Chemistry Letters 1997 701

Generation of 1,3-Selenaza-1,3-butadienes by Thermal Cycloreversion of 2,4,6-Trisubstituted 6H-1,3,5-Oxaselenazines

Kazuaki Shimada, Kei Aikawa, Takuji Fujita, Shigenobu Aoyagi, Yuji Takikawa,* and Chizuko Kabuto[†]

Department of Applied Chemistry and Molecular Science, Faculty of Engineering, Iwate University, Morioka, Iwate 020

†Department of Chemistry, Faculty of Science, Tohoku University, Sendai, Miyagi 980-55

(Received April 8, 1997; CL-970259)

1,3-Selenaza-1,3-butadienes were generated by thermal cycloreversion of 6*H*-1,3,5-oxaselenazines, and were trapped with dienophiles or nucleophiles to give the corresponding [4+2] cycloadducts or 1,4-adducts, respectively.

Recently, reactive heterodienes have been well-documented as new tools for the syntheses of various heterocycles. However, the heterodienes possessing a selenocarbonyl functionality 1 have been less studied in contrast to those of the sulfur analogues. 2 During our studies on the reactive species containing carbon-chalcogen double bonds for the use of novel building blocks of heterocycles, we have expected that 1,3-selenaza-1,3-butadienes 43 would be easily generated by thermal cycloreversion of 6 H-1,3,5-oxaselenazines 2 in a similar manner to those of the sulfur analogues 1 I. In this paper, we wish to describe a generation of novel heterodienes 4 and the trapping of the species by using reactive dienophiles, alcohols, or thiols.

6H-1,3,5-Oxathiazine (1a) and 6H-1,3,5-oxaselenazines (2a-c) were prepared by treating thiobenzamide or selenoamides with 2,4,6-trimethyl-1,3,5-trioxane or pivalaldehyde and BF3*OEt2 according to Sonoda's method. Subsequently, a benzene or a toluene solution of 1a or 2a-c was treated with an acetylenic dienophile at refluxing temperature, and the crude reaction mixture was subjected to chromatographic separation to give 4H-1,3-thiazines (5a, 6a) or 4H-1,3-selenazines (7, 8). Especially, the reaction of 1a, 2a or 2c with methyl propiolate gave sole regioisomers bearing a methoxycarbonyl group at the C-5 position of the products, as expected from the FMO theory. The similar treatment of 2a with p-benzoquinone or diethyl azodicarboxylate (DEAD) also afforded 9a(36%) or 10a(45%), respectively. All results of the reactions are given in Table 1.

Furthermore, when 1a or 2a-c were heated in an alcoholic media, the corresponding 1,4-adducts of the heterodienes with the alcohols, 11-13, were obtained in modest yields,⁵ and the similar treatment of a benzene solution of 2 with thiols (10 mol amt.) also afforded 14 or 15, as shown in Table 2. These results indicated the *in situ* generation of 1,3-thiaza-1,3-butadiene 3 and 1,3-selenaza-1,3-butadienes 4 through thermal cycloreversion of 1 or 10 or 11 or 12. In contrast, treating a benzene solution of 12 with propylamine (10 mol amt.) only afforded 12-propylselenobenzamide in 13-6% yield.

However, all attempts for isolation or spectral detection of 4 were not successful. Heating of a benzene solution of 2a-c in the absence of trapping agents gave 16, 17, 18, and 19 in all cases,⁵ and the heating of 2 in the presence of an excess amount of inactivated alkenes or alkynes also gave similar results. The

structure of **16a**, possessing an unexpected *6H*-1,3,5-selenadiazine ring system, was finally determined by X-ray crystallographic analysis. ⁸ All results of the reactions are given in Table 3.

Table 1. Heating of 1a or 2 in the presence of acetylenic dienophiles

		Subst	rate	Dienophile	Solvent	Yield	
	R ¹	R ²	R ³	1, 2	R ⁴		5-8 / %
(C ₆ H ₅	CH3	СН3	1a	CO ₂ CH ₃	Benzene	91(5a)
(C6H5	CH3	CH3	1a	H	Benzene	42(6a) ^a
(C6H5	CH3	CH3	2a	CO ₂ CH ₃	Benzene	78(7a)
(C6H5	CH3	CH3	2a	H	Benzene	76(8a) ^a
(C ₆ H ₅ t	-C4H9	t-C4H9	2b	CO ₂ CH ₃	Benzene	53(7 b) ^b
p-C	IC ₆ H ₄	CH3	CH3	2c	CO ₂ CH ₃	Benzene	14(7c)
p-C	lC ₆ H ₄	CH ₃	CH ₃	2 c	H	Toluene	33(8c)a

^a Given as a single regioisomer. ^b Isolated as a trienolic form.

Table 2. Heating of 1 or 2 in the presence of nucleophilic reagents

$$\begin{array}{c|c}
 & R^1 \\
 & N \\
 & N$$

,	Substrate		Nucleophile	Yield	
R ¹	R ²	R ³	1, 2	/ Nu-H	11-15 / %
C6H5	CH3	СН3	1a	i-C3H7OHa	95(11a)
C6H5	CH3	CH3	2a	СН3ОН ^а	62(12a)
C ₆ H ₅	CH3	CH3	2a	C ₂ H ₅ OH ^a	66(13a)
C_6H_5	t-C4H9	t-C4H9	2b	$C_2H_5OH^a$	53(13b)
p-ClC ₆ H ₄	CH3	CH3	2c	СН3ОНа	92(12c)
p-ClC ₆ H ₄	CH3	CH3	2c	C2H5OH ^a	85(13c)
C6H5	CH3	CH3	2a	C ₆ H ₅ SH ^b	85(14a)
C_6H_5	CH3	CH3	2a	C ₆ H ₅ CH ₂ SH ^b	82(15a)

a Used as the solvent. ^b A benzene solution of 2 was treated with thiol (10 mol amt.).

702 Chemistry Letters 1997

Table 3. Thermal ring fission of 6H-1,3,5-oxaselenazines (2a-c) in the absence of trapping agents.

Substrate				Additive	Solvent	Temp	Time				
R ¹	R ²	R ³	2	(mol amt.)		/°C	/h	16	17	18 (major:minor)a,b	19
C6H5	CH3	CH3	2a	-	CH2Cl2	reflux	6 c	0 (16a)	0 (17a)	0 (18a, 2:1)	0 (19a)
C ₆ H ₅	CH3	CH3	2a	-	benzene	reflux	5	23 (16a)	29 (17a)	37 (18a , 2:1)	11 (19a)
C6H5	CH3	CH ₃	2a	phenylacetylene (10)	benzene	reflux	2.5	13 (16a)	37 (17a)	33 (18a , 2:1)	trace (19a)
C ₆ H ₅	CH3	CH ₃	2a	p-tolunitrile (10)	benzene	reflux	3	trace (16a)	8 (17a)	79 (18a , 2:1)	trace (19a)
C ₆ H ₅	t-C4H9	t-C4H9	2b	- ` ′	benzene	reflux	5	10 (16b)	43 (17b)	0 (18b)	42 (19b)
p-ClC ₆ H ₄	CH ₃	CH ₃	2c		benzene	reflux	5	28 (16c)	24 (17c)	30 (18c , 2:1)	18 (19c)

^a Estimated by the integration of the ¹H NMR spectrum of **18**. ^b The relative stereochemistry of major and/or minor isomer of **18** were not clarified by NOE experiments. ^c Compound **2a** was recovered in quantitative yield.

The treatment of a CH2Cl2 solution of 2a with (Me3Si)2Se-BF3•OEt2-AlCl3⁹ even at 0 °C afforded 17a in 29% yield along with a small amount of 16a, 18a, 19a, and 2a. This result suggested that 17 were afforded from 4 through 1,4-addition of H₂Se followed by oxidation similar to the formation of 3H-1,2,4dithiazoles from 1,3-thiaza-1,3-butadienes and H₂S.^{2i,3a} It was also supposed that 18 were afforded through Diels-Alder type or ionic dimerization of 42j and the subsequent selenium extrusion from the dimers A and 19 were also generated by hydrolytic ring cleavage of 18. However, the mechanism of the formation of 16 remained unclear. When a benzene solution of 2a was heated in the presence of p-tolunitrile or 2,3-dimethyl-1,3-butadiene, the product compositions were essentially similar in all cases to that of the heating of 2a without any additives, and neither 162k-19 bearing ptolyl substituents nor the cycloaddition products originated from selenoacetaldehyde and the diene were found. These results showed that 16 were not formed through the mechanism involving retro [2+2+2] type ring fission of 2 and the subsequent recombination of nitriles with selenoaldehydes. However, attempts for the trapping of the intermediates of the reaction were not successful at all.

In conclusion, we have achieved a generation of 1,3-selenaza-1,3-butadienes 4 by thermal cycloreversion of 2,4,6-trisubstituted 6*H*-1,3,5-oxaselenazines 2. Applications of the *in situ* generated heterodienes 4 to the syntheses of various selenium-containing heterocycles are in progress in our laboratory.

References and Notes

1 a) W. Ando, Y. Kumamoto, and N. Tokitoh, *Tetrahedron Lett.*, 27, 5699 (1987); b) Guang Ming Li, M. Segi, and T.

- Nakajima, *Tetrahedron Lett.*, **33**, 3515 (1992); c) K. Okuma, K. Kojima, I. Kaneko, and H. Ohta, *Tetrahedron Lett.*, **33**, 1333 (1992).
- a) C. Giordano, Synthesis, 1972, 34; b) D. S. L. Blackwell, P. de Mayo, and R. Suau, Tetrahedron Lett., 1974, 91; c) K. Burger, J. Albanbauer, and M. Eggersdorfer, Angew. Chem., 87, 816 (1975); d) K. Burger, J. Albanbauer, and W. Foag, Angew. Chem., 87, 816 (1975); e) K. Burger, J. Albanbauer, and W. Strych, Synthesis, 1975, 56; f) C. Giordano and A. Belli, Synthesis, 1975, 789; g) C. Giordano and A. Belli, Synthesis, 1977, 193; h) K. Burger, R. Ottlinger, and J. Albanbauer, Chem. Ber., 110, 2114 (1977); i) K. Burger and R. Ottlinger, Synthesis, 1978, 44; j) C. Giordano, A. Belli, and L. Abis, Tetrahedron Lett., 1979, 1537; k) K. Burger and H. Goth, Angew. Chem., 92, 836 (1980); l) J. Barluenga, M. Tomàs, A. Ballestetos, and L. A. Lòpez, Synthesis, 1995, 985; m) A. S. Bell, C. W. G. Fishwick, and J. E. Reed, Tetrahedron Lett., 37, 123 (1996).
- a) K. Burger and R. Ottlinger, *Tetrahedron Lett.*, 1978, 973;
 b) D. Dubreuil, J. P. Pradère, N. Giranudeau, M. Goli, and F. Tonnard, *Tetrahedron Lett.*, 36, 237 (1995).
- 4 M. Sekiguchi, A. Ogawa, S. Fujiwara, I. Ryu, N. Kambe, and N. Sonoda, *Chem. Lett.*, **1990**, 913.
- 5 The physical properties of **1-19**, the X-ray crystallographic data of **16a**, and the ORTEP drawing of **16a** are available as the supplementary materials.
- 6 The small J values (0-1.4 Hz) due to the long-range coupling between the signals of the protons at the C-4 and C-6 positions were revealed in the ¹H NMR spectra of **4a** and **6a**.
- 7 The structure of 19a was also confirmed by the conversion into 20a(63%) by treating with mCPBA. a) K. S. Kochhar, D. A. Cottrell, and H. W. Pinnick, *Tetrahedron Lett.*, 24, 1323 (1983); b) K. Shimada, S. Akimoto, H. Itoh, H. Nakamura, and Y. Takikawa, *Chem. Lett.*, 1994, 1743.
- 8 Crystal data for **16a**: C₁₆H₁₄N₂Se, M_W = 313.26, Yellow prism, monoclinic, C₂1/_C(No.15), a = 30.816(4), b = 10.524(2), c = 8.684(2) Å, β = 93.97(2)°, V = 2809.3(9) Å³, Z = 8· D_{calcd} = 1.48 g/cm³, μ (MoK α) = 26.31 cm⁻¹, R = 0.059, R_W = 0.055.
- 9 Y. Takikawa, A. Uwano, H. Watanabe, M. Asanuma, and K. Shimada, *Tetrahedron Lett.*, **30**, 6047 (1989).