Reactions of Platinum(II) Carboxylate Complexes with Tertiary Phosphines and Chlorinated Solvents GORDON K. ANDERSON* and GREGG J. LUMETTA Department of Chemistry, University of Missouri-St. Louis, St. Louis, Mo. 63121, U.S.A. (Received March 6, 1986) We have recently described the preparation of platinum(II) oxalate complexes containing bidentate ligands and their thermal reactions with phenylacetylene [1], and extension of this work to include malonate and benzoate complexes has shown that the equilibrium depicted in eqn. (1) is indeed a general $$\begin{pmatrix} P & OCOR \\ Pt & + 2 PhC = CH \Rightarrow Pt & + 2 RCOOH \\ P & OCOR & P & C = CPh \end{pmatrix}$$ one. During the course of this work, we investigated the reactions of the platinum(II) carboxylates with tertiary phosphines, and the results of these studies are outlined below. When a CH₂Cl₂ solution of [Pt(OCOPh)₂(dppe)] (dppe = 1,2-bis(diphenylphosphino)ethane) was treated with 1 mol equivalent of PBuⁿ₃, the ³¹P{¹H} NMR spectrum showed the presence of two phosphoruscontaining species, each of which gave rise to a first order spectrum typical of a platinum(II) complex containing three inequivalent phosphorus atoms [2]. On standing for six days, complete conversion to one of these took place. The final product was identified as $[PtCl(PBu^n_3)(dppe)]^+$, by comparison of its NMR parameters with those of an authentic sample prepared by reaction of $[PtCl_2(dppe)]$ with PBu^n_3 (Table I). When the reaction of $[Pt(OCOPh)_2-(dppe)]$ with PBu^n_3 was performed in CH_3CN solution, only the first species was formed, and it was assigned the structure $[Pt(OCOPh)(PBu^n_3)(dppe)]^+$ PhCOO $^-$. Removal of the solvent, followed by dissolution in CH_2Cl_2 , resulted in quantitative conversion to $[PtCl(PBu^n_3)(dppe)]^+$ CI $^-$. It seemed likely that the final product arose by displacement of Cl⁻ from the solvent by the carboxy-late anion, and this was shown by the following experiments. When [Pt(OCOPh)₂(dppe)] was treated with PBuⁿ₃ in benzyl chloride, [PtCl(PBuⁿ₃)-(dppe)]⁺Cl⁻ was again produced. Passing the reaction mixture down a silica column allowed separation of benzyl benzoate, which was identified by thin layer chromatography and its ¹H NMR spectrum, by comparison with an authentic sample. Reaction of ammonium benzoate with PhCH₂Cl, in the presence of 18-crown-6, also produced benzyl benzoate. The mechanism in Scheme 1 is therefore proposed for the formation of [PtCl(PBuⁿ₃)(dppe)]⁺-Cl⁻ Treatment of CH_2Cl_2 solutions of [Pt(mal)(dppe)] (mal = malonate) with PBu^n_3 , PEt_3 or $PMePh_2$ rapidly produced complexes of the type $[PtCl(PR_3)-(dppe)]^+$. The $^{31}P\{^1H\}$ NMR parameters for the PEt_3 and $PMePh_2$ complexes are very similar to those TABLE I. ³¹P{¹H} NMR Data for Complexes of the Type [PtX(PBuⁿ₃)(P P)] + | Complex | Solvent | δP (ppm) ^b | ¹ <i>J</i> (Pt,P) (Hz) | ² <i>J</i> (P,P) | (Hz) | |--|---------------------|--------------------------|-----------------------------------|----------------------------------|--------------| | Ph ₂ + OCOPh
Pt Pc Bu ₃ P _c Bu ₃ | CH ₃ CN | P _A 52.3 | 2390 | P_A, P_B | not observed | | | v | P _B 31.0 | 3475 | $P_{\mathbf{A}}, P_{\mathbf{C}}$ | 356 | | P _B P _c Bu ₃ | | P _C 11.6 | 2435 | $P_{\mathbf{B}}, P_{\mathbf{C}}$ | 18 | | Ph ₂ CI | CDCl ₃ | P _A 53.2 | 2255 | P_A, P_B | 6 | | Pt CI | | P _B 42.8 | 3550 | P_A, P_C | 370 | | PB Pc Bu3 | | $P_{\mathbf{C}}^{-}$ 8.3 | 2280 | $P_{\mathbf{B}}, P_{\mathbf{C}}$ | 17 | | Ph ₂ | CDCl ₃ ° | P _A 50.6 | 2340 | P_A, P_B | 6 | | Pt | • | P _B 30.5 | 3465 | $P_{\mathbf{A}}, P_{\mathbf{C}}$ | 353 | | Ph ₂ OCO CH ₂ CO ₂ Pt Pc Bu ₃ Pc Bu ₃ | | $P_{\mathbf{C}} = 12.8$ | 2420 | $P_{\mathbf{B}}, P_{\mathbf{C}}$ | 17 | | Ph ₂ | CDCl ₃ | P _A -49.7 | 1865 | $P_{\mathbf{A}}, P_{\mathbf{B}}$ | 66 | | Pb _P Pc Bu ₃ Pc | - | $P_{\bf B} = 50.3$ | 3040 | $P_{\mathbf{A}}, P_{\mathbf{C}}$ | 408 | | | | $P_{\mathbf{C}} = 8.3$ | 2310 | $P_{\mathbf{B}}, P_{\mathbf{C}}$ | 20 | ^aSpectra were measured at 20 $^{\circ}$ C on a JEOL FX-100 (40.2 MHz) or Varian XL-300 (121.4 MHz) NMR spectrometer. ical shifts are relative to external 85% H₃PO₄, positive shifts representing deshielding. ^cAt -60 $^{\circ}$ C. ^{*}Author to whom correspondence should be addressed. Scheme 1. for [PtCl(PBuⁿ₃)(dppe)] (Table I). When a CDCl₃ solution of [Pt(mal)(dppe)] was treated with PBuⁿ₃ at -60 °C, a complex of the form [Pt(mal)(PBuⁿ₃)-(dppe)] was produced (Table I). The carboxylate carbon resonance in the 13C(1H) NMR spectrum of [Pt(mal)(dppe)] (δC 173.8) was replaced by two resonances at δC 172.1 and 175.7, which suggests the presence of a monodentate malonate ligand. (A similar observation has been made for the [Pt- $(C_2O_4)(PEt_3)_2$]/PEt₃ system [3]). On warming to ambient temperature, conversion to [PtCl(PBuⁿ₃)-(dppe)] occurred, and the 13C(1H) NMR spectrum exhibited a carbonyl resonance at δC 173.0, presumably due to CH₂(COOCDCl₂)₂. No reaction took place when [Pt(mal)(dppe)] was treated with PPh₃, AsPh₃ or SbPh₃, but in the presence of triethylamine the complex wass slowly converted to [PtCl2-(dppe)]. When PBun3 was added to a CDCl3 or CH2- Cl_2 solution of $[Pt(C_2O_4)(dppe)]$, the $[PtCl(PBu_3)-$ (dppe)] tation was again produced, but significant amounts of [Pt(C₂O₄)(PBuⁿ₃)₂] and other species were also present. In none of the reactions of [Pt(mal)(dppe)] or [Pt(C₂O₄)(dppe)] was a species of the type [Pt-(PR₃)₂(dppe)]²⁺ detected, even with excess tertiary phosphine. Indeed, treatment of [PtCl₂(dppe)] with excess PMePh₂ does not yield [Pt(PMePh₂)₂-(dppe)]²⁺ unless AgClO₄ is added. This complex exhibits a second order ³¹P{¹H} NMR spectrum, from which all the chemical shifts and coupling constants have been determined by analysis [4] and computer simulation of the spectrum (dppe: δP_A 48.8, ¹J(Pt, P_A) 2154 Hz; PMePh₂: δP_B -3.2, ¹J(Pt, P_B) 2376 Hz; ²J(P_A, P_A') ±6.5 Hz, ²J(P_A, P_B) 311.4 Hz, ²J(P_A, P_B') -24.1 Hz, ²J(P_A, P_A') ±25.5 Hz). When $[Pt(C_2O_4)(dppm)]$ (dppm = bis(diphenyl-phosphino)methane) was treated with PBu^n_3 or PEt_3 in $CDCl_3$ solution, displacement of dppm occurred to yield $[Pt(C_2O_4)(PBu^n_3)_2]$ or $[Pt(C_2O_4)(PEt_3)_2]$. With [Pt(mal)(dppm)] the situation was more com- plicated, however. When a CDCl₃ solution of [Pt-(mal)(dppm)] was treated with 1 mol equivalent of PBuⁿ₃ at -40 °C, the ³¹P{¹H} NMR spectrum indicated that [Pt(PBuⁿ₃)₂(dppm)]²⁺ was the only PBu₃ⁿ-containing species present, but on warming to room temperature the resonances due to this complex disappeared, and [Pt(mal)(PBuⁿ₃)₂] and [PtCl-(PBuⁿ₃)(dppm)]⁺ (Table I) were the major species present. (At low temperature the malonate dianion must react slowly with the solvent, since [Pt(mal)-(PBuⁿ₃)₂] is one of the final products.) With 2 mol equivalents of PBuⁿ₃ the platinum-containing products are [Pt(PBuⁿ₃)₂(dppm)]²⁺ and [Pt(mal)-(PBuⁿ₃)₂]. The reactions of [Pt(mal)(dppm)] with PEt₃ are similar, but with PMePh₂ the system is complicated further by the formation of the [PtCl-(PMePh₂)₃]⁺ cation. The complex [PtCl(PMePh₂)-(dppm)]⁺, obtained by treatment of [PtCl₂(dppm)] with PMePh₂, undergoes fluxional behavior at room temperature, but the static ³¹P{¹H} NMR spectrum was obtained at -40 °C. Addition of further PMePh₂ gave [Pt(PMePh₂)₂(dppm)]²⁺, observable only at low temperature. Since we have detected $[Pt(OCOPh)(PBu^n_3)-(dppe)]^+$ in CH_2Cl_2 solution at ambient temperature, but could only prepare the analogous complex containing a monodentate malonate complex at $-60\,^{\circ}C$ in $CDCl_3$, it appears that when one end of a dicarboxylate ligand is displaced, its reaction with a chlorinated solvent is particularly rapid. ## Acknowledgements This work was supported by Monsanto Co. and a Missouri Research Assistance Grant, and by the University of Missouri Weldon Spring Fund. The authors are also grateful to Johnson Matthey for a loan of K₂PtCl₄. Funds from the National Science Foundation to the University of Missouri-St. Louis for the purchase of a NMR spectrometer, and the assistance of the Washington University High Resolution NMR Facility, funded through NIH Biomedical Research Support Shared Instrument GRANT 1 S10 RR02004, and a gift from Monsanto Co., are gratefully acknowledged. ## References - G. K. Anderson and G. J. Lumetta, J. Organomet. Chem., 295, 257 (1985). - 2 J. A. Davies, F. R. Hartley and S. G. Murray, *Inorg. Chem.*, 19, 2299 (1980). - 3 R. S. Paonessa, A. L. Prignano and W. C. Trogler, Organometallics, 4, 647 (1985). - 4 F. A. Bovey, 'Nuclear Magnetic Resonance Spectroscopy', Academic Press, New York, 1969