Phase-Transfer-Catalyzed Asymmetric S_NAr Reaction of α-Amino Acid Derivatives with Arene Chromium Complexes**

Seiji Shirakawa, Kenichiro Yamamoto, and Keiji Maruoka*

Abstract: Although phase-transfer-catalyzed asymmetric S_NAr reactions provide unique contribution to the catalytic asymmetric α -arylations of carbonyl compounds to produce biologically active α -aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron-withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric S_NAr reactions of α amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron-donating substituents. The arylation was efficiently promoted by binaphthyl-modified chiral phase-transfer catalysts to give the corresponding α,α -disubstituted α -amino acids containing various aromatic substituents with high enantioselectivities.

Latalytic asymmetric α -arylation of carbonyl compounds has been extensively studied over the last decade to prepare biologically interesting a-aryl carbonyl compounds.^[1,2] Several catalytic asymmetric methods for α -arylation have been developed using chiral metal complexes.^[3] As another method for asymmetric α -arylation, the phase-transfer-catalyzed nucleophilic aromatic substitution (S_NAr) reaction provides an efficient means to realize enantioselective α -arylations (Scheme 1).^[4,5] Jørgensen's and our groups have reported highly enantioselective phase-transfer-catalyzed S_NAr reactions of carbonyl compounds with nitro group-bearing fluoroarenes as electrophiles (Scheme 1 a).^[6] The drawback of this method is the limited scope of fluoroarenes that can be used, as only electron-deficient arenes are effective substrates. The S_NAr reactions using fluoroarenes with electrondonating groups (EDG), did not work under the phasetransfer conditions (Scheme 1b). As a solution to this problem, we are interested in S_NAr reaction of the chromium complexes of fluoroarenes, which activate the arenes through η^6 -coordination to Cr(CO)₃.^[7,8] Here we report a valuable example of a phase-transfer-catalyzed asymmetric S_NAr reaction of a-amino acid derivatives with arene chromium

[*]	Prof. Dr. S. Shirakawa, K. Yamamoto, Prof. Dr. K. Maruoka
	Department of Chemistry, Graduate School of Science
	Kyoto University
	Sakyo, Kyoto 606-8502 (Japan)
	E-mail: maruoka@kuchem.kyoto-u.ac.jp
	Prof. Dr. S. Shirakawa
	Graduate School of Fisheries Science and Environmental Studies
	Nagasaki University
	1-14, Bunkyo-machi, Nagasaki 852-8521 (Japan)
[**]	This work was supported by a Grant-in-Aid for Scientific Research
	from JSPS and MEXT (Japan).
	Supporting information for this article is available on the WWW

Supporting information for this article is available on the WW under http://dx.doi.org/10.1002/anie.201409065.

a) Phase-transfer-catalyzed S_NAr reaction, Ref. [6]

 $\textit{Scheme 1.} Phase-transfer-catalyzed asymmetric <math display="inline">S_NAr$ reactions. PTC = phase-transfer catalyst.

complexes, which produces enantioenriched α , α -disubstituted α -amino acids^[9] including those containing an electron-rich aromatic substituents (Scheme 1 c).

We first examined the asymmetric S_NAr reaction of alanine derivative 1a with chromium complex 2a derived from fluorobenzene, promoted by biaryl-modified chiral quaternary ammonium salts 4-6 as promising chiral phasetransfer catalysts (Table 1).^[5] Attempted reaction of **1a** and fluorobenzene derivative 2a with solid KOH in toluene under the influence of chiral phase-transfer catalyst (R,R)-4^[10] at 0°C for 24 h, followed by treatment with aqueous HCl for hydrolysis of the imine moiety and removal of chromium, afforded the corresponding α, α -disubstituted α -amino ester 3a with moderate yield and enantioselectivity (77% ee, entry 1). The use of simplified catalyst (R)-5,^[11] which is one of the most effective catalysts for asymmetric alkylation reactions of **1a**,^[11,12] improved the enantioselectivity to give product 3a in moderate yield with high enantioselectivity (97 % ee, entry 2). The use of biphenyl-modified catalyst (R)- $6^{[13]}$ caused the decrease of enantioselectivity for the S_NAr reaction (39% ee, entry 3). Changing the base to CsOH improved the yield (entry 4), and the highest yield and enantioselectivity was attained by the use of saturated aqueous CsOH^[14] as base with catalyst (R)-5 (entry 5).^[15] The absolute configuration of product 3a was determined by comparison of the optical rotation of the N-acetylated derivative of **3a** with the literature value.^[6c, 16]

Angew. Chem. Int. Ed. 2014, 53, 1-4

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

5

(R)-5

Table 1: Optimization of the reaction conditions.[a]

[a] Reaction conditions: **1a** (0.30 mmol), **2a** (0.10 mmol), and base (1.5 mmol) in the presence of phase-transfer catalyst (10 mol%, 0.010 mmol) in toluene (2.0 mL) at 0°C for 24 h. [b] Yields of isolated product **3a**, which were determined on the basis of the amount of **2a**. [c] Determined by HPLC analysis on a chiral stationary phase.

sat. aq. CsOH

70

97

With the optimal reaction conditions identified, we next examined the substrate generality of the asymmetric S_NAr reaction of alanine derivative **1a** with arene chromium complexes **2** under the influence of chiral phase-transfer catalyst (*R*)-**5** (Table 2). The S_NAr reactions with *p*-, *m*-, and *o*-fluorotoluene derivatives (**2b**-**2d**) proceeded efficiently, and gave the products (**3b**-**3d**) in good yields with high enantioselectivities (94–98 % *ee*, entries 2–4). Other electron-donating group (EDG)-substituted fluoroarene derivatives (**2e**-**2i**) could also be used in this reaction, thereby providing the products (**3e**-**3i**) with excellent enantioselectivities (98–99 % *ee*, entries 5–9).^[17]

Other α -amino acid derivatives **1** could be employed in the S_NAr reaction with arene chromium complex **2a** (Table 3). Not only simple alkyl-substituted α -amino acid derivatives (**1a-1c**) but also phenylalanine (**1d**) and allylglycine (**1e**) derivatives were tolerated in the reaction to give the corresponding phenylation products **3j-3m** in high enantioselectivities (88–99% *ee*, entries 1–5). Furthermore, heteroatom-containing α -amino acids, such as methionine (**1f**), serine (**1g**), and glutamic acid derivatives (**1h**), were also suitable for the reaction to give the corresponding products **3n-3p** in high enantioselectivities (90–96% *ee*, entries 6–8). Table 2: Asymmetric arylation of alanine derivative 1a.^[a]

[a] Reaction conditions: **1a** (0.30 mmol), **2** (0.10 mmol), and saturated aqueous CsOH (1.5 mmol) in the presence of (*R*)-**5** (10 mol%, 0.010 mmol) in toluene (2.0 mL) at 0°C for 24 h. [b] Yields of isolated products **3**, which were determined on the basis of the amount of **2**. [c] Determined by HPLC analysis on a chiral stationary phase.

Table 3: Asymmetric phenylation of α -amino acid derivatives 1.^[a]

CI CI	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	(R)-5 mol %) 1N HCl H aq. CsOH 5 equiv) oluene C, 24 h	Ph 3
Entry	R (1)	Yield [%] ^[b]	ee [%] ^[c]
1	Me (1a)	70 (3 a)	97
2	Et (1 b)	78 (3 j)	99
3	<i>i</i> Bu (1c)	60 (3 k)	88
4	CH2Ph (1 d)	68 (3 l)	95
5	CH ₂ CH=CH ₂ (1 e) 74 (3 m)	96
6	$CH_2CH_2SMe(1 f)$	76 (3 n)	90
7	CH ₂ OtBu (1g)	73 (3 o)	96
8	CH ₂ CH ₂ CO ₂ tBu (1h) 51 (3p)	92

[a] Reaction conditions: 1 (0.30 mmol), 2a (0.10 mmol), and saturated aqueous CsOH (1.5 mmol) in the presence of (*R*)-5 (10 mol%, 0.010 mmol) in toluene (2.0 mL) at 0°C for 24 h. [b] Yields of isolated products 3, which were determined on the basis of amount of 2a. [c] Determined by HPLC analysis on a chiral stationary phase.

In summary, we have successfully overcome a major limitation of phase-transfer-catalyzed asymmetric S_NAr reactions by the use of arene chromium complexes. The S_NAr reaction of α -amino acid derivatives with chromium complexes derived from electron-rich fluoroarenes, was efficiently promoted by binaphthyl-modified chiral phase-transfer catalysts to give the corresponding α,α -disubstituted α -amino acids containing various aromatic substituents, in a highly enantioselective manner. This report offers a new option for

www.angewandte.org

2

K These are not the final page numbers!

catalytic asymmetric α -arylation to produce biologically active α -aryl carbonyl compounds.

Received: September 13, 2014 Published online:

Keywords: amino acids · arylation · asymmetric synthesis · organocatalysis · phase-transfer catalysis

- For reviews on α-arylation, see: a) A. C. B. Burtoloso, Synlett
 2009, 320; b) C. C. C. Johansson, T. J. Colacot, Angew. Chem. Int. Ed. 2010, 49, 676; Angew. Chem. 2010, 122, 686; c) F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082; d) C. Mazet, Synlett 2012, 1999.
- [2] For examples of biologically active α-aryl carbonyl compounds, see: a) H. U. Stilz, W. Guba, B. Jablonka, M. Just, O. Klingler, W. König, V. Wehner, G. Zoller, J. Med. Chem. 2001, 44, 1158; b) H. Venkatesan, M. C. Davis, Y. Altas, J. P. Snyder, D. C. Liotta, J. Org. Chem. 2001, 66, 3653; c) T. Hatanaka, Y. Nabuchi, H. Ushio, J. Pharm. Pharmacol. 2002, 54, 549; d) C. Zha, G. B. Brown, W. J. Brouillette, J. Med. Chem. 2004, 47, 6519; e) A. Natarajan, Y. Guo, F. Harbinski, Y.-H. Fan, H. Chen, L. Luus, J. Diercks, H. Aktas, M. Chorev, J. A. Halperin, J. Med. Chem. 2004, 47, 4979; f) D. A. Neel, M. L. Brown, P. A. Lander, T. A. Grese, J. M. Defauw, R. A. Doti, T. Fields, S. A. Kelley, S. Smith, K. M. Zimmerman, M. I. Steinberg, P. K. Jadhav, Bioorg. Med. Chem. Lett. 2005, 15, 2553; g) K. H. Mortell, D. J. Anderson, J. J. Lynch III, S. L. Nelson, K. Sarris, H. McDonald, R. Sabet, S. Baker, P. Honore, C.-H. Lee, M. F. Jarvis, M. Gopalakrishnan, Bioorg. Med. Chem. Lett. 2006, 16, 1138; h) Y.-J. Kwon, M.-J. Sohn, C.-J. Zheng, W.-G. Kim, Org. Lett. 2007, 9, 2449; i) M. K. Uddin, S. G. Reignier, T. Coulter, C. Montalbetti, C. Grånäs, S. Butcher, C. Krog-Jensen, J. Felding, Bioorg. Med. Chem. Lett. 2007, 17, 2854; j) M. K. Christensen, K. D. Erichsen, C. Trojel-Hansen, J. Tjørnelund, S. J. Nielsen, K. Frydenvang, T. N. Johansen, B. Nielsen, M. Sehested, P. B. Jensen, M. Ikaunieks, A. Zaichenko, E. Loza, I. Kalvinsh, F. Björkling, J. Med. Chem. 2010, 53, 7140; k) F. Nique, S. Hebbe, C. Peixoto, D. Annoot, J.-M. Lefrançois, E. Duval, L. Michoux, N. Triballeau, J.-M. Lemoullec, P. Mollat, M. Thauvin, T. Prangé, D. Minet, P. Clément-Lacroix, C. Robin-Jagerschmidt, D. Fleury, D. Guédin, P. Deprez, J. Med. Chem. 2012, 55, 8225.
- [3] For examples of catalytic asymmetric α-arylations, see: a) J. Åhman, J. P. Wolfe, M. V. Troutman, M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 1918; b) D. J. Spielvogel, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 3500; c) G. Chen, F. Y. Kwong, H. O. Chan, W.-Y. Yu, A. S. C. Chan, Chem. Commun. 2006, 1413; d) X. Liao, Z. Weng, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 195; e) A. M. Taylor, R. A. Altman, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 9900; f) A. Bigot, A. E. Williamson, M. J. Gaunt, J. Am. Chem. Soc. 2011, 133, 13778; g) J. S. Harvey, S. P. Simonovich, C. R. Jamison, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 13782; h) A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 4260; i) J. Guo, S. Dong, Y. Zhang, Y. Kuang, X. Liu, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 10245; Angew. Chem. 2013, 125, 10435.

- [4] F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley-VCH, Weinheim, 2013.
- [5] For recent reviews on asymmetric phase-transfer catalysis, see:
 a) M. J. O'Donnell, Aldrichimica Acta 2001, 34, 3; b) K. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013; c) M. J. O'Donnell, Acc. Chem. Res. 2004, 37, 506; d) B. Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518; e) J. Vachon, J. Lacour, Chimia 2006, 60, 266; f) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222; Angew. Chem. 2007, 119, 4300; g) T. Ooi, K. Maruoka, Aldrichimica Acta 2007, 40, 77; h) T. Hashimoto, K. Maruoka, Chem. Rev. 2008, 12, 679; j) S.-s. Jew, H.-g. Park, Chem. Commun. 2009, 7090; k) K. Maruoka, Chem. Int. Ed. 2013, 52, 4312; Angew. Chem. 2013, 125, 4408.
- [6] a) M. Bella, S. Kobbelgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 3670; b) S. Kobbelgaard, M. Bella, K. A. Jørgensen, J. Org. Chem. 2006, 71, 4980; c) S. Shirakawa, K. Yamamoto, T. Tokuda, K. Maruoka, Asian J. Org. Chem. 2014, 3, 433; d) S. Shirakawa, K. Koga, T. Tokuda, K. Yamamoto, K. Maruoka, Angew. Chem. Int. Ed. 2014, 53, 6220; Angew. Chem. 2014, 126, 6334.
- [7] For reviews on arene chromium complexes in organic synthesis, see: a) K. Kamikawa, M. Uemura, *Synlett* 2000, 938; b) A. Berger, J.-P. Djukic, C. Michon, *Coord. Chem. Rev.* 2002, 225, 215; c) S. E. Gibson, H. Ibrahim, *Chem. Commun.* 2002, 2465; d) A. Salzer, *Coord. Chem. Rev.* 2003, 242, 59; e) M. Rosillo, G. Domínguez, J. Pérez-Castells, *Chem. Soc. Rev.* 2007, 36, 1589.
- [8] a) M. Chaari, J.-P. Lavergne, P. Viallefont, *Synth. Commun.* 1989, 19, 1211; b) F. Rose-Munch, K. Aniss, E. Rose, *J. Organomet. Chem.* 1990, 385, C1; c) M. Chaari, A. Jenhi, J.-P. Lavergne, P. Viallefont, *Tetrahedron* 1991, 47, 4619.
- [9] For reviews on asymmetric syntheses of α,α-disubstituted αamino acids, see: a) C. Cativiela, M. D. Díaz-de-Villegas, *Tetrahedron: Asymmetry* 1998, 9, 3517; b) C. Cativiela, M. D. Díazde-Villegas, *Tetrahedron: Asymmetry* 2000, 11, 645; c) Y. Ohfune, T. Shinada, *Eur. J. Org. Chem.* 2005, 5127; d) H. Vogt, S. Bräse, *Org. Biomol. Chem.* 2007, 5, 406.
- [10] a) T. Ooi, M. Takeuchi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2000, 122, 5228; b) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
- [11] a) M. Kitamura, S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2005, 44, 1549; Angew. Chem. 2005, 117, 1573; b) M. Kitamura, S. Shirakawa, Y. Arimura, X. Wang, K. Maruoka, Chem. Asian J. 2008, 3, 1702.
- [12] S. Shirakawa, K. Yamamoto, K. Liu, K. Maruoka, Org. Synth. 2013, 90, 121.
- [13] a) Z. Han, Y. Yamaguchi, M. Kitamura, K. Maruoka, *Tetrahedron Lett.* **2005**, *46*, 8555; b) Y.-G. Wang, M. Ueda, X. Wang, Z. Han, K. Maruoka, *Tetrahedron* **2007**, *63*, 6042.
- [14] For the preparation of saturated aqueous CsOH (80 wt % aq. CsOH), see Ref. [12].
- [15] The reaction on larger scale (10 times) gave a similar result (74% yield, 97% *ee*).
- [16] For details of the determination of the absolute configuration of 3a, see the Supporting Information.
- [17] Racemic arene chromium complexes **2c**, **2d**, and **2f** were used for the reaction.

www.angewandte.org

Communications

Phase-Transfer-Catalyzed Asymmetric S_NAr Reaction of α -Amino Acid Derivatives with Arene Chromium Complexes

Increased substrate scope in phasetransfer-catalyzed asymmetric S_NAr reactions was achieved by the use of arene chromium complexes as electrophiles. An efficient asymmetric synthesis of α , α disubstituted α -amino acids containing various aromatic substituents is shown. PTC = phase-transfer catalyst.

www.angewandte.org

4

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. **2014**, 53, 1–4

These are not the final page numbers!