/H2O
K2CO3, 110 ºC, N2

(S)-1 (S)-3a2a

BF3K

Entry Catalysta Yieldb (%)

1 PdCl2 30
2 Pd2(dba)3 22
3 PdCl2(dppf)�CH2Cl2 20
4 Pd(OAc)2 45
5 No catalyst nr
6 NiBr(dppe) nr
7 PdCl2(3-pyridyl) 20
8 Pd(PPh3)4 25

a 9 mol % catalyst.
b Isolated yield.

Table 2
Cross-coupling reaction of 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrim-
idin-4-one, (S)-1, with potassium phenyltrifluoroborate, 2a, to afford the acetylenic
derivative (S)-3a. Screening of the base

N

N
OH

C6H5

O

I
N

N
OH

C6H5

O

+
Pd(OAc)2

1,4-Dioxane/H2O
Base, 110 ºC, N2

(S)-1 (S)-3a2a

BF3K

Entry Basea Yieldb (%)

1 Et3N 44
2 K2CO3 45
3 DIPEA 39
4 Cs2CO3 32
5 (iPr)2NH 53
6 NaOH 22

a Two equivalents of base were employed.
b Isolated yield.
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rate. Pd2(dba)3, PdCl2(dppf)�CH2Cl2, and PdCl2(3-pyridyl) were
found to be less efficient. No reaction took place in the absence
of a catalyst or in the presence of NiBr(dppe).

Once Pd(OAc)2 and PdCl2 were identified as the best catalysts,
the influence of the base employed on the cross-coupling reaction
was examined. Inorganic bases, such as potassium carbonate, ce-
sium carbonate, and sodium hydroxide (Table 2, entries 2, 4, and
6, respectively), led to a decrease in the yield of the desired product
and to an increased formation of the homocoupled (diacetylenic)
product in 5–10% yield. The unsatisfactory reaction yield observed
with the use of NaOH as the base was a consequence of dehalogen-
ation of (2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-one,
leading to the corresponding dehalogenated pyrimidinone.
Although the reaction yield remained low in the presence of ter-
tiary amines such as triethylamine (TEA) or diisopropylethylamine
(DIPEA) (Table 2, entries 1 and 3, respectively), with the secondary
amine diisopropylamine as base, the desired product was formed
in 53% yield (Table 2, entry 5).

The influence of the reaction solvent was also investigated. No
reaction occurred in methanol, water, a,a,a-trifluorotoluene, or a
mixture of H2O–tetrabutylammonium hydroxide, using Pd(OAc)2

as the catalyst and diisopropylamine as the base. The use of an
aqueous mixture of THF/H2O (5:1) led to 12% yield. The highest
yield was achieved in acetonitrile and 1,4-dioxane/H2O (3:1) as
the solvent, affording the cross-coupled product in 53% yield.

Catalyst loading was also studied, indicating that the use of
5 mol % of Pd(OAc)2 was most effective, affording 73% yield of
the desired cross-coupled product in addition to a relatively small
amount (10%) of the homocoupled product. In contrast, when the
catalyst loading was increased to 9 and 15 mol %, reaction yields
dropped considerably (14% and 29%, respectively).

Finally, the potential effect of additives was examined. For this,
several additives including AgOAc and Ag2O were tested. However,
no reaction was observed under these conditions, probably due to
palladium catalyst poisoning by silver, which can oxidize Pd0 to
Pd2. On the other hand, the phosphine additives Ph3P, PCy3, and
S-Phos led to moderate reaction yields (59%, 63%, and 61%,
respectively).

Thus, it was deemed that the optimum conditions11 for the
cross-coupling reaction of interest involve the use of (2S)-isopro-
pyl-5-iodopyrimidinone [(S)-1, 1.0 equiv), potassium arylethynyl-,
and heteroarylethynyltrifluoro-borate salt 2a–r (1.2 equiv), Pd(OAc)2

(5 mol %), and (iPr)2NH (3.0 equiv) in an acetonitrile solvent at
reflux temperature (Table 3).

It was observed that electron-deficient alkenes give either low
yields (Table 3, substrates 2b, 2f, 2j, 2l, and 2p) or not react to form
the coupled product (Table 3, entries 2d, 2g–i, and 2r) probably
due to the low reactivity of these salts. On the other hand, elec-
tron-rich and electron-neutral alkynes gave moderate to good
yields of the corresponding coupled products.

In order to gain further insight into the reaction of interest,
in situ ReactIR technology9,10 was employed to monitor the conver-
sion of (2S)-isopropyl-5-iodo-2,3-dihydro-(4H)-pyrimidin-2-one,
(S)-1, to the corresponding 5-phenylalkynylpyrimidinone 3a. As
can been seen in Figure 1, following addition of phenyl alkynyltri-
fluoroborate salt to the iodopyrimidinone, a sharp peak appeared



Table 3
Pd(OAc)2 catalyzed Suzuki-Miyaura cross-coupling reaction of 1-benzoyl-(2S) isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-one, (S)-1, with potassium akynyltrifluoroborates,
2a–r, to afford the acetylenic derivatives (S)-3a–r
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Table 3 (continued)

Entry ArBF3K (2)a Reaction time (h) Product (3) Yield (%)b
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Figure 1. Reaction course observed by in situ IR spectroscopy (3D plots).

Table 3 (continued)

Entry ArBF3K (2)a Reaction time (h) Product (3) Yield (%)b
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a Isolated yields.
b GC-MS yield.
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at 1151 cm�1. The intensity of this peak gradually decreased and a
new peak appeared at 1008 cm�1. It was deduced that the reaction
presented an induction period of approximately 15 min, associated
with the formation of palladium(0) (1151 cm�1 peak). After this
time, cross-coupling took place quickly, leading to the formation of
the product (1008 cm�1 peak), with up to 95% conversion in 50 min.
The rest of the reaction time was consumed in the conversion of the
remaining 5% (Fig. 1).

3. Conclusion

In summary, we have developed an efficient methodology for
the introduction of arylacetylenes at the C(5) position of pyrimi-
din-4-ones using Suzuki-Miyaura cross-coupling protocols. This
reaction system tolerates various functional groups at the aromatic
rings of aryl alkynyltrifluoroborate salts. Conversion of the acetylenic
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products to enantiomerically pure or enantioenriched a-alkyl b-
amino acids is possible via a hydrogenation-hydrolysis protocol.6
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