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1,3-Selenaza-1,3-butadienes were generated by thermal
cycloreversion of 6H-1,3,5-oxaselenazines, and were trapped with
dienophiles or nucleophiles to give the corresponding [4+2]
cycloadducts or 1,4-adducts, respectively.

Recently, reactive heterodienes have been well-documented
as new tools for the syntheses of various heterocycles. However,
the heterodienes possessing a selenocarbonyl functionalityl have
been less studied in contrast to those of the sulfur analogues.?2
During our studies on the reactive species containing carbon-
chalcogen double bonds for the use of novel building blocks of
heterocycles, we have expected that 1,3-selenaza-1,3-butadienes 43
would be easily generated by thermal cycloreversion of 6H-1,3,5-
oxaselenazines 2 in a similar manner to those of the sulfur
analogues 1. In this paper, we wish to describe a generation of
novel heterodienes 4 and the trapping of the species by using
reactive dienophiles, alcohols, or thiols.
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6H-1,3,5-Oxathiazine (1a) and 6H-1,3,5-oxaselenazines (2a-
¢) were prepared by treating thiobenzamide or selenoamides with
2,4,6-trimethyl-1,3,5-trioxane or pivalaldehyde and BF3+OEt)
according to Sonoda's method. 4 Subsequently, a benzene or a
toluene solution of la or 2a-c was treated with an acetylenic
dienophile at refluxing temperature, and the crude reaction mixture
was subjected to chromatographic separation to give 4H-1,3-
thiazines (5a, 6a) or 4H-1,3-sclenazines (7, 8).5 Especially, the
reaction of la, 2a or 2c¢ with methyl propiolate gave sole
regioisomers bearing a methoxycarbonyl group at the C-5 position
of the products,6 as expected from the FMO theory. The similar
treatment of 2a with p-benzoquinone or diethyl azodicarboxylate
(DEAD) also afforded 9a(36%) or 10a(45%), respectively. All
results of the reactions are given in Table 1.

Furthermore, when la or 2a-c¢ were heated in an alcoholic
media, the corresponding 1,4-adducts of the heterodienes with the
alcohols, 11-13, were obtained in modest yields,5 and the similar
treatment of a benzene solution of 2 with thiols (10 mol amt.) also
afforded 14 or 15, as shown in Table 2. These results indicated the
in situ generation of 1,3-thiaza-1,3-butadiene 3 and 1,3-selenaza-
1,3-butadienes 4 through thermal cycloreversion of 1 or 2.In
contrast, treating a benzene solution of 2a with propylamine (10
mol amt.) only afforded N-propylselenobenzamide in 56% yield.

However, all attempts for isolation or spectral detection of 4
were not successful. Heating of a benzene solution of 2a-c in the
absence of trapping agents gave 16, 17, 18, and 19 in all cases,d
and the heating of 2 in the presence of an excess amount of
inactivated alkenes or alkynes also gave similar results. The

structure of 16a, possessing an unexpected 6H-1,3,5-selenadiazine
ring system, was finally determined by X-ray crystallographic
analysis.8 All results of the reactions are given in Table 3.

Table 1. Heating of la or 2 in the presence of acetylenic

dienophiles
R R3 R*—==—C0,Me R\_X._ R*
ﬁNI/ KOI/ (10 mol amt.) _ U
\gz reflux, 2.5 h, Ar 2 00 Me
1(X=9) 5,6§X:S)
2§X=Se) 7,8 (X = Se)
Substrate Dienophile Solvent  Yield
Rl RZ R3 1,2 R4 58/%
CeHs CH3 CH3 1la CO2CH3 Benzene 91(5a)
CeHs CH3 CH3 1la H Benzene 42(6a)?
CegHs CH3 CH3 2a CO2CH3 Benzene 78(7a)

CeHs CH3 CH3 2a H Benzene 76(8a)2

CgH5 -C4Hg +-C4Hg 2b CO2CH3  Benzene 53(7b)P
p-CiCeH4 CH3 CH3 2¢ CO2CH3 Benzene 14(7c¢)
p-ClICeH4 CH3 CH3 2c H Toluene 33(8¢c)2

4 Given as a single regioisomer. b Isolated as a trienolic form.
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Table 2. Heating of 1 or 2 in the presence of nucleophilic
reagents
1 R3 . R! X
R YX\I/ Nucleophile (excess) e
N0 > AN N
Y reflux, 4 h, Ar Y
R2 R2
IEX:S) 11(X=9)
2(X =Se) 12-15 (X = Se)
Substrate Nucleophile Yield
Rl RZ R3 1,2 /NuH 11-15/ %
CgHs CH3 CH3 la {-C3H70H2 95(11a)
CeHs CH3 CH3 2a CH30H2 62(12a)
CgHs CH3 CH3 2a CoH50H2 66(13a)
CeHs -C4Hg t-C4Hg 2b CoH50H2 53(13b)
p-ClICeH4 CH3 CH3 2c CH30H2 92(12¢)
p-ClCeH4 CH3 CH3 2c CoH50H2 85(13¢c)
CeHs CH3 CH3 2a  CgHsSHP  85(14a)

CeHs CH3 CH3 2a CgHs5CHoSHP 82(15a)

a Used as the solvent. P A benzene solution of 2 was treated with
thiol (10 mol amt.).
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Table 3. Thermal ring fission of 6H-1,3,5-oxaselenazines (2a-c) in the absence of trapping agents.
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Rl._SeR? A Rl Se R  R._sge R se R o

WJYI P \r'\l'\;'\'/ * 7;' ot CN\WRi + A NJ\n/R1 e

1 g ¢ e 02 se H o mCPBA (1.1 mol amt) 0
2 16 17 18 19 CH2Clg, -78 °C, 5 min 20
| (19a—»20a: 67%) 7
Substrate Additive Solvent Temp Time Yields / %

R1 R2 R3 2 (mol amt.) rc h 16 17 18 (major:minor)®P 19
CegHs CH3 CH3 2a - CHoClp reflux 6¢  0(16a) 0(17a) 0(18a, 2:1) 0(19a)
CeHs CH3 CH3 2a - benzene reflux 35 23 (16a) 29 (17a) 37 (18a, 2:1) 11 (19a)
CegHs CH3  CH3 2a phenylacetylene (10) benzene reflux 2.5 13 (16a) 37 (17a) 33 (18a, 2:1) trace (19a)
CeHs  CH3 CH3 2a  p-tolunitrile (10) benzene reflux 3 trace (16a) 8 (17a) 79 (18a, 2:1) trace (19a)
CeHs t-C4Hg t-C4Hg 2b - benzene reflux 5 10 (16b) 43 (17b) 0 (18b) 42 (19b)

p-CiCeHq4 CH3 CH3 2c¢ - benzene reflux 5 28 (16¢) 24 (17c¢) 30 (18¢, 2:1) 18 (19¢)

a Estimated by the integration of the 1H NMR spectrum of 18. b The relative stereochemistry of major and/or minor isomer of 18 were not
clarified by NOE experiments. ¢ Compound 2a was recovered in quantitative yield.
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The treatment of a CH2Cl solution of 2a with (Me3Si)2Se-
BF3°OFt2-AlCI3? even at 0 °C afforded 17a in 29% yield along
with a small amount of 16a, 18a, 19a, and 2a. This result
suggested that 17 were afforded from 4 through 1,4-addition of
H2Se followed by oxidation similar to the formation of 3H-1,2,4-
dithiazoles from 1,3-thiaza-1,3-butadienes and HzS.21>3a It was
also supposed that 18 were afforded through Diels-Alder type or
jonic dimerization of 42 and the subsequent selenium extrusion
from the dimers A and 19 were also generated by hydrolytic ring
cleavage of 18. However, the mechanism of the formation of 16
remained unclear. When a benzene solution of 2a was heated in the
presence of p-tolunitrile or 2,3-dimethyl-1,3-butadiene, the product
compositions were essentially similar in all cases to that of the
heating of 2a without any additives, and neither 162k-19 bearing p-
tolyl substituents nor the cycloaddition products originated from
selenoacetaldehyde and the diene were found. These results
showed that 16 were not formed through the mechanism involving
retro [2+2+2] type ring fission of 2 and the subsequent
recombination of nitriles with selenoaldehydes. However, attempts
for the trapping of the intermediates of the reaction were not
successful at all.

In conclusion, we have achieved a generation of 1,3-
selenaza-1,3-butadienes 4 by thermal cycloreversion of 2,4,6-
trisubstituted 6H-1,3,5-oxaselenazines 2. Applications of the in situ
generated heterodienes 4 to the syntheses of various selenium-
containing heterocycles are in progress in our laboratory.
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