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Rh(CAAC)-Catalyzed Arene Hydrogenation: Evidence for Nanocatal-
ysis and Sterically Controlled Site-Selective Hydrogenation 
Ba L. Tran, John L. Fulton, John C. Linehan, Johannes A. Lercher, and R. Morris Bullock* 

Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352, United States  

ABSTRACT:  We report arene hydrogenation of ethers, amides, and esters at room temperature and low hydrogen pressure, starting 
from [(CAAC)Rh(COD)Cl] (CAAC = cyclic alkyl amino carbene). Kinetic, mechanistic, and Rh K-edge XAFS studies showed 
formation of Rh nanoparticles from [(CAAC)Rh(COD)Cl], in contrast to a previous report of [(CAAC)Rh(COD)Cl] functioning as 
a homogeneous catalyst for arene hydrogenation. We determined that the site-selective arene hydrogenation catalyzed by this system 
is under steric control, as shown by detailed competition experiments with derivatives of ethers, amides, and esters bearing different 
aromatic rings of varying electronic and steric influence. This work illustrates the potential of CAAC ligands in the formation and 
stabilization of a colloidal dispersion of stable nanoparticle catalysts.                                     
        
Keywords: rhodium, nanocatalysis, arene hydrogenation, site selectivity, XAFS

Introduction 
Metal-catalyzed hydrogenations constitute crucially important 
transformations in the production of commodity and specialty 
chemicals, pharmaceuticals and bio-renewable formulations.1 
Within that broad scope, hydrogenation of olefins,2 aldehydes,3 
ketones3a, 3b esters,4 amides,5 carboxylic acids,6 imines,3a, 7 ni-
triles,8 and nitro9 groups have been studied extensively. In con-
trast, arene hydrogenation, despite its longstanding  im-
portance,10 has been less explored; the variety of catalysts is 
limited, and high reaction temperatures (>200 °C) are typically 
required. The utility of arene hydrogenations is largely confined 
to petroleum feedstocks, as sufficient selectivity in the presence 
of functional groups is difficult to achieve. A prominent appli-
cation of arene hydrogenation is the conversion of benzene to 
cyclohexane to produce Nylon, solvents, and plasticizers.11  

Traditional arene hydrogenations use heterogeneous cata-
lysts (e.g., Ni, Pd, Ru, Rh, Pt) supported on a material to stabi-
lize the nanoparticles (NPs).12 Intense efforts seek to achieve 
reproducible synthesis of colloidal materials.13 N-Heterocyclic 
carbenes (NHCs)14 have been established as a new stabilizing 
agents for colloidal catalysts.15 Applications of ionic liquids 
containing NHC stabilize colloidal metals not only on the basis 
of electrostatic interactions,16 but also stabilize colloidal metals 
by covalent metal-carbene ligation.17 

These insights have led to interest in NHCs for modification 
of nanoparticles catalysts 15a, 18 and functional materials; the ste-
ric and electronic profiles of NHCs are readily tunable.19 The 
combination of chiral NHCs and Pd-Fe2O3 catalyzes, for exam-
ple, enantioselective a-arylation reactions.20 There is also grow-
ing evidence of electronic and steric effects of NHCs on the sta-
bility of metal particles15a, 21 and the activity of heterogeneous 
systems such as Ni-catalyzed C-H borylation of arenes and het-
eroarenes,22 Buchwald-Hartwig C-N cross couplings,23 and 
electrocatalytic reduction of CO2 to CO.24 These developments 
illustrate the potential for a bottom-up approach to translate sys-

tematic ligand design, which has been the key to success in tran-
sition metal catalysis, to the colloidal chemistry, reproducibly 
generating hybrid nanomaterials from well-defined molecular 
precursors.15a 

 
Scheme 1. Catalytic arene hydrogenations by Rh(CAAC) 
systems. 
 

 

Herein, we report studies with Rh(CAAC) (CAAC = cyclic al-
kyl amino carbene)25 for the chemoselective hydrogenation of 
aryl groups of ethers, amides, and esters at room temperature 
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under low pressure of H2. While Rh(CAAC) complexes have 
been reported for chemoselective arene hydrogenations of aryl 
carbonyls26 and aryl fluorides27 (Scheme 1), the nature of the 
active Rh catalysts have not been thoroughly examined. These 
Rh(CAAC) complexes can potentially catalyze difficult, selec-
tive arene hydrogenations under mild conditions. We report a 
combined study of kinetic, mechanistic, spectroscopic, and mi-
croscopic experiments that determine the nature of the active 
Rh species for arene hydrogenation as Rh nanoparticles (Rh 
NPs). In addition, we perform competition experiments to un-
derstand the site-selective hydrogenation of ethers, amides, and 
esters by this Rh system. 
Results and Discussion  

Reaction Development. We initially studied arene hydro-
genation by evaluating the reaction of diphenyl ether (Ph2O) at 
25 ºC with [Rh(COD)Cl]2, a series of NHCs, and KOtBu in THF 
under H2 (6.8 atm). Results of the Rh-catalyzed hydrogenation 
of Ph2O are presented in Table 1. No conversion of Ph2O at 2 h 
was observed from the combination of several NHCs,28 
[Rh(COD)Cl]2, and KOtBu in THF (Table 1, entry 1). Attempts 
to stabilize the Rh with the bidentate NHC [bis(1-mesityl-3-im-
idazol-3-yl)methane] or the tridentate NHC [2,6-bis[(3-me-
sityl)imidazolium]pyridine] ligand (Table 1, entry 2) also led to 
no conversion of Ph2O after 24 h. The lack of catalytic activity 
using the tridentate NHC is readily understood, since the iso-
lated Rh(I) complex is inert towards the oxidative addition of 
H2.29  

We next explored cyclic alkyl amino carbenes (CAACs), 
which are more electron-donating than NHCs25, 30 and which 
confer a different spatial orientation around the metal center be-
cause of their asymmetric characteristics, compared to symmet-
rical NHCs.14a, 14b, 25, 31 Treating [Rh(COD)Cl]2 with L1 (4 
equiv) and KOtBu (4 equiv) under H2 (6.8 atm) provided quan-
titative conversion of Ph2O to dicyclohexyl ether (Cy2O, 70%) 
and cyclohexanol (CyOH, 30%) in 2 h (Table 1, entry 3).  

To elucidate the structure-activity relationship of CAACs on 
Rh-catalyzed arene hydrogenations, we prepared a series of 
CAAC derivatives (L2, L3, L4, L5) of varying steric influence 
and substitution pattern at the nitrogen atom and the quaternary 
carbon center. The Rh-catalyzed hydrogenations using L2-L5 
(Table 1, entries 4-7) exhibited no activity to moderate activity 
compared to L1. The structure-activity studies showed that the 
cyclohexyl group at the quaternary carbon is crucial for high 
activity, as replacing the cyclohexyl group with a phenyl and a 
methyl in L2 thwarted catalysis (Table 1, entry 4). A smaller 
mesityl group at the nitrogen (L3), compared to 2,6-diiso-
propylphenyl (L1), reduces catalytic activity to give Cy2O 
(8%), PhOCy (50%), and CyOH (20%) at 78% conversion (Ta-
ble 1, entry 5). Increasing the steric demand at the aniline (i.e., 
2,6-bis(diphenylmethyl)-4-methylaniline) (L4) dramatically re-
duced activity, giving 29% conversion (Table 1, entry 6). Intro-
ducing a cyclohexyl group at the nitrogen (L5) completely shuts 
down catalysis (Table 1, entry 7). Lastly, no conversion was 
observed under the conditions used here [Ph2O (0.5 mM) under 
6.8 atm H2 at 25 ºC] for 2 h in the presence of [Rh(COD)Cl]2 
without L1, or without [Rh(COD)Cl]2 (Table 1, entry 11-12). 
These results indicate that the combination of ligand and rho-
dium is required to effectively generate the catalyst. 

 
 
 
 
 

Table 1. Reaction development for arene hydrogenation  

 
Hydrogenation of Ph2O at lower H2 pressure and low loading 

of [Rh(COD)Cl]2 led to products, albeit with modest activity 
and extended reaction time. Only 35% conversion was achieved 
when the reaction was performed with [Rh(COD)Cl]2 and L1 at 
1 atm of H2 for 24 h (Table 1, entry 8). Performing the catalysis 
at 0.3 mol% of [Rh(COD)Cl]2 and L1 at 6.8 atm H2 for 24 h led 
to 93% conversion (Table 1, entry 9). The pressure of hydrogen 
clearly has a greater impact on the activity than low loading of 
Rh and ligand. 

We also investigated the effect of different bases on our cat-
alytic hydrogenations. Alkoxide bases (i.e., NaOtBu and 
KOtBu) provided the best hydrogenation results compared to 
NaN(SiMe)2, KN(SiMe)2, LiN(SiMe)2, or LiNiPr2 (see Support-
ing Information).14b, 14c, 31a, 32 We studied the effect of stoichio-
metric base to promote C-O cleavage without arene hydrogena-
tion. Hartwig, Chatani and their co-workers have demonstrated 
that excess NaOtBu in NHC-Ni systems led to selective cleav-
age of C-O bonds.33 Accordingly, we performed catalysis with 
MOtBu (M = Na, K) (1-2 equiv) with respect to Ph2O (Table 1, 
entry 10). No conversion of Ph2O was found when using excess 
MOtBu. We hypothesize that the excess base prevents for-
mation of the Rh catalyst, as homogeneity of the reaction mix-

Entry Ligand mol% Ligand Conv.ᵃ Cy2O % PhOCy % CyOH %ᵃ
1 NHC 3 to 6 0
2 cNHC 3 0
3 L1 6 100 70 0 30
4 L2 6 0
5 L3 6 78 20 50 8
6 L4 6 29 24 0 5
7 L5 6 0
8b L1 6 35 10 22 3
9c L1 1.8 93 45 34 14
10d L1 6 0
11e L1 6 0
12 none none 0
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ture was observed, in contrast to the appearance of black pre-
cipitates when catalysis occurred. Observation of black precip-
itates during catalysis prompted the isolation of well-defined Rh 
complexes to thoroughly investigate the identity of the active 
Rh species for arene hydrogenation.  

Speciation of Rhodium Complexes. The reaction of 
[Rh(COD)Cl]2, L1, and KHMDS [KN(SiMe3)2] in THF/toluene 
produced pure [(L1)Rh(COD)Cl] (1; 70%) (Scheme 2) after re-
crystallization from hexanes. Key to the easy purification of 1, 
without the need for column chromatography previously re-
ported,26 is the use of excess ligand for complete consumption 
of [Rh(COD)Cl]2.  

  
Scheme 2.  Synthesis of (L1)Rh(COD)Cl (1) 

 

To determine if 1 is an active pre-catalyst, we monitored the 
time-dependence of hydrogenation of Ph2O. Conversion of 
Ph2O was not observed after 24 hours (Figure 1). 1 was recov-
ered (80%) and its identity confirmed by comparison to an au-
thentic sample by 1H NMR spectroscopy. We hypothesized that 
a cationic Rh species is the pre-catalyst, given the extensive lit-
erature on olefin hydrogenation with cationic Rh.1b In addition, 
1 is a square-planar Rh complex that needs a vacant site for the 
binding and activation of H2.  

Accordingly, addition of AgBF4 (3 mol%) to 1 (3 mol%) pro-
duced Cy2O (8%) and PhOCy (27%) in 2 h, and 80% Cy2O and 
20% CyOH in 6 h. The reaction profile for the conversion of 
Ph2O revealed buildup of the PhOCy intermediate (22%) after 
an induction period, with slower formation of Cy2O (6%) and 
CyOH (3%) at 2 h (Figure 1). The concurrent onset of formation 
of Cy2O and CyOH, and the higher concentration of PhOCy to 
Cy2O at 2 h with respect to Cy2O, suggests the C-O cleavage to 
form CyOH derives from PhOCy, or possibly from Ph2O, but 
not from Cy2O. This observation was corroborated by the ab-
sence of CyOH formation when Cy2O was subjected to our hy-
drogenation conditions. The formation of cyclohexane was de-
tected by GC in these catalysis experiments, but its quantifica-
tion was not attempted because of its position near the solvent 
peak.  

Lastly, as the concentration of PhOCy reached its peak be-
tween the interval of 2 h and 3 h, there is a dramatic switch in 
the rate of hydrogenation toward Cy2O relative to the steady 
formation of CyOH. The reason for this behavior can be two-
fold: (1) PhOCy accumulates as an intermediate and (2) more 
catalytically active species for arene hydrogenation are formed 
over time from the slow hydrogenation of COD to COA from 
complex 1. Detailed control experiments ruled out the possibil-
ity of a CAAC-Ag complex or CAAC-free cationic Rh as the 
pre-catalyst (see Supporting Information). 

Significant accumulation of the PhOCy intermediate during 
catalysis led us to question whether CyOH may form by reduc-
tive hydrolytic C-O cleavage due to adventitious moisture.34 

Accordingly, we performed the reaction of Ph2O in water. The 
major products remained Cy2O (79%) and CyOH (14%). More-
over, starting from PhOCy also yielded a similar ratio of 
Cy2O:CyOH. These results and literature precedent strongly 
suggest that C-O hydrogenolysis formed the CyOH in this sys-
tem.33a, 35  

Kinetic studies showed that the end of the induction period 
coincided with appearance of black particulate. We hypothesize 
that the catalyst is a nanoparticle, in contrast to a recent report 
attributing catalytic activity for arene hydrogenation of aryl car-
bonyls and phenols by 1 to homogeneous catalysis.26 Consider-
ing the controversy of homogeneous vs. heterogeneous cata-
lysts for arene hydrogenation,12c coupled with the reported ob-
servations, further studies were undertaken to understand the 
nature of the active Rh species using filtration tests, controlled 
poisoning experiments, and X-ray absorption fine structure 
(XAFS) measurements.12b, 12c, 36 

 

Figure 1. Reaction profile for hydrogenation of Ph2O by 1 
with AgBF4, and without AgBF4, to form Cy2O and CyOH. 
Color codes in the plot are the same as the colors in the equa-
tion. No catalysis is observed without AgBF4. 

Understanding the Identity of the Rh Catalyst by Filtration, 
Poisoning, and XAFS Studies. To probe for soluble Rh spe-
cies, the reaction was filtered after complete consumption of 1 
and Ph2O. The precipitate was removed under N2, and fresh 
Ph2O was added to the filtrate. The precipitate was added to a 
separate reaction vessel with fresh Ph2O and THF. The reaction 
mixtures were again subjected to the same catalytic conditions. 
Analysis of the reaction with the filtrate and fresh Ph2O re-
vealed no conversion of Ph2O (Scheme 3). Conversely, the re-
action with the precipitate and fresh Ph2O gave 80% conversion 
of Ph2O after 8 h. These results provide evidence against soluble 
catalysts for arene hydrogenation. We cannot entirely rule out 
the possibility of a soluble Rh species leaching from the bulk 
heterogeneous Rh, becoming active under catalytic condi-
tions.37 
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Scheme 3. Filtration experiments to probe for soluble Rh 
species 

 
 

We turned to poisoning experiments to understand the dy-
namics of homogeneous and heterogeneous Rh species during 
catalysis. Benzothiophene (BT) was used for fractional poison-
ing studies, as it offers several attractive features: (1) there are 
two reactive sites, an olefin and aryl, that undergo distinctive 
reactivity; (2) the sulfur atom of BT does not bind tightly to 
molecular Rh, hence it should not interfere with H2 activation 
for the formation of Rh NPs for arene hydrogenation; (3) sulfur-
containing heterocycles are known to poison heterogeneous hy-
drogenation catalysts,38 but are tolerated in homogeneous hy-
drogenations.39 The rationale for the fractional poisoning stud-
ies with BT is that if 1 aggregates toward the catalytically active 
heterogeneous species, then the number of active Rh sites on 
the surface will decrease, hence some Rh centers of larger par-
ticles must be inaccessible.12b Therefore, small amounts of BT 
can poison an aggregated Rh species. 

 
Scheme 4. Controlled poisoning studies with benzothio-
phene (BT)  

  
 

Fractional poisoning studies were performed for the reaction 
of 1, AgBF4, and Ph2O at different loadings of BT (0.5, 1.5, 2.0, 
3.0, 6.0 mol% with respect to 1). The results of the poisoning 
studies are summarized in Scheme 4. No conversion of Ph2O 
occurred at any loading of BT. As expected, BT did not interfere 
with H2 activation, as evidenced by the hydrogenation of COD 
and BT to cyclooctane (COA) and 2,3-dihydrobenzo[b]thio-
phene (DHBT) in 45-50% and 30-60% yields, respectively. Im-
portantly, olefin hydrogenation of COD and BT indicates ho-
mogeneous hydrogenation occurred under these conditions, 
while arene hydrogenation of Ph2O or BT did not. This obser-
vation suggests that the active species for arene hydrogenation 
is rapidly deactivated by BT or DHBT. Additional support for 
the generation of the active species for arene hydrogenation is 
that the conversion of COD to COA in the presence of BT is 

similar to the hydrogenation of Ph2O to Cy2O and CyOH with-
out BT.  

It might be argued that the stable interaction of Rh with BT 
or DHBT, compared to that of Ph2O, leads to no conversion, 
and that homogeneous catalysis is possible. If homogeneous 
arene hydrogenation were operational, then Ph2O hydrogena-
tion should be observed under conditions of low concentrations 
of BT or DHBT that cannot have 1 BT/DHBT : 1 Rh stoichi-
ometry. However, our results clearly indicate that arene hydro-
genation of Ph2O does not occur at low concentrations of BT, 
in which the stoichiometry is 6 Rh : 1 BT. 

For a direct study of the evolution of Rh, we turned to Rh K-
edge XAFS. These measurements were performed on Ph2O hy-
drogenations with 1 and AgBF4 to determine if Rh nanoparti-
cles, Rh clusters, or single-site Rh complexes are present. The 
XAFS data were collected at intervals of 2 h and 6 h (Figure 2). 
The transformation of the catalytic Rh species from the mixture 
is compared to 1 and a Rh foil. At 2 h, 63% Ph2O was converted 
to PhOCy (40%), Cy2O (14%), and CyOH (9%). At 6 h, Ph2O 
was fully converted to Cy2O (80%) and CyOH (20%). 

 

 

 

 
Figure 2. Rh K-edge XAFS plot of energy vs. absorption (top); 
Rh K-edge XAFS radial structure plot represents transfor-
mation of the active Rh species for Ph2O hydrogenation, com-
pared to 1 and Rh foil (bottom). The graphical scheme shows 
the evolution of 1 to Rh NPs of different size as a function of 
time.  
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At 2 h, the Rh catalyst for arene hydrogenation is active, and 
has no resemblance to 1, as evidenced by the growing Rh-Rh 
feature at ~2.6 Å that corresponds to the Rh-Rh distance in the 
Rh metal foil, indicating the formation of Rh NPs (Figure 2, 
bottom). The time-dependence of the change in magnitude at ~ 
2.6 Å indicates that the Rh NPs are growing. The size of these 
Rh NPs, which can be estimated from the Rh-Rh coordination 
numbers (CNs), yields approximately 0.8 nm (CN = 5) at 2 h  
and 2.0 nm (CN = 8) at 6 h.40 Moreover, the disproportionately 
higher amplitude of higher neighboring shells, in the range from 
3.5-5.5 Å, indicates the presence of a fraction of much larger 
Rh NPs. Therefore, the Rh K-edge XAFS results provide direct 
evidence for the evolution of Rh NPs of different sizes from 1 
under catalytic conditions, which is consistent with the increas-
ing rate of hydrogenation of Ph2O in the kinetic studies (see 
above). Lastly, analysis of the radial structure plot (Figure 2, 
bottom) does not support the presence of Rh4-6 clusters for arene 
hydrogenation, which would contain a feature at ~2.71-2.73 
Å.36a, 36c  

Detection of Rh NPs in the reaction mixture by Rh K-edge 
XAFS prompted further characterization of these nanoparticles 
with scanning transmission electron microscopy (STEM) to de-
termine the size of the Rh NPs, and IR spectroscopy to detect 
the presence of organic ligands decorating the Rh NPs. STEM 
analysis of the reaction mixture for Ph2O hydrogenation with 1 
and AgBF4 after 6 h showed the presence of Rh NPs of 5 nm 
particle size (see Supporting Information). Additionally, the in-
soluble Rh nanoparticles were collected and washed thoroughly 
with THF to remove unreacted Ph2O and hydrogenated prod-
ucts. Analysis of the isolated Rh NPs by IR spectroscopy15a, 24  
showed bands characteristic of L1, suggesting that the Rh NPs 
are stabilized by L1 (see Supporting Information). The for-
mation of nanoparticles stabilized by imidazolium salts from 
well-defined metal complexes ligated by NHC ligands has been 
reported.41 Loss of the NHC ligand from a metal center to form 
nanoparticles has been proposed to occur by C-H coupling of 
the NHC and hydride ligands bound to the same metal center.41a, 

42 Thus, the combination of kinetic studies, filtration tests, poi-
soning experiments, XAFS measurements, and STEM charac-
terization provide conclusive evidence that the aromatic groups 
of Ph2O are hydrogenated by Rh NPs derived from 1 and AgBF4 
under the reaction conditions (Figure 3). 

 
Figure 3. Formation of Rh NPs stabilized by L1 from 1 and 
AgBF4 is supported by the results of XAFS, STEM, and IR 
spectroscopy 
 

Understanding Site Selectivity of Rh-Catalyzed Arene Hy-
drogenation and Hydrogenolysis of the C-O Bond of Ethers, 
Amides, and Esters. We determined the site selectivity of 
arene hydrogenation with sterically and electronically unsym-
metrical aryl ethers, amides, and esters. We first examined a se-
ries of para-substituted diphenyl ethers containing an ethyl, 
methoxy, or trifluoromethyl group, as well as ortho- and meta-
methoxy substituted diphenyl ethers (Table 2). All derivatives 
of Ph2O showed faster hydrogenation at the unsubstituted 
arenes than at the substituted arenes, with a ratio of 9-25 : 1, 
regardless of the electronic properties of the substituent (OMe 
or CF3) or the position of the substituents on the ring. These 
results clearly indicate that steric effects dominate over elec-
tronic effects in the hydrogenation of unsymmetrical diphenyl 
ethers.  

The selectivity for C-O hydrogenolysis of diphenyl ether de-
rivatives is similar to that of arene hydrogenation, with C-O 
cleavage occurring at the less hindered arene (see Supporting 
Information). Arene hydrogenation and C-O hydrogenolysis 
appear to share a common preference for the interaction of Rh 
with the less hindered arene.43 This preference is tentatively at-
tributed to the preferred adsorption of the less hindered arene to 
Rh. Lastly, the influence of steric effects on the selectivity of 
C-O hydrogenolysis of diphenyl ether derivatives of this 
Rh(CAAC) catalyst is complementary to the electronic effect of 
Ni(NHC)-catalyzed C-O hydrogenolysis, which favors C-O 
bond cleavage at the electron-deficient arene.33a 

 
Table 2. Site-selective arene hydrogenation of usymmetrical di-
phenyl ethers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rh
Cl

N
iPr

iPr

N
iPr

iPr

+  AgBF4

4 BF4

N
iPr iPr

N
iPr

iPr

XAFS
STEM
IR

N
iPr

iPr

Entry R % Conversionᵃ Ratio A/B (A+B%)
1 Et 63 11/1 (50%)
2 OMe 57 10/1 (52%)
3 CF3 86 25/1 (80%)
4 o -Me 55 9/1 (40%)
5 m-Me 60 8.7/1 (45%)

 1 (3 mol%), 
AgBF4 (3 mol%)

H2 (6.8 atm) 
25 °C, THF, 3 h

A

a Conversions and yields were determined by GC analysis with 
dodecane as internal standard. The remaining mass balance is 
fully hydrogenated and hydrogenolysis products.

O

R

O

R

B
O

R
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Table 3. Site-selective arene hydrogenation of usymmetrical di-
phenyl amides and esters 

 
To study the site-selective arene hydrogenation of esters and 

amides, we first examined N-phenylbenzamide, because the 
two aryl groups have a similar steric environments, yet their 
electronic properties differ because of the amide linkage (Table 
3, entry 1). Hydrogenation of N-phenylbenzamide formed N-
phenylcyclohexanecarboxamide and N-cyclohexylbenzamide 
in a ratio of 1.7 : 1.0, for a combined yield of 52% at 94% con-
version. The remaining mass balance is the fully hydrogenated 
product, N-cyclohexyl-cyclohexanecarboxamide, and unre-
acted starting material (Table 3, entry 12). In the hydrogenation 
of N-phenylbenzamide, despite having equally accessible 
arenes for hydrogenation, we observed faster hydrogenation at 
the electron-poor arene adjacent to the carbonyl relative to the 
electron-rich arene bonded to the nitrogen. 

We also investigated the effects of para-, ortho-, and -meta 
substitution for amides and esters, to compare to the diphenyl 
ether derivatives (Table 3, entries 2-7). As found for the diphe-
nyl ether derivatives, unsubstituted arenes undergo faster hy-
drogenation than the substituted arenes for all amides and esters 
in our studies. These combined results for diphenyl ethers, am-
ides, and esters reinforce the conclusion of the dominant steric 
effect on arene hydrogenation, in which less hindered arenes are 
hydrogenated faster than more hindered arenes.  

 
 

 

 

 

 

 

 

 

 

Scheme 5. Site selectivity for Rh-catalyzed hydrogenation of 
small molecules 

 
 
The insight that the arene hydrogenation is under steric con-

trol prompted us to investigate the site selectivity in small mol-
ecules with more than two reactive sites. The results for the Rh-
catalyzed arene hydrogenations of small molecules are summa-
rized in Scheme 5. In the hydrogenation of 5a, the two reactive 
phenyl groups have a similar steric environment; however, the 
electronic effect and flexibility are different. At 7 h, hydrogena-
tion of the benzyl group occurs faster than that of the acyl phe-
nyl group, with a ratio of 2.5 :1, at 45% conversion. This obser-
vation suggests that in addition to steric effects, flexible aryl 
groups undergo faster hydrogenation between two similarly ac-
cessible arenes. At 24 h, quantitative hydrogenation of both aryl 
groups has occurred, giving N-(cyclohexylmethyl)-N-(4-meth-
oxyphenyl)cyclohexane-carboxamide (80% isolated yield). For 
5b, hydrogenation of the acyl phenyl is preferred over the un-
substituted phenyl, which is explained by the steric congestion 
resulting from the adjacent proximity of the dimethoxy-substi-
tuted arene to the phenyl, thus rendering the acyl phenyl group 
as more sterically accessible for arene hydrogenation. In 5c and 
5d, arene hydrogenation occurs exclusively at the sterically ac-
cessible and unsubstituted phenyl group in the diphenyl ether 
fragment, giving a single product and unreacted starting mate-
rial at 20-25% for 5c, but with good conversion (94%) and an 
isolated yield of 75% for 5d. The identity of all hydrogenated 
products has been confirmed by independent synthesis (see 
Supporting Information).  

Conclusions  
Metal nanoparticles have been prepared from a small library 

of carbene ligands in combination with [Rh(COD)Cl]2 for arene 
hydrogenation at low H2 pressure and room temperature. We 
have identified Rh-CAAC nanoparticles to be the active species 
for arene hydrogenation under our experimental conditions. 
This conclusion is supported by the induction period by kinetic 
studies, mechanistic studies involving a filtration test, fractional 
poisoning experiments, XAFS measurements, STEM character-
ization, and infrared spectroscopy. From site-selective studies 
for the arene hydrogenation of ethers, amides, and esters with 
different electronic and steric effects, we conclude that the site 
selectivity for arene hydrogenation in this system markedly de-
pends on steric factors. We speculate that the high activity is 

a Conversions and yields were determined by GC analysis with 
dodecane as internal standard. The remaining mass balance is 
fully hydrogenated products.b 24 h.

 1 (3 mol%), 
AgBF4 (3 mol%)

H2 (6.8 atm) 
25 °C, THF, 7 h

X

O

X

O

X

O
B

A

R

R1

R

R1

R1
R

Entry X R R1 % Conversionᵃ Ratio A/B (A+B%)
1 NH H H 94 1.7/1.0 (52%)
2 NH CF3 H 99b B (90%)
3 NH H OMe 44 A (44%)
4 NH H o -OMe 35 A (35%)
5 NH H m-OMe 42 A (42%)
6 O CF3 H 100b B (93%)
7 O H OMe 48 A (48%)

Conditions: 1 (6 mol%), AgBF4 (6 mol%), H2 (6.8 - 20.5 atm), THF, 24 h, 25 ºC
Reported yield = conversion % (isolated %)

N

MeO

O

                                12%, 7 h
                     99% (80%), 24 h

N

MeO

O
5a Ar

N

OPh

Ar
N

Ph

O+

2.5 : 1 (33%), 7 h
Ar = C6H4OMe

20% (6.8 atm H2)
25% (20.5 atm H2)

5c

N

O

MeO

MeO

        
5b 

85% (60%)

N
Ac N

OMeMeO

Ac

O O

OO

        
5d 

94% (75%)
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related to the presence of CAAC on the surface of the catalyti-
cally active particles. Ongoing characterization of such cata-
lysts under operating conditions is expected to lead to new gen-
erations of catalysts at the interface between homogeneous and 
heterogeneous catalysis. 
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Supporting Information 
Additional experimental data, synthetic procedures, characteriza-
tion of compounds, and spectroscopic data are included in the Sup-
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