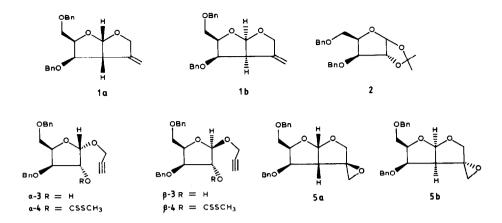
Note

A general radical-mediated stereoselective route for the construction of chiral furo[2,3-b]furans from D-xylose*

Gangavaram V. M. Sharma[†] and Sreenivasa Rao Vepachedu Organic Division III, Indian Institute of Chemical Technology, Hyderabad 500 007 (India) (Received April 10th, 1991; accepted September 10th, 1991)

Fused cyclic acetals such as furo [2,3-b] furans are present in many natural products (*e.g.*, clerodin¹, aflatoxin², and astaltoxin³), and several strategies have been devised⁴ for their construction. We now describe a highly stereoselective synthesis of the chiral furo [2,3-b] furan derivative 1 from 3,5-di-O-benzyl-1,2-O-isopropylidene- α -Dxylose⁵ (2), which utilises a radical-mediated intramolecular cyclisation as the key step.


Reaction of 2 with propargyl alcohol in the presence of Amberlite IR-120 (H⁺) resin afforded propargyl 3,5-di-O-benzyl- α - (α -3) and - β -D-xylofuranoside (β -3) (α , β ratio 3:2), which were isolated by column chromatography. Each of these anomers, which can be prepared stereoselectively by known methods⁶, was characterised on the basis of ¹H-n.m.r. data (200 MHz). Thus, the signals for H-1 appeared at δ 5.3 (d, $J_{1,2}$ 4.5 Hz) and 5.12 (d, $J_{1,2}$ 2.1 Hz) for α -3 and β -3, respectively. Reaction of α -3 and β -3 with sodium hydride, carbon disulfide, and methyl iodide⁷ gave the xanthates α -4 and β -4, respectively. The crucial radical-mediated cyclisation⁸ was effected by exposure of a-4 and β -4 to tributyltin hydride in the presence of α , α -azobisisobutyronitrile in benzene to give the thermodynamically stable⁹ cis-fused furans 1a and 1b, respectively. The structures of 1a and 1b were indicated by the ¹H-n.m.r. data, *i.e.*, by the disappearance of triplets at δ 2.45, 5.8 (for 1a), and 5.95 (for 1b) for the acetylenic proton and H-2, respectively, and the appearance of signals for vinylic protons at δ 5.0 and 5.1 (2 d) for 1a and 5.1 (br. s) for 1b. The H-1 signals appeared at δ 6.0 (d, J_{15} 4.8 Hz) and 5.7 (d, J_{15} 5.34 Hz) for 1a and 1b, respectively. Thus, the stereochemistry of 1a and 1b was determined by the configuration at the anomeric centre¹⁰.

Treatment of 1a and 1b with 3-chloroperoxybenzoic acid in dichloromethane furnished the respective epoxides 5a and 5b, the structures of which were based^{9c} on the expected direction of attack, *i.e.*, from the less-hindered side.

The above route to **1a** and **1b** yields enantiomerically pure products and should be applicable to other readily available carbohydrate derivatives with various stereochemical arrangements¹¹.

^{*} IICT Communication No. 2711.

[†] Author for correspondence.

EXPERIMENTAL

General methods. — ¹H-N.m.r. spectra were recorded for solutions in CDCl₃ (internal Me₃Si) with Jeol PMX-FT and Varian 200-Gemini spectrometers. Optical rotations were measured with a JASCO DIP 360 or 370 polarimeter. Silica gel (60–120 mesh, Acme) was used for column chromatography. T.l.c. was performed on Silica Gel 60 F_{254} (Merck) with detection using a solution of 2% of phosphomolybdic acid and 1% of Ce₂SO₄·4H₂O in aqueous 20% H₂SO₄ at 130°. All of the reactions were carried out in dry solvents under anhydrous conditions unless otherwise stated.

Propargyl 3,5-di-O-benzyl-α- (α-3) and -β-D-xylofuranoside (β-3). — A solution of 3,5-di-O-benzyl-1,2-O-isopropylidene-D-xylose⁵ (2; 1 g, 2.7 mmol) in propargyl alcohol (5 mL) containing Amberlite IR-120 (H⁺) resin (0.5 g) was boiled under reflux for 3 h, then cooled to room temperature, and filtered, and the solvent was evaporated. Column chromatography (light petroleum–ethyl acetate, 5:1) of the residue gave, first, α-3 (0.503 g, 50.9%), $[\alpha]_D$ + 74° (c 1, chloroform). ¹H-N.m.r. data: δ 2.5 (t, 1 H, $J_{1',3'}$ 2.2 Hz, CH₂C = CH), 2.75 (d, 1 H, $J_{2,OH}$ 6.5 Hz, OH), 3.6–3.8 (m, 2 H, H-5a,5b), 4.05 (dd, 1 H, $J_{1,2}$ 4.5, $J_{2,3}$ 6.3 Hz, H-2), 4.25–4.8 (m, 7 H, H-1',3,4 and 2 CH₂Ph), 5.3 (d, 1 H, H-1), 7.2–7.5 (m, 10 H, 2 Ph).

Anal. Calc. for C₂₂H₂₄O₅: C, 71.72; H, 6.57. Found: C, 71.62; H; 6.45.

Eluted second was β -3 (0.362 g, 36.4%), $[\alpha]_{D} = 46^{\circ}$ (c 1, chloroform). ¹H-N.m.r. data: δ 2.4 (t, 1 H, $J_{1',3'}$ 2.2 Hz, $C \equiv CH$), 2.7 (d, 1 H, $J_{2,OH}$ 6.2 Hz, OH), 3.6–3.85 (m, 2 H, H-5a,5b), 4.0 (dd, 1 H, $J_{1,2}$ 2.2, $J_{2,3}$ 6.4 Hz, H-2), 4.2–4.7 (m, 7 H, H-1', 3,4 and 2 CH₂Ph), 5.12 (d, 1 H, H-1), 7.2–7.5 (m, 10 H, 2 Ph).

Anal. Found: C, 71.59; H, 6.51.

Propargyl 3,5-di-O-benzyl-2-O-[(S-methylthio)thiocarbonyl]- α - (α -4) and - β -Dxylofuranoside (β -4). — To a solutoin of α -3 (0.5 g, 1.35 mmol) in dry tetrahydrofuran (5 mL) under N₂ was added sodium hydride (0.068 g, 1.4 mmol; 50% dispersion in oil). After 2 h, dry carbon disulfide (0.106 g, 1.4 mmol) was added, followed, after 20 min, by methyl iodide (0.198 g, 1.4 mmol). After 1 h, the reaction was quenched with water, the mixture was extracted with ether, the extract was washed with brine and dried (Na₂SO₄), and the solvent was evaporated. Column chromatography (light petroleum–ethyl acetate, 8:1) of the residue afforded α -4 (0.535 g, 86%), [α]_D + 104° (c 1, chloroform). ¹H-N.m.r. data: δ 2.45 (t, 1 H, $J_{1',3'}$ 2.2 Hz, C \equiv CH), 2.55 (s, 3 H, SMe), 3.65–3.8 (m, 2 H, H-5a,5b), 4.25 (d, 2 H, CH₂ \equiv CH), 4.4–4.7 (m, 6 H, H-3,4 and 2 CH₂Ph), 5.6 (d, 1 H, $J_{1,2}$ 4.6 Hz, H-1), 5.8 (t, 1 H, $J_{2,3}$ 4.6 Hz, H-2), 7.2–7.5 (m, 10 H, 2 Ph).

Anal. Calc. for $C_{24}H_{26}O_5S_2$: C, 73.07; H, 6.64; S, 20.28. Found: C, 72.93; H, 6.60; S, 20.21.

Using the above conditions, β -3 (0.3 g, 0.81 mmol) was converted into β -4 (0.328 g, 88%), $[\alpha]_{D} = 102^{\circ}$ (c 0.8, chloroform). ¹H-N.m.r. data: δ 2.45 (t, 1 H, $J_{1',3'}$ 2.2 Hz, C \equiv CH), 2.6 (s, 3 H, SMe), 3.7–3.82 (m, 2 H, H-5a,5b), 4.12 (d, 1 H, $J_{3,4}$ 4.5 Hz, H-3), 4.3 (d, 2 H, CH₂C \equiv CH), 4.45–4.9 (m, 5 H, H-4 and 2 CH₂Ph), 5.4 (s, 1 H, H-1), 5.95 (s, 1 H, H-2), 7.2–7.5 (m, 10 H, 2 Ph).

Anal. Found: C, 72.89; H, 6.58; S, 20.08.

(1S,3R,4R,5R)-4-Benzyloxy-3-benzyloxymethyl-6-methylene-2,8-dioxabicyclo-[3.3.0]octane (1a) and (1R,3R,4R,5S)-4-benzyloxy-3-benzyloxymethyl-6-methylene-2,8-dioxabicyclo[3.3.0]octane (1b). — A stirred solution of α -4 (0.2 g, 0.436 mmol) in deaerated thiophene-free benzene (5 mL) containing a catalytic amount of α, α' -azobisisobutyronitrile was boiled under reflux under N₂ and treated dropwise with Bu₃SnH (0.132 g, 0.46 mmol). After 1 h, the benzene was evaporated. Column chromatography (light petroleum–ethyl acetate, 10:1) of the residue gave 1a (0.133 g, 87%), [α]_p = 56° (*c* 1.2, chloroform). ¹H-N.m.r. data: δ 3.45 (dd, 1 H, J_{1,5} 4.8, J_{5,8} 3.8 Hz, H-5), 3.7–3.85 (m, 2 H, CH₂OCH₂Ph), 3.95 (d, 1 H, J_{3,4} 3 Hz, H-4), 4.2 (dt, 1 H, J_{3,CH₂} 3 and 6 Hz, H-3), 4.4–4.75 (m, 6 H, H-7a,7b and 2 CH₂Ph), 5.0 (dd, 1 H, J_{9,9} 5.5, J_{7,9} 2.0 Hz, C = CH), 5.1 (dd, 1 H, C = CH), 6.0 (d, 1 H, H-1), 7.2–7.4 (m, 10 H, 2 Ph).

Anal. Calc. for C₂₂H₂₄O₄: C, 74.97; H, 6.86. Found: C, 74.86; H, 6.69.

Treatment of β -4 (0.2 g, 0.436 mmol), as described above, gave 1b (0.128 g, 84%), [α]_p + 52° (*c* 0.8, chloroform). ¹H-N.m.r. data: δ 3.44 (dd, 1 H, $J_{1,5}$ 5.3, $J_{4,5}$ 4.3 Hz, H-5), 3.6–3.82 (m, 2 H, CH₂OCH₂Ph), 4.1–4.7 (m, 8 H, H-3,4,7a,7b and 2 CH₂Ph), 5.1 (br. s, 2 H, C = CH₂), 5.7 (d, 1 H, H-1), 7.2–7.4 (m, 10 H, 2 Ph).

Anal. Found: C, 74.84; H, 6.81.

(1S,3R, 4R,5S,2'R) -4-Benzyloxy-3-benzyloxymethyl-2,8-dioxabicyclo[3.3.0] octane-6-spiro-2'-oxirane (**5a**) and (1R,3R,4R,5R,2'S)-4-benzyloxy-3-benzyloxymethyl-2,8-dioxabicyclo[3.3.0]octane-6-spiro-2'-oxirane (**5b**). A solution of **1a** (0.1 g, 0.284 mmol) in dry dichloromethane (2 mL) at -10° was treated with 3-chloroperoxybenzoic acid (0.058 g, 0.34 mmol) and stirred at room temperature for 2 h. The reaction was quenched with aqueous sodium metabisulphite and, after 30 min, extracted with dichloromethane. The extract was washed with aqueous sodium hydrogen carbonate and brine, then dried (Na₂SO₄), and the solvent was evaporated. Column chromatography (light petroleum-ethyl acetate, 4:1) of the residue afforded **5a** (0.077 g, 74%), $[\alpha]_{p}$ + 17° (c 0.6, chloroform). ¹H-N.m.r. data: δ 2.75 (dd, 1 H, J_{1,5} 5.4, J_{4,5} 6.2 Hz, H-5), 2.85 (ABq, 2 H, J 3 Hz, epoxide CH₂), 3.5-4.1 and 4.3-4.7 (m, 9 H, H-3,7a,7b, CH₂OCH₂Ph, and 2 CH₂Ph), 4.15 (dd, 1 H, J_{3,4} 3.8 Hz, H-4), 5.88 (d, 1 H, H-1), 7.2-7.5 (m, 10 H, 2 Ph). Anal. Calc. for C₂₂H₂₄O₅: C, 71.72; H, 6.57. Found: C, 71.63; H, 6.49.

Treatment of **1b** (0.1 g, 0.284 mmol), as described above, gave **5b** (0.080 g, 77%), $[\alpha]_{D} - 21^{\circ}$ (c 0.8, chloroform). ¹H-N.m.r. data: δ 2.8 (dd, 1 H, $J_{1,5}$ 5.4, $J_{4,5}$ 6.4 Hz, H-5), 2.86 (s, 2 H, epoxide CH₂), 3.6–4.7 (m, 10 H, H-3,4,7a,7b, CH₂OCH₂Ph, and 2 CH₂Ph), 6.08 (d, 1 H, H-1), 7.2–7.4 (m, 10 H, 2 Ph).

Anal. Found: C, 71.61; H, 6.47.

REFERENCES

- 1 D. Rogers, G. G. Unal, D. J. Williams, and S. V. Ley, J. Chem. Soc., Chem. Commun., (1979) 97-99.
- 2 P. F. Schuda, Top. Curr. Chem., 91 (1980).
- 3 G. J. Kruger, P. S. Steynn, R. J. Vleggaar, and C. J. Rabie, J. Chem. Soc., Chem. Commun., (1979) 441-442.
- 4 (a) J. S. Yadav, E. S. Rao, V. S. Rao, and B. M. Choudary, *Tetrahedron Lett.*, 31 (1990) 2491–2492; (b) J. Vader, H. Sengers, and A. de Groot, *Tetrahedron*, 45 (1989) 2131–2142, and references therein.
- 5 F. Matsuda, M. Kawasaki, and S. Terashima, Tetrahedron. Lett., 26 (1985) 4639-4642.
- 6 (a) R. R. Schmidt and M. Reicharth, Angew. Chem. Int. Ed. Engl., 18 (1979) 466–467; (b) T. Mukaiyama and S. Suda, Chem. Lett., (1990) 1143–1146; (c) H. B. Mereyala, G. V. M. Sharma, B. V. Rao, and G. B. Reddy, unpublished results.
- 7 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, (1975) 1574-1585.
- 8 B. Giese, Radicals in Organic Synthesis: Formation of Carbon Bonds, Pergamon, Oxford, 1986.
- 9 (a) G. V. M. Sharma and S. R. Vepachedu, Tetrahedron Lett., 31 (1990) 4931–4932; (b) G. V. M. Sharma and S. R. Vepachedu, Tetrahedron, 47 (1991) 519–524; (c) L. A. Paquette, Top. Curr. Chem., 119 (1984).
- 10 G. Stork, Bull. Chem. Soc. Jpn., 61 (1988) 149-154.
- 11 S. Hanessian, Total Synthesis of Natural Products, Pergamon, New York, 1983.