Reactions of Platinum(II) Carboxylate Complexes with Tertiary Phosphines and Chlorinated Solvents

GORDON K. ANDERSON* and GREGG J. LUMETTA

Department of Chemistry, University of Missouri-St. Louis, St. Louis, Mo. 63121, U.S.A.

(Received March 6, 1986)

We have recently described the preparation of platinum(II) oxalate complexes containing bidentate ligands and their thermal reactions with phenylacetylene [1], and extension of this work to include malonate and benzoate complexes has shown that the equilibrium depicted in eqn. (1) is indeed a general

$$\begin{pmatrix}
P & OCOR \\
Pt & + 2 PhC = CH \Rightarrow Pt & + 2 RCOOH \\
P & OCOR & P & C = CPh
\end{pmatrix}$$

one. During the course of this work, we investigated the reactions of the platinum(II) carboxylates with tertiary phosphines, and the results of these studies are outlined below.

When a CH₂Cl₂ solution of [Pt(OCOPh)₂(dppe)] (dppe = 1,2-bis(diphenylphosphino)ethane) was treated with 1 mol equivalent of PBuⁿ₃, the ³¹P{¹H} NMR spectrum showed the presence of two phosphoruscontaining species, each of which gave rise to a first

order spectrum typical of a platinum(II) complex containing three inequivalent phosphorus atoms [2]. On standing for six days, complete conversion to one of these took place. The final product was identified as $[PtCl(PBu^n_3)(dppe)]^+$, by comparison of its NMR parameters with those of an authentic sample prepared by reaction of $[PtCl_2(dppe)]$ with PBu^n_3 (Table I). When the reaction of $[Pt(OCOPh)_2-(dppe)]$ with PBu^n_3 was performed in CH_3CN solution, only the first species was formed, and it was assigned the structure $[Pt(OCOPh)(PBu^n_3)(dppe)]^+$ PhCOO $^-$. Removal of the solvent, followed by dissolution in CH_2Cl_2 , resulted in quantitative conversion to $[PtCl(PBu^n_3)(dppe)]^+$ CI $^-$.

It seemed likely that the final product arose by displacement of Cl⁻ from the solvent by the carboxy-late anion, and this was shown by the following experiments. When [Pt(OCOPh)₂(dppe)] was treated with PBuⁿ₃ in benzyl chloride, [PtCl(PBuⁿ₃)-(dppe)]⁺Cl⁻ was again produced. Passing the reaction mixture down a silica column allowed separation of benzyl benzoate, which was identified by thin layer chromatography and its ¹H NMR spectrum, by comparison with an authentic sample. Reaction of ammonium benzoate with PhCH₂Cl, in the presence of 18-crown-6, also produced benzyl benzoate. The mechanism in Scheme 1 is therefore proposed for the formation of [PtCl(PBuⁿ₃)(dppe)]⁺-Cl⁻

Treatment of CH_2Cl_2 solutions of [Pt(mal)(dppe)] (mal = malonate) with PBu^n_3 , PEt_3 or $PMePh_2$ rapidly produced complexes of the type $[PtCl(PR_3)-(dppe)]^+$. The $^{31}P\{^1H\}$ NMR parameters for the PEt_3 and $PMePh_2$ complexes are very similar to those

TABLE I. ³¹P{¹H} NMR Data for Complexes of the Type [PtX(PBuⁿ₃)(P P)] +

Complex	Solvent	δP (ppm) ^b	¹ <i>J</i> (Pt,P) (Hz)	² <i>J</i> (P,P)	(Hz)
Ph ₂ + OCOPh Pt Pc Bu ₃ P _c Bu ₃	CH ₃ CN	P _A 52.3	2390	P_A, P_B	not observed
	v	P _B 31.0	3475	$P_{\mathbf{A}}, P_{\mathbf{C}}$	356
P _B P _c Bu ₃		P _C 11.6	2435	$P_{\mathbf{B}}, P_{\mathbf{C}}$	18
Ph ₂ CI	CDCl ₃	P _A 53.2	2255	P_A, P_B	6
Pt CI		P _B 42.8	3550	P_A, P_C	370
PB Pc Bu3		$P_{\mathbf{C}}^{-}$ 8.3	2280	$P_{\mathbf{B}}, P_{\mathbf{C}}$	17
Ph ₂	CDCl ₃ °	P _A 50.6	2340	P_A, P_B	6
Pt	•	P _B 30.5	3465	$P_{\mathbf{A}}, P_{\mathbf{C}}$	353
Ph ₂ OCO CH ₂ CO ₂ Pt Pc Bu ₃ Pc Bu ₃		$P_{\mathbf{C}} = 12.8$	2420	$P_{\mathbf{B}}, P_{\mathbf{C}}$	17
Ph ₂	CDCl ₃	P _A -49.7	1865	$P_{\mathbf{A}}, P_{\mathbf{B}}$	66
Pb _P Pc Bu ₃ Pc	-	$P_{\bf B} = 50.3$	3040	$P_{\mathbf{A}}, P_{\mathbf{C}}$	408
		$P_{\mathbf{C}} = 8.3$	2310	$P_{\mathbf{B}}, P_{\mathbf{C}}$	20

^aSpectra were measured at 20 $^{\circ}$ C on a JEOL FX-100 (40.2 MHz) or Varian XL-300 (121.4 MHz) NMR spectrometer. ical shifts are relative to external 85% H₃PO₄, positive shifts representing deshielding. ^cAt -60 $^{\circ}$ C.

^{*}Author to whom correspondence should be addressed.

Scheme 1.

for [PtCl(PBuⁿ₃)(dppe)] (Table I). When a CDCl₃ solution of [Pt(mal)(dppe)] was treated with PBuⁿ₃ at -60 °C, a complex of the form [Pt(mal)(PBuⁿ₃)-(dppe)] was produced (Table I). The carboxylate carbon resonance in the 13C(1H) NMR spectrum of [Pt(mal)(dppe)] (δC 173.8) was replaced by two resonances at δC 172.1 and 175.7, which suggests the presence of a monodentate malonate ligand. (A similar observation has been made for the [Pt- $(C_2O_4)(PEt_3)_2$]/PEt₃ system [3]). On warming to ambient temperature, conversion to [PtCl(PBuⁿ₃)-(dppe)] occurred, and the 13C(1H) NMR spectrum exhibited a carbonyl resonance at δC 173.0, presumably due to CH₂(COOCDCl₂)₂. No reaction took place when [Pt(mal)(dppe)] was treated with PPh₃, AsPh₃ or SbPh₃, but in the presence of triethylamine the complex wass slowly converted to [PtCl2-(dppe)]. When PBun3 was added to a CDCl3 or CH2- Cl_2 solution of $[Pt(C_2O_4)(dppe)]$, the $[PtCl(PBu_3)-$ (dppe)] tation was again produced, but significant amounts of [Pt(C₂O₄)(PBuⁿ₃)₂] and other species were also present.

In none of the reactions of [Pt(mal)(dppe)] or [Pt(C₂O₄)(dppe)] was a species of the type [Pt-(PR₃)₂(dppe)]²⁺ detected, even with excess tertiary phosphine. Indeed, treatment of [PtCl₂(dppe)] with excess PMePh₂ does not yield [Pt(PMePh₂)₂-(dppe)]²⁺ unless AgClO₄ is added. This complex exhibits a second order ³¹P{¹H} NMR spectrum, from which all the chemical shifts and coupling constants have been determined by analysis [4] and computer simulation of the spectrum (dppe: δP_A 48.8, ¹J(Pt, P_A) 2154 Hz; PMePh₂: δP_B -3.2, ¹J(Pt, P_B) 2376 Hz; ²J(P_A, P_A') ±6.5 Hz, ²J(P_A, P_B) 311.4 Hz, ²J(P_A, P_B') -24.1 Hz, ²J(P_A, P_A') ±25.5 Hz).

When $[Pt(C_2O_4)(dppm)]$ (dppm = bis(diphenyl-phosphino)methane) was treated with PBu^n_3 or PEt_3 in $CDCl_3$ solution, displacement of dppm occurred to yield $[Pt(C_2O_4)(PBu^n_3)_2]$ or $[Pt(C_2O_4)(PEt_3)_2]$. With [Pt(mal)(dppm)] the situation was more com-

plicated, however. When a CDCl₃ solution of [Pt-(mal)(dppm)] was treated with 1 mol equivalent of PBuⁿ₃ at -40 °C, the ³¹P{¹H} NMR spectrum indicated that [Pt(PBuⁿ₃)₂(dppm)]²⁺ was the only PBu₃ⁿ-containing species present, but on warming to room temperature the resonances due to this complex disappeared, and [Pt(mal)(PBuⁿ₃)₂] and [PtCl-(PBuⁿ₃)(dppm)]⁺ (Table I) were the major species present. (At low temperature the malonate dianion must react slowly with the solvent, since [Pt(mal)-(PBuⁿ₃)₂] is one of the final products.) With 2 mol equivalents of PBuⁿ₃ the platinum-containing products are [Pt(PBuⁿ₃)₂(dppm)]²⁺ and [Pt(mal)-(PBuⁿ₃)₂]. The reactions of [Pt(mal)(dppm)] with PEt₃ are similar, but with PMePh₂ the system is complicated further by the formation of the [PtCl-(PMePh₂)₃]⁺ cation. The complex [PtCl(PMePh₂)-(dppm)]⁺, obtained by treatment of [PtCl₂(dppm)] with PMePh₂, undergoes fluxional behavior at room temperature, but the static ³¹P{¹H} NMR spectrum was obtained at -40 °C. Addition of further PMePh₂ gave [Pt(PMePh₂)₂(dppm)]²⁺, observable only at low temperature.

Since we have detected $[Pt(OCOPh)(PBu^n_3)-(dppe)]^+$ in CH_2Cl_2 solution at ambient temperature, but could only prepare the analogous complex containing a monodentate malonate complex at $-60\,^{\circ}C$ in $CDCl_3$, it appears that when one end of a dicarboxylate ligand is displaced, its reaction with a chlorinated solvent is particularly rapid.

Acknowledgements

This work was supported by Monsanto Co. and a Missouri Research Assistance Grant, and by the University of Missouri Weldon Spring Fund. The authors are also grateful to Johnson Matthey for a loan of K₂PtCl₄. Funds from the National Science Foundation to the University of Missouri-St. Louis for the purchase of a NMR spectrometer, and the assistance of the Washington University High Resolution NMR Facility, funded through NIH Biomedical Research Support Shared Instrument GRANT 1 S10 RR02004, and a gift from Monsanto Co., are gratefully acknowledged.

References

- G. K. Anderson and G. J. Lumetta, J. Organomet. Chem., 295, 257 (1985).
- 2 J. A. Davies, F. R. Hartley and S. G. Murray, *Inorg. Chem.*, 19, 2299 (1980).
- 3 R. S. Paonessa, A. L. Prignano and W. C. Trogler, Organometallics, 4, 647 (1985).
- 4 F. A. Bovey, 'Nuclear Magnetic Resonance Spectroscopy', Academic Press, New York, 1969