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Abstract—This paper describes a novel series of stilbenylbenzoxazole (SBO) and stilbenylbenzothiazole (SBT) derivatives for
b-amyloid specific binding probes. These 24 compounds were synthesized and evaluated by competitive binding assay against
b-amyloid 1–42 (Ab42) aggregates using [125I]TZDM. All the derivatives displayed higher binding affinities with Ki value in the subn-
anomolar range (0.10–0.74 nM) than Pittsburgh Compound-B (PIB) (0.77 nM). Among these derivatives, SBT-2, 5-fluoroethoxy-2-
{4-[2-(4-methylaminophenyl)vinyl]phenyl}benzothiazole, showed lowest Ki value (0.10 nM). In conclusion, the preliminary results
suggest that these compounds are implying a possibility as a probe for detection of Ab fibrils in Alzheimer’s disease (AD) patients.
� 2007 Elsevier Ltd. All rights reserved.
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Alzheimer’s disease (AD) is a neurodegenerative disease
characterized as progressive memory loss and decrease
of cognitive function. In 1907, the first demented patient
was identified to have senile plaques (SPs) of b-amyloid
protein (Ab) aggregates and neurofibrillary tangles
(NFTs) formed of highly phosphorylated tau proteins
in the post-mortem brain tissue.1–3 Since then, SPs and
NFTs have become the two major pathological hall-
marks characteristic of AD and provided the basic for
the definitive diagnosis of AD. However, yet the diagno-
sis of this disease based on neurological observations is
often difficult and unreliable. Therefore, an increasing
focus on early identification and prevention highlights
a need for simpler diagnostic tools and robust biological
markers. At present, the Ab-aggregate-specific radiola-
beled imaging agents, using single photon emission com-
puted tomography (SPECT) or positron emission
tomography (PET), are needed for early detection or
monitoring of the progression and effectiveness of AD
treatment.4–6 A number of groups have studied to devel-
op Ab-specific binding probes, however those efforts
have been limited by low levels of specific binding in
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brain regions and poor blood–brain barrier (BBB)
penetration.

Recently, N-methyl-[11C]2-(40-methylaminophenyl)-6-
hydroxybenzothiazole ([11C]PIB),7,8 E,E-1-iodo-[125I]2,5-
bis(3-hydroxycarbonyl-4-methoxy)styrylbenzene ([125I]-
IMSB),9,10 and [11C]4-N-methylamino-40-hydroxystilben
([11C]SB-13)11,12 displayed high binding affinities toward
Ab aggregates. PIB, a modified molecule of thioflavin-T
(Th-T), exhibited that neutral benzothiazole–aniline deriv-
atives could bind to amyloid with low nanomolar affinity,
enter brains in sufficient amounts for imaging via PET,
and clear rapidly from normal brain in animal studies
(Fig. 1).
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Figure 1. Structures of IMSB, PIB, and SB-13.
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SBO-1 : X=O, R1=5-O(CH2)2F, R2=NH2

SBO-2 : X=O, R1=5-O(CH2)2F, R2=NH(CH3)
SBO-3 : X=O, R1=5-O(CH2)2F, R2=N(CH3)2
SBO-4 : X=O, R1=6-O(CH2)2F, R2=NH2

SBO-5 : X=O, R1=6-O(CH2)2F, R2=NH(CH3)
SBO-6 : X=O, R1=6-O(CH2)2F, R2=N(CH3)2
SBO-7 : X=O, R1=5-O(CH2)3F, R2=NH2

SBO-8 : X=O, R1=5-O(CH2)3F, R2=NH(CH3)
SBO-9 : X=O, R1=5-O(CH2)3F, R2=N(CH3)2
SBO-10 : X=O, R1=6-O(CH2)3F, R2=NH2

SBO-11 : X=O, R1=6-O(CH2)3F, R2=NH(CH3)
SBO-12 : X=O, R1=6-O(CH2)3F, R2=N(CH3)2

SBT-1 : X=S, R1=5-O(CH2)2F, R2=NH2

SBT-2 : X=S, R1=5-O(CH2)2F, R2=NH(CH3)
SBT-3 : X=S, R1=5-O(CH2)2F, R2=N(CH3)2
SBT-4 : X=S, R1=6-O(CH2)2F, R2=NH2

SBT-5 : X=S, R1=6-O(CH2)2F, R2=NH(CH3)
SBT-6 : X=S, R1=6-O(CH2)2F, R2=N(CH3)2
SBT-7 : X=S, R1=5-O(CH2)3F, R2=NH2

SBT-8 : X=S, R1=5-O(CH2)3F, R2=NH(CH3)
SBT-9 : X=S, R1=5-O(CH2)3F, R2=N(CH3)2
SBT-10 : X=S, R1=6-O(CH2)3F, R2=NH2

SBT-11 : X=S, R1=6-O(CH2)3F, R2=NH(CH3)
SBT-12 : X=S, R1=6-O(CH2)3F, R2=N(CH3)2

Figure 2. Structures of SBO and SBT derivatives.
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However labeling of 11C radioisotope is limited to short
half-life (t1/2 = 20 min). SB-13 demonstrated similar
binding properties to those of PIB. IMSB showed lower
initial brain uptake in normal mice (0.14% ID/organ at
5 min after injection) than radioiodinated Th-T deriva-
tives (0.6–3.5% ID/organ at 2 min), but it displays po-
tent binding affinities for Ab aggregates.

Our focus was that a sufficient amount of an imaging
agent should internalize into the brain to bind to the
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Scheme 1. Synthesis of SBO and SBT derivatives. Reagents and conditions:

2 h; ii)—NaOH, MeOH/H2O, reflux, 2 h; (c) i)—thionyl chloride, reflux

dimethylaniline, monochlorobenzene, reflux, 1 h; iii)—p-TsOH, trichloroben

NaOMe, MeOH/THF, NaBH4, reflux, 3 h; (f) p-formaldehyde, NaBH3C

tosyloxyethane or 1-fluoro-3-tosyloxypropane, K2CO3, DMF, 90 �C, 2 h.
target. The agent should have adequate affinity toward
the target and show rapid clearance of free and nonspe-
cific bound compounds from the brain. Based on the
backbone structures of PIB and SB-13, we have success-
fully developed highly conjugated SBO and SBT deriv-
atives (Fig. 2). Due to the short half-life of 11C, to
broaden the utility of a PET imaging agent, we have
then focused our effort on developing 18F-labeled imag-
ing agent (t1/2 = 110 min). In the beginning, we designed
fluoroethyl and fluoropropyl substituted SBO, SBT
derivatives. All the synthesized compounds were evalu-
ated by competitive binding assays against Ab aggre-
gates using [125I]TZDM.

The synthesis of SBO and SBT derivatives is outlined in
Scheme 1. The first step of synthetic 4-(diethoxyphos-
phorylmethyl)benzoic acid ethyl ester was achieved with
4-(bromomethyl)benzoic acid and triethylphosphite via
Arbuzov reaction.13 Compound 3 was readily prepared
from compound 2 and 4-nitrobenzaldehyde via Horn-
er–Wadsworth–Emmons reaction and hydrolysis. The
key step for the formation of the benzoxazole and ben-
zothiazole backbones was accomplished via the intra-
molecular cyclization reaction14 between compound 3
and 2-aminophenol or 2-aminothiophenol derivatives.15

The free amino derivatives, compounds 5a–d were pre-
pared from the nitro compounds 4a–d via reduction
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8a : X=O, R1=5-OH, R2=NH2

8b : X=O, R1=5-OH, R2=NH(CH3)
8c : X=O, R1=5-OH, R2=N(CH3)2
8d : X=O, R1=6-OH, R2=NH2

8e : X=O, R1=6-OH, R2=NH(CH3)
8f : X=O, R1=6-OH, R2=N(CH3)2
8g : X=S, R1=5-OH, R2=NH2

8h : X=S, R1=5-OH, R2=NH(CH3)
8i : X=S, R1=5-OH, R2=N(CH3)2
8j : X=S, R1=6-OH, R2=NH2

8k : X=S, R1=6-OH, R2=NH(CH3)
8l : X=S, R1=6-OH, R2=N(CH3)2

(a) P(OEt)3, 140 �C, 20 h; (b) i)—4-nitrobenzaldehyde, NaH, THF, rt,

, 1 h; ii)—2-aminophenol or 2-aminothiophenol derivatives, N,N-

zene, reflux, 8 h; (d) SnCl2, EtOH, reflux, 24 h; (e) p-formaldehyde,

N, AcOH, rt, 12 h; (g) BBr3, CH2Cl2, reflux, 12 h; (h) 1-fluoro-2-



Table 1. Ki values of SBO and SBT derivatives against [125I]TZDM

for binding affinities to Ab42 aggregates

Compound Ki
a (nM)

SBO-1 0.32

SBO-2 0.74

SBO-3 0.44

SBO-4 0.47

SBO-5 0.50

SBO-6 0.45

SBO-7 0.45

SBO-8 0.47

SBO-9 0.45

SBO-10 0.59

SBO-11 0.68

SBO-12 0.46

SBT-1 0.41

SBT-2 0.10

SBT-3 0.35

SBT-4 0.59

SBT-5 0.52

SBT-6 0.57

SBT-7 0.42

SBT-8 0.38

SBT-9 0.49

SBT-10 0.55

SBT-11 0.48

SBT-12 0.12

PIB 0.77

a Ki was calculated by the Cheng–Prusoff equation (Ki = IC50/(1 + [L]/

Kd))20 using Graphpad Prism software.

1536 J. H. Lee et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1534–1537
with SnCl2. Conversion of compounds 5a–d, to the
monomethylamino derivatives, compounds 6a–d, was
achieved via a method previously reported.16 Com-
pounds 5a–d were also converted to the dimethylamino
derivatives, compounds 7a–d, via an efficient method
with paraformaldehyde, sodium cyanoborohydride,
and acetic acid.17,18 The O-methyl group of compounds
5a–d, 6a–d, and 7a–d was removed by reacting with
BBr3 to give compounds 8a–8l. The desired SBO and
SBT derivatives were prepared from compounds 8a–8l
and 1-fluoro-2-tosyloxyethane or 1-fluoro-3-tosyloxy-
propane by a nucleophilic substitution reaction.19

Specific binding affinities of synthesized compounds to
Ab fibrils were evaluated by an in vitro Ab fibril binding
assay. In vitro competitive binding assay using pre-
formed Ab42 aggregates demonstrated that SBO-1–12,
SBT-1–12 competed against radioligand such as
[125I]TZDM.21–23

The result shown in Table 1 demonstrates that most of
the synthesized compounds displayed lower Ki values
(Ki = 0.10–0.74 nM) than PIB compound. In the struc-
ture–activity relationship, SBO and SBT derivatives
did not show significant difference of binding affinity.
Furthermore, 5-position compounds were slightly better
than 6-position compounds. Among them, 5-fluoroethyl
substituted SBT-224 compound exhibited the highest
binding affinity.

In conclusion, a series of novel fluoroethyl and fluoro-
propyl substituted SBO, SBT compounds were success-
fully synthesized. These SBO and SBT derivatives
displayed excellent binding affinities to Ab aggregates.
In particular, SBT-2 exhibited the best binding affinity
(Ki = 0.10 nM) implying a possibility as a probe for
detection of Ab fibrils in AD brain. Based on the result,
further studies on synthesis and in vivo pharmacokinet-
ics of 18F-labeled compounds are progressing for the
development of AD imaging probe.
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