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Abstract

Asymmetric synthesis of 2-(hydroxyalkyl)-1,3-dithianes was achieved in good yields of up to 81% by
using various 1,3-dithian-2-yl-substituted aliphatic aldehydes as substrates in the catalytic enantioselective
addition of diethylzinc. With fair enantiomeric ratios of up to 85:15 in the enantiocontrolled ethylation
step this synthetic approach provides an entry towards potential chiral building blocks. © 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

The broad application of 1,3-dithianes as protecting groups for the carbonyl functionality,! as
nucleophilic acyl anion equivalents,? or as masked methylene functions,? prompted us to develop
a general synthetic approach to chiral 2-(hydroxyalkyl)-1,3-dithianes which give access to highly
versatile chiral building blocks such as (hydroxyalkyl)aldehydes or -ketones with a stereogenic
secondary alcohol function. The enantiocontrolled catalytic dialkylzinc reaction seemed to hold
considerable promise in this direction since the starting materials—1,3-dithian-2-yl substituted
aldehydes—are readily available from 1,3-dithianes,* and deprotection of the resulting alkylation
products 2 accomplished by various methods® should result in the desired products.

* Corresponding author. E-mail: juergen.martens@uni- oldenburg.de
t Dedicated to Heribert Offermanns on the occasion of his 62nd birthday.
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2. Results and discussion

Initial experiments were focused on the evaluation of some general aspects of the diethylzinc
reaction: looking at the results displayed in Tables 1 and 2 it becomes apparent that the ethyl-
ation of short chain aliphatic aldehydes possessing a cyclic S,S-moiety would pose difficulties.
The problems in reaching satisfactory enantioselectivities in the reaction of short, straight chain
aldehydes® are displayed in Table 1 (four examples, maximum e.r.: 83:17, entry 4).

Table 1
Enantioselective addition of diethylzinc to aliphatic aldehydes at room temperature catalyzed by ligands
A and B
Entry Substrate  Equiv. Solvent  Ligand*® Conc. Product Yield™ e.rld
of ZnEt, [mol%] [%]
1 ethanal 1 hexane A 3 2-butanol 24 71:29
2  propanal 1 hexane A 3 3-pentanol 40 4
3 hexanal 1 hexane A 3 3-octanol 77 78:22
4 heptanal 1 toluene B 5 3-nonanol 78 83:17

[a]: A: (+)-N-methyl-ephedrine'®, B: (all-R)-3-(diphenylhydroxymethyl)-2-azabicyclo[3.3.0]octane'®; [b]:
Isolated yield after 48 h reaction time; [c]: Determination of the enantiomeric ratio by NMR spectroscopy
after derivatization with (R)-a.-methoxy-a-trifluoromethylphenylacetyl chloride’; [d] e.r. not measured.

Table 2
Addition of diethylzinc to benzaldehyde at room temperature (20-25°C) catalyzed by 1,3-dioxane,
1,3-dithiane and 2-methyl-1,3-dithiane; product: (RS)-1-phenylpropan-1-ol; reaction time: 24 h

Entry Substrate Equiv. Solvent Catalyst Conc. Yield™
of ZnEt, [mol%] [%]
5 benzaldehyde 1 toluene 1,3-dioxane 50 50
6 benzaldehyde 1 toluene 1,3-dioxane 100 54
7 benzaldehyde 1 toluene 1,3-dithiane 50 4]
8 benzaldehyde 1 toluene 2-methyl-1,3-dithiane 50 67

[a]: Isolated yield of (RS)-1-phenylpropan-1-ol after fractional distillation.

Table 2 demonstrates a significant ‘ligand acceleration’ for the otherwise very slow diethylzinc
addition to benzaldehyde’ caused by substrate-like structures such as 1,3-dithiane (or 1,3-dioxane).
Thus, the reaction rate of the catalyst-promoted ethylation reaction, which has to be considerably
faster than the competing substrate-catalyzed pathway (yielding the corresponding racemic
secondary alcohols and responsible for low e.r.s), is of utmost importance for an efficient stereo-
selective conversion of 1,3-dithian-2-yl substrates.

To slow down the unwanted side reaction and to enhance the accelerating effect and the
stereocontrol of the catalyst a non-polar solvent—hexane—was chosen. Due to the precipitation
of a diethylzinc/dithiane complex in hexane/toluene mixtures (Table 3, entry 9)—significantly
diminishing the aldehyde concentration in solution—the isolated yield after 48 h reaction time is
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Table 3
Enantioselective addition of diethylzinc to 1,3-dithian-2-yl-substituted aliphatic aldehydes (substrate
la—c''"13) at room temperature (20-25°C) catalyzed by ligands 4, B and C; products: 2a—¢

Entry Substrate  Equiv. Solvent  Ligand*”  Conc. Time Yield"! er?
[la-c]  of ZnEt, [mol%] (h] (%)
9 1a" 4 hexane™ A 3 48 6 53:47
10 la 2 toluene A 3 10 31 Lol
11 la 2 toluene A 3 20 69 e
12 la 4 toluene A 3 20 63 Ll
13 1b” 2 toluene A 3 20 69 72:28
14 1b 2 toluene B 3 20 76 85:15
15 1b 2 toluene C 3 20 67 75:25
16 1c” 2 toluene A 3 20 72 71:29
17 1c 2 toluene B 3 20 81 77:23
18 1c 2 toluene C 3 20 80 76: 24

[a]: A: (+)-N-methyl-ephedrine'™, B: (all-R)-3-(diphenylhydroxymethyl)-2-azabicyclo[3.3.0]octane'®, C: (all-
R)-3-(dibenzylhydroxymethyl)-2-azabicyclo[3.3.0]octane'™; [b] Entry 9: a solution of diethylzinc in hexane
(1M) was used with addition of toluene (hexane:toluene = 1:1); [c]: Isolated yield after flash chromatography
on silica gel, eluent: dichloromethane; products 2a-c are obtained as colorless to slightly colored oils; [d]:
Determination by NMR spectroscopy after derivatization with (R)-a-methoxy-a-trifluoromethylphenylacetyl
chloride’; [e] e.r. not measured.

only 6%. The molar ratio of diethylzinc to 3-(2-methyl-1,3-dithian-2-yl)propanal had to be
increased to 3:1 to get a detectable conversion of the substrate. An excess of more than 4 equiv.
diethylzinc in hexane does not increase the yield any further (entry 9).

As a consequence, toluene was chosen as the solvent for the following experiments. An excess
of 2 equiv. of diethylzinc in toluene,® and a reaction time of 20 h at room temperature, proved to
be sufficient for the conversion of 1,3-dithian-2-yl substituted aldehydes (entries 10-12): 1-(2-
methyl-1,3-dithian-2-yl)-3-pentanol (product 2a, Scheme 1), 1-(1,3-dithian-2-yl)-3-pentanol (product
2b) and 1-(2-phenyl-1,3-dithian-2-yl)-2-butanol (product 2¢) are obtained in maximum yields of 69,
76 and 81% (Table 3, entries 11, 14 and 17), respectively. The limitations in terms of enantio-
selectivity using (+)-N-methyl-ephedrine (Table 3, ligand A4: entries 9, 13 and 16) as the catalyst
precursor prompted us to test other ligands (B and C)° to improve the stereocontrol in the ethyl-
ation reaction. The results obtained with these ligands are also given in Table 3: With e.r.s ranging

m ) l/\l N
S S 1. ZnEty/catalyst* (A,B or C) S S

>< 2. 2N HCI, etc. >< *
R ( R (CH2)n

CH2), H »
la (R=CH;,n=2) 2a (R=CH;,n=2)
1b R=H,n=2) 2b R=H,n=2)
lc (R=Phenyl,n=1) 2¢ (R=Phenyl,n=1)

Scheme 1.
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from 75:25 to 85:15 (Table 3, entries 14, 15, 17 and 18) structures B and C exhibit a very good
performance—considering the low ligand concentration of only 3 mol% used in these reactions.

In conclusion, the catalytic enantioselective addition of diethylzinc to 1,3-dithian-2-yl-sub-
stituted aliphatic aldehydes provides a practical method for the preparation of highly versatile,
enantiomerically enriched building blocks. With enantiomeric ratios of up to 85:15 (for 1-(1,3-
dithian-2-yl)-3-pentanol 2b) promising results were obtained utilizing only 3 mol% of the catalyst
precursor. A process optimization focused on the reaction temperature, catalyst concentration
and ligand structure is currently under way.
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11. Synthesis of 3-(2-methyl-1,3-dithian-2-yl)-propanal 1a via lithiation of 2-methyl-1,3-dithiane with n-butyllithium,
alkylation with 2-(2-bromoethyl)-1,3-dioxolane (yield after flash chromatography: 91%) and, finally, removal of
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12. Synthesis of 3-(1,3-dithian-2-yl)-propanal 1b via lithiation of 1,3-dithiane with n-butyllithium, alkylation with 2-

13.

(2-bromoethyl)-1,3-dioxolane (yield: 88%) and treatment with 2N HCI (yield after distillation: 92%); product: a
colorless oil, characterization by 'H and '3C NMR spectroscopy.

Synthesis of 2-(2-phenyl-1,3-dithian-2-yl)-ethanal 1c via lithiation of 2-phenyl-1,3-dithiane with n-butyllithium,
alkylation with bromoacetaldehyde diethyl acetal (yield: 73%) and treatment with 2N HCI (yield after crystal-
lization from methanol: 71%); product: slightly green crystals; product m.p.: 62°C, characterization by 'H and
13C NMR spectroscopy.



