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Abstract—This paper describes a novel series of stilbenylbenzoxazole (SBO) and stilbenylbenzothiazole (SBT) derivatives for
B-amyloid specific binding probes. These 24 compounds were synthesized and evaluated by competitive binding assay against
B-amyloid 1-42 (AP42) aggregates using [ >>IJ[TZDM. All the derivatives displayed higher binding affinities with K; value in the subn-
anomolar range (0.10-0.74 nM) than Pittsburgh Compound-B (PIB) (0.77 nM). Among these derivatives, SBT-2, 5-fluoroethoxy-2-
{4-[2-(4-methylaminophenyl)vinyl]phenyl} benzothiazole, showed lowest K; value (0.10 nM). In conclusion, the preliminary results
suggest that these compounds are implying a possibility as a probe for detection of A fibrils in Alzheimer’s disease (AD) patients.

© 2007 Elsevier Ltd. All rights reserved.

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized as progressive memory loss and decrease
of cognitive function. In 1907, the first demented patient
was identified to have senile plaques (SPs) of f-amyloid
protein (AP) aggregates and neurofibrillary tangles
(NFTs) formed of highly phosphorylated tau proteins
in the post-mortem brain tissue.!~* Since then, SPs and
NFTs have become the two major pathological hall-
marks characteristic of AD and provided the basic for
the definitive diagnosis of AD. However, yet the diagno-
sis of this disease based on neurological observations is
often difficult and unreliable. Therefore, an increasing
focus on early identification and prevention highlights
a need for simpler diagnostic tools and robust biological
markers. At present, the AB-aggregate-specific radiola-
beled imaging agents, using single photon emission com-
puted tomography (SPECT) or positron emission
tomography (PET), are needed for early detection or
monitoring of the progression and effectiveness of AD
treatment.*® A number of groups have studied to devel-
op ABp-specific binding probes, however those efforts
have been limited by low levels of specific binding in
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brain regions and poor blood-brain barrier (BBB)
penetration.
Recently, N—methyl-g1 'C)2-(4'-methylaminophenyl)-6-
hydroxybenzothiazole ([''CJPIB),”® E,E-1-iodo-['*I]2,5-
bis(3-hydroxycarbonyl-4-methoxy)styrylbenzene ~ (['*I]-
IMSB),%!% and [''CJ4-N-methylamino-4'-hydroxystilben
(["'CJSB-13)!"12 displayed high binding affinities toward
AP aggregates. PIB, a modified molecule of thioflavin-T
(Th-T), exhibited that neutral benzothiazole-aniline deriv-
atives could bind to amyloid with low nanomolar affinity,
enter brains in sufficient amounts for imaging via PET,
and clear rapidly from normal brain in animal studies

(Fig. 1).
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Figure 1. Structures of IMSB, PIB, and SB-13.


mailto:djk2991@kist.re.kr

J. H. Lee et al. | Bioorg. Med. Chem. Lett. 18 (2008) 1534-1537 1535

5/ N
R
6 X X

SBO-1~12, SBT-1~12

\Rz

SBO-1: X=0, R'=5-O(CHy),F, R?=NH, SBT-1: X=S, R'=5-O(CH,),F, R?=NH,
SBO-2 : X=0, R'=5-O(CHj)sF, R?=NH(CHg)  SBT-2: X=S, R'=5-O(CHy),F, R%=NH(CH3)
SBO-3 : X=0, R'=5-O(CHp),F, R?=N(CHg),  SBT-3: X=S, R'=5-O(CH,),F, R?=N(CHg)»
SBO-4 : X=0, R'=6-O(CH,),F, R>=NH, SBT-4 : X=S, R'=6-O(CHy),F, R*=NH,
SBO-5 : X=0, R'=6-O(CHy),F, R?=NH(CHg)  SBT-5: X=S, R'=6-O(CHy),F, R?=NH(CHj)
SBO0-6 : X=0, R'=6-O(CHy),F, R?%=N(CHg),  SBT-6 : X=S, R'=6-O(CH,),F, R?=N(CHg)»
SBO-7 : X=0, R'=5-O(CHy)3F, R?=NH, SBT-7 : X=S, R'=5-O(CH,)3F, R?=NH,
(CHo) )

SBO-8 : X=0, R'=5-O(CHy)sF, R?=NH(CHg)  SBT-8 : X=S, R'=5-O(CHy)3F, R%=NH(CH3)
SBO-9 : X=0, R'=5-O(CHy)3F, R?=N(CHg),  SBT-9: X=S, R'=5-O(CHj)3F, R%=N(CHg)»
SBO-10 : X=0, R'=6-O(CH,)3F, R?=NH, SBT-10 : X=S, R'=6-O(CHy)3F, R>=NH,
SBO-11 : X=0, R'=6-O(CH,)3F, R?%=NH(CH3) SBT-11 : X=S, R'=6-O(CH,)3F, R2=NH(CH3)
SBO-12 : X=0, R'=6-O(CH,)3F, R?=N(CH3), SBT-12: X=S, R'=6-O(CH,)3F, R>=N(CH3),»

Figure 2. Structures of SBO and SBT derivatives.

However labeling of ''C radioisotope is limited to short
half-life (¢, =20 min). SB-13 demonstrated similar
binding properties to those of PIB. IMSB showed lower
initial brain uptake in normal mice (0.14% ID/organ at
5 min after injection) than radioiodinated Th-T deriva-
tives (0.6-3.5% ID/organ at 2 min), but it displays po-
tent binding affinities for AP aggregates.

Our focus was that a sufficient amount of an imaging
agent should internalize into the brain to bind to the
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target. The agent should have adequate affinity toward
the target and show rapid clearance of free and nonspe-
cific bound compounds from the brain. Based on the
backbone structures of PIB and SB-13, we have success-
fully developed highly conjugated SBO and SBT deriv-
atives (Fig. 2). Due to the short half-life of ''C, to
broaden the utility of a PET 1mag1n§% agent, we have
then focused our effort on developing '*F-labeled imag-
ing agent (¢, = 110 min). In the beginning, we designed
fluoroethyl and fluoropropyl substituted SBO, SBT
derivatives. All the synthesized compounds were evalu-
ated by comgetltwe binding assays against AP aggre-
gates using [ “I[TZDM.

The synthesis of SBO and SBT derivatives is outlined in
Scheme 1. The first step of synthetic 4-(diethoxyphos-
phorylmethyl)benzoic acid ethyl ester was achieved with
4-(bromomethyl)benzoic acid and triethylphosphite via
Arbuzov reaction.!?> Compound 3 was readily prepared
from compound 2 and 4-nitrobenzaldehyde via Horn-
er—Wadsworth-Emmons reaction and hydrolysis. The
key step for the formation of the benzoxazole and ben-
zothiazole backbones was accomplished via the intra-
molecular cyclization reaction'* between compound 3
and 2-aminophenol or 2-aminothiophenol derivatives.!>
The free amino derivatives, compounds 5a—d were pre-
pared from the nitro compounds 4a-d via reduction
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8a : X=0, R'=5-OH, R?=NH,

8b : X=0, R'=5-OH, R?=NH(CHj)
() 8¢ : X=0, R'=5-OH, R%=N(CHj),

8d : X=0, R'=6-OH, R?=NH,

8e : X=0, R'=6-OH, R?=NH(CHj)

8f : X=0, R'=6-OH, R?>=N(CHs),

89 : X=S, R'=5-OH, R2=NH,

8h : X=S, R'=5-OH, R?=NH(CHj3)

8i : X=S, R'=5-OH, R?=N(CH3)»

8j : X=S, R'=6-OH, R2=NH,

8k : X=S, R'=6-OH, R?=NH(CH3)
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Scheme 1. Synthesis of SBO and SBT derivatives. Reagents and conditions: (a) P(OEt)3, 140 °C, 20 h; (b) i)—4-nitrobenzaldehyde, NaH, THF, rt,
2 h; ii))—NaOH, MeOH/H,O0, reflux, 2h; (c) i)—thionyl chloride, reflux, 1 h; ii)—2-aminophenol or 2-aminothiophenol derivatives, N,N-
dimethylaniline, monochlorobenzene, reflux, 1 h; iii)—p-TsOH, trichlorobenzene, reflux, 8 h; (d) SnCl,, EtOH, reflux, 24 h; (e) p-formaldehyde,
NaOMe, MeOH/THF, NaBH,, reflux, 3 h; (f) p-formaldehyde, NaBH;CN, AcOH, rt, 12 h; (g) BBr3, CH,Cl,, reflux, 12 h; (h) 1-fluoro-2-

tosyloxyethane or 1-fluoro-3-tosyloxypropane, K,CO3;, DMF, 90 °C, 2 h.
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Table 1. K; values of SBO and SBT derivatives against [>’IJTZDM
for binding affinities to AP42 aggregates

Compound K (nM)
SBO-1 0.32
SBO-2 0.74
SBO-3 0.44
SBO-4 0.47
SBO-5 0.50
SBO-6 0.45
SBO-7 0.45
SBO-8 0.47
SBO-9 0.45
SBO-10 0.59
SBO-11 0.68
SBO-12 0.46
SBT-1 0.41
SBT-2 0.10
SBT-3 0.35
SBT-4 0.59
SBT-5 0.52
SBT-6 0.57
SBT-7 0.42
SBT-8 0.38
SBT-9 0.49
SBT-10 0.55
SBT-11 0.48
SBT-12 0.12
PIB 0.77

# K; was calculated by the Cheng—Prusoff equation (K; = ICs¢/(1 + [L)/
K4))*° using Graphpad Prism software.

with SnCl,. Conversion of compounds 5a-d, to the
monomethylamino derivatives, compounds 6a-d, was
achieved via a method previously reported.'® Com-
pounds 5a-d were also converted to the dimethylamino
derivatives, compounds 7a-d, via an efficient method
with paraformaldehyde, sodium cyanoborohydride,
and acetic acid.!”!8 The O-methyl group of compounds
5a-d, 6a-d, and 7a-d was removed by reacting with
BBr; to give compounds 8a-8l. The desired SBO and
SBT derivatives were prepared from compounds 8a—8l
and 1-fluoro-2-tosyloxyethane or 1-fluoro-3-tosyloxy-
propane by a nucleophilic substitution reaction.'?

Specific binding affinities of synthesized compounds to
AP fibrils were evaluated by an in vitro AP fibril binding
assay. In vitro competitive binding assay using pre-
formed AP42 aggregates demonstrated that SBO-1-12,
SBT-1-12 competed against radioligand such as
['**1]TZDM 2123

The result shown in Table 1 demonstrates that most of
the synthesized compounds displayed lower K; values
(K; = 0.10-0.74 nM) than PIB compound. In the struc-
ture—activity relationship, SBO and SBT derivatives
did not show significant difference of binding affinity.
Furthermore, 5-position compounds were slightly better
than 6-position compounds. Among them, 5-fluoroethyl
substituted SBT-2>* compound exhibited the highest
binding affinity.

In conclusion, a series of novel fluoroethyl and fluoro-
propyl substituted SBO, SBT compounds were success-

fully synthesized. These SBO and SBT derivatives
displayed excellent binding affinities to A aggregates.
In particular, SBT-2 exhibited the best binding affinity
(K;=0.10nM) implying a possibility as a probe for
detection of AP fibrils in AD brain. Based on the result,
further studies on synthesis and in vivo pharmacokinet-
ics of '®F-labeled compounds are progressing for the
development of AD imaging probe.
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We estimated Ky value (0.13 nM) of ['*’[JTZDM for Ap42
aggregates. For inhibition studies, the reaction mixture
contained 50 pL of AB42 aggregates (11.5 nM in the final
concentration), 50 pL of inhibitors (107°-107'2M in
DMSO), 50 uL of ["**I]TZDM (in 40% EtOH, 0.05 nM
in the final concentration), and 10% EtOH in a final
volume of 1 mL. Nonsgeciﬁc binding was defined by
adding 2 uM Th-T for ['"*’I]TZDM binding. The mixture
was incubated at room temperature for 3 h and the bound
and the free radioactivity were separated by a vacuum
filtration through Whatman GF/B filters using a Brandel
M-24R cell harvester followed by 2x 3 mL washes of 10%
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EtOH at room temperature. Filters containing the bound
radioligand were counted in a gamma-counter (Cobra-II).
The result of inhibition assays was subjected to nonlinear
regression analysis using software Graphpad Prism by
which K; values were calculated.

Selected data. SBT-2: '"H NMR (DMSO-ds, 300 MHz) 6
2.71 (d, J=4.9 Hz, 3H), 4.36 (dt, J=4.0, 30.3 Hz, 2H),
4.80 (dt, J=4.0, 47.9 Hz, 2H), 6.01 (s, NH), 6.56 (d,
J=84Hz, 2H), 7.00 (d, J=16.1Hz, 1H), 7.12 (d,
J=9.1Hz, 1H), 7.26 (d, J=16.5Hz, 1H), 7.41 (d,
J=28.3Hz, 2H), 7.63 (s, 1H), 7.68 (d, J=8.0 Hz, 2H),
8.01 (d, J=8.2Hz, 1H), 8.01 (d, J=8.2Hz 2H); *C
NMR (DMSO-ds, 300 MHz) ¢ 29.98, 67.85, 81.51, 106.73,
112.11, 115.84, 122.03, 123.19, 124.56, 126.55, 126.85,
127.82, 128.59, 131.17, 131.72, 141.63, 150.66, 155.45,
158.16, 168.87; HRMS m/z Calcd for C,4H»,FN,0OS (M)*
405.1431. Found: 405.1433.
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