9-(2-Methylphenyl)-3,4,5,6,9,10-hexahydroxanthene-1,8(2H,7H)-dione

Marco Brito-Arias,⁽¹⁾ Manuel Tapia-Albarrán,⁽¹⁾ Itzia Padilla-Martínez,⁽¹⁾ Francisco Martínez-Martínez,⁽¹⁾ Georgina Espinosa,⁽²⁾ Elies Molins,⁽³⁾* and Enrique Espinosa⁽³⁾

Received August 6, 1998

Several 9-(2-R phenyl)xanthenediones have been synthesized and the x-ray diffraction structure for the 2-methylphenyl derivative (**4b**) has been determined. This compound crystallizes in the monoclinic system, space group $P2_1/n$, with a = 11.729 (3), b = 9.674 (3), c = 14.628(4) Å, and $\beta = 106.30^\circ$. It presents a partially hydrogenated xanthene system in distorted boat conformation for the heterocyclic central ring, and an almost ideal envelope conformation for the outer rings. The aromatic substituent at the ninth position is at 84° in angle with the xanthene system.

KEY WORDS: X-ray diffraction; xanthenedione; heterocyclic fused rings.

Experimental section

Our general approach uses 1,3-cyclohexanedione (1) and *ortho* substituted benzaldehydes (2a-d) as starting materials, which were condensed with KOH in EtOH-H₂O media to generate intermediate (3), which is further reacted with sodium methoxide solution at room temperature to afford (4). This reaction can also be carried out straightforwardly by reacting (1) and (2) with sodium methoxide solution to directly produce (4) in 60% yield. The ¹H NMR spectroscopy displays similar signal pattern in agreement with the X-ray structure obtained. Thus, for (**4b**) (CDCl₃): δ 2.0 (4H, t), 2.3 (4H, m), 2.7 (4H, t), 2.9 (3H, s), 5.0 (1H, s), 7.0-7.6 (4H, m). It is noteworthy to mention that the dimeric intermediate (3), which we have been able to isolate, is a key intermediate for the preparation of the heterocyclic

⁽¹⁾ Unidad Profesional Interdisciplinaria de Biotecnología-IPN, Av. Acueducto s/n Col. Barrio la Laguna Ticomán CP 07340, México DF, México.

- ⁽²⁾ Instituto de Química-UNAM, Circuito Exterior Ciudad Universitaria Coyoacán 04510 México DF, México.
- ⁽³⁾ Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193 Bellaterra, Spain.
- * To whom correspondence should be addressed.

Scheme. Reagents and conditions: (i) KOH/EtOH-H₂O, reflux, 2h; (ii) MeONa/MeOH, RT, 3h; (iii) NaN₃-HC1/THF, RT, 3h; (iv) Fe-AcOH/CH₂Cl₂, RT, 3h.

 $[I > 2\sigma(I)]$ R indices (all data)

Extinction coefficient

Largest diff. peak and hole

Table 2. Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent

		Isotropic	Displacement	Coefficients (A	$x \times 10^3$) for	or the Title
Empirical formula	$C_{20}H_{20}O_3$	-	-	Compound		
CCDC deposit no.	CCDC-1003/5630			-		
Formula weight	308.4		x	y	z	$U(eq)^a$
Temperature (K)	298 (2)			2		、 <i>D</i>
Crystal system	Monoclinic	C(1)	6460(2)	-610(3)	4525(2)	51(1)
Space group	$P2_{1}/n$	O(1)	6817(2)	572(2)	4614(1)	77(1)
Unit cell dimensions		C(2)	6506(3)	-1514(3)	5383(2)	71(1)
$a = 11.729$ (3) Å $\alpha = 90.0^{\circ}$		C(3)	5658(3)	-2697(3)	5183(2)	74(1)
$b = 9.674$ (3) Å $\beta = 106.30$ (2)°		C(4)	5743(2)	-3521(3)	4333(2)	52(1)
$c = 14.628$ (4) Å $\gamma = 90.0^{\circ}$		C(4A)	5728(2)	-2584(2)	3516(1)	41(1)
Volume	V = 1593.1 (8) Å ³	C(4B)	5590(2)	-2641(2)	1879(1)	42(1)
Ζ	4	C(5)	5421(3)	-3620(3)	1063(2)	58(1)
Density (calc.)	1.286 mg/m ³	C(6)	5200(3)	-2813(3)	133(2)	65(1)
Absorption coefficient	0.085 mm^{-1}	C(7)	6124(3)	-1699(3)	214(2)	57(1)
Diffractometer/scan	Siemens P4/PC; $\theta/2\theta$	C(8)	6248(2)	-757(2)	1059(2)	43(1)
Radiation/wavelength	MoK α (graphite monochrom.)/	O(8)	6658(2)	-397(2)	1088(1)	60(1)
_	$\lambda = 0.71073 \text{ Å}$	C(8A)	5894(2)	-1314(2)	1880(1)	38(1)
F(000)	656	C(9)	5934(2)	-363(2)	2706(1)	36(1)
Crystal size (mm)	0.78 imes 0.66 imes 0.56	C(9A)	6005(2)	-1244(2)	3577(1)	39(1)
θ range for data collec-	2.0 to 27.5°	O(10)	5395(2)	-3282(2)	2663(1)	49(1)
tion		C(1')	4836(2)	-579(2)	2445(1)	35(1)
Index ranges	$0 \le h \le 15; 0 \le k \le 12;$	C(2')	4915(2)	2025(2)	2415(1)	42(1)
C C	$-19 \le l \le 18$	C(3')	3860(3)	2783(3)	2119(2)	53(1)
Reflections collected	3842	C(4')	2772(2)	2157(3)	1862(2)	58(1)
Independent/observed	3666 (Rint = 0.0277)/2430	C(5')	2691(2)	737(3)	1902(2)	56(1)
refls.	$([I > 2\sigma(I)])$	C(6')	3723(2)	-42(2)	2188(2)	43(1)
Absorption correction	Semi-empirical	C(7')	6083(3)	2774(3)	2673(2)	63(1)
Max. and min. trans- mission	0.9538 and 0.9364	^{<i>a</i>} U(eq) is	s defined as one	third of the tra	ce of the ort	hogonalized
Refinement method	Full matrix least-squares on F^2	U_{ij} tenso	or.			
Computing	SHELXTL PLUS (PC version)					
Data/parameters	3666/209					
Goodness-of-fit on F^2	1.034					
Final R indices	R1 = 0.0588, wR2 = 0.1673	Results	and discussi	ion		

three ring systems (4), (5), and (6) that we have reported so far. Therefore, depending on the system requested (either the xanthendione (4), the acridindione (5), or the acridone (6) derivatives), the intermediate (3) must be treated with sodium methoxide solution, with amines or sodium azide, and with iron in acid, respectively.

R1 = 0.0877, wR2 = 0.1926

 $0.78 \text{ and } -0.30 \text{ e}\text{\AA}^{-3}$

0.006(3)

The structure of the title compound was solved by direct methods. Refinement was based on fullmatrix least-squares methods, with anisotropic displacement parameters for all non-H atoms and a global fixed isotropic displacement parameter for H atoms. H atoms were included at calculated positions, using a riding model. Table 1 shows crystal data and the structure refinement parameters corresponding to the x-ray diffraction analysis.

Results and discussion

We previously reported the synthesis and X-ray structure of $acridindione^{1}(5)$ and $acridone^{2}(6)$ derivatives, which have been indicated as potential acetilcholinesterease inhibitors in the treatment of Alzheimer³ and Malaria disease.⁴ In continuation of our studies oriented in preparing heterocyclic three-ring dione systems, herein we describe the synthesis of series of 9-(2-R phenyl)xanthenediones (4a-d) and the tridimensional analysis for the 2-methylphenyl derivative (4b) referred to above.

Fractional atomic coordinates for non-hydrogen atoms of the title compound are given in Table 2. Bond lengths and angles are given in Table 3. The molecular structure (Fig. 1) can be described as a xanthenedione group bonded to a methylphenyl substituent. The xanthene system is roughly planar (mean planes define angles of 8.0, 10.2, and 8.0° between the central and the outer rings, and between the outer rings, respectively). The aromatic substituent is almost perpendicular to the xanthenedione group, as indicated by the angle between their mean

C(1) - O(1)	1.212(3)	C(9A) - C(4A) - O(10)	122.7(2)
C(1) - C(9A)	1.472(3)	C(9A) - C(4A) - C(4)	126.0(2)
C(1) - C(2)	1.518(3)	O(10) - C(4A) - C(4)	111.3(2)
C(2) - C(3)	1.491(5)	C(8A) - C(4B) - O(10)	122.6(2)
C(3) - C(4)	1.505(4)	C(8A) - C(4B) - C(5)	126.0(2)
C(4) - C(4A)	1.495(3)	O(10) - C(4B) - C(5)	111.4(2)
C(4A) - C(9A)	1.334(3)	C(4B) - C(5) - C(6)	109.9(2)
C(4A) - O(10)	1.375(3)	C(7) - C(6) - C(5)	110.9(2)
C(4B) - C(8A)	1.333(3)	C(6) - C(7) - C(8)	113.4(2)
C(4B) - O(10)	1.379(3)	O(8) - C(8) - C(8A)	120.4(2)
C(4B) - C(5)	1.492(3)	O(8) - C(8) - C(7)	122.1(2)
C(5) - C(6)	1.526(4)	C(8A) - C(8) - C(7)	117.4(2)
C(6) - C(7)	1.509(4)	C(4B) - C(8A) - C(8)	119.1(2)
C(7) - C(8)	1.510(3)	C(4B) - C(8A) - C(9)	122.5(2)
C(8) - O(8)	1.211(3)	C(8) - C(8A) - C(9)	118.4(2)
C(8) - C(8A)	1.478(3)	C(8A) - C(9) - C(9A)	108.2(2)
C(8A) - C(9)	1.508(3)	C(8A) - C(9) - C(1')	109.1(2)
C(9) - C(9A)	1.516(3)	C(9A) - C(9) - C(1')	112.7(2)
C(9) - C(1')	1.536(3)	C(4A) - C(9A) - C(1)	119.0(2)
C(1') - C(6')	1.388(3)	C(4A) - C(9A) - C(9)	122.3(2)
C(1') - C(2')	1.403(3)	C(1) - C(9A) - C(9)	118.6(2)
C(2') - C(3')	1.398(3)	C(4A) - O(10) - C(4B)	117.6(2)
C(2') - C(7')	1.502(3)	C(6') - C(1') - C(2')	119.2(2)
C(3') - C(4')	1.366(4)	C(6') - C(1') - C(9)	118.0(2)
C(4') - C(5')	1.379(4)	C(2') - C(1') - C(9)	122.7(2)
C(5') - C(6')	1.387(3)	C(3') - C(2') - C(1')	118.2(2)
		C(3') - C(2') - C(7')	119.4(2)
O(1) - C(1) - C(9A)	121.1(2)	C(1') - C(2') - C(7')	122.5(2)
O(1) - C(1) - C(2)	121.6(2)	C(4') - C(3') - C(2')	122.0(2)
C(9A) - C(1) - C(2)	117.3(2)	C(3') - C(4') - C(5')	120.0(2)
C(3) - C(2) - C(1)	114.4(2)	C(4') - C(5') - C(6')	119.3(2)
C(2) - C(3) - C(4)	111.9(2)	C(5') - C(6') - C(1')	121.4(2)
C(4A) - C(4) - C(3)	110.5(2)		

Table 3. Bond Lengths (Å) and Angles (°)

Fig. 1.

planes (84°) and is shown in the unit cell view (Fig. 2). The mean $C_{sp2} - C_{sp2}$ bond length within the planar phenyl ring of the substituent is 1.39 (1) Å.

The molecules are held together by weak $C-H\cdots O^5$ and $C-H\cdots \pi$ -ring interactions (the shortest hydrogen bond has $d(C\cdots O) = 3.350(4)$ Å and $d(H\cdots O) = 2.59$ Å), which contribute to the stabilization of the molecular and crystal structure. The shortest contacts are given in Table 4.

By comparing the acridindione¹ derivative recently reported with the present xanthenedione compound, we observe a high homology in terms of conformation. The outer rings of both the acridine moiety and the xanthene group have an almost ideal envelope conformation (with puckering parameters⁶: Q = 0.462 and 0.435 Å, $\theta = 123.5$ and 121.5° , $\varphi =$ 300.6 and 298.8°, and Q = 0.472 and 0.471 Å, $\theta =$ 120.0 and 119.8°, and $\varphi = 302.8$ and 302.3°, for the acridindione and xanthenedione derivatives, respectively). Also, in both cases, the heterocyclic central ring presents a distorted boat conformation (Q =

Fig. 2.

D-H···A	D-H	Н…А		D…A	D-H···A
$C(6) - H(6A) \cdots O(8) #1$	0.96	2.59		3.350(4)	136
D-H···Cg (Ring) C(2)-H(2A)···Cg(A.S.) #2 C(7)-H(7A)···Cg(A.S.) #1	H…Cg 2.97 2.75	H-Perp 2.91 2.74	γ 11.2 4.8	DCg 3.720 3.506	D-H…Cg 136 136

Table 4. Shortest Intermolecular Contacts (in Å and °)^{*a*}

^{*a*} Cg(A.S.) is the center of gravity of the aromatic substituent ring, H-Perp. is the distance from the hydrogen to the ring and γ is the angle between the H \cdots Cg direction and the normal to the ring. Symmetry transformations used to generate equivalent atoms are: #1: 1 - x, -y, -z; #2: 1 - x, -y, 1 - z.

9-(2-R phenyl)xanthene-1,8(2H,7H)-dione

0.094 and 0.213 Å, $\theta = 103.8$ and 101.0° , and $\varphi = 352.4$ and 365.2° , for the acridindione and xanthenedione derivatives, respectively).

Acknowledgments

We are grateful to Dr. Francisco Delgado ENCB-IPN for NMR determination, to CONACYT for financial support, and grant (1574P-9507) to M. T.

References

- Brito-Arias, M.; Ramírez, G.; Rivas, R.; Molins, E.; Maniukiewicz, W. Acta Crystallogr. 1996, C52, 2811.
- Martínez, R.; Espinosa, G.; Brito-Arias, M. J. Chem. Crystallogr. 1995, 25, 201.
- Shutske, G.M.; Pierrat, F.A.; Kapples, K.J.; Cornfeldt, M.L.; Szewczak, N.M.; Huger, F.P.; Bores, G.M.; Haroutunian, V.; Davis, K.L. J. Med. Chem. 1989, 32, 1805.
- Kesten, S.J.; Degnan, M.J.; Hung, J.; McNamara, D.J.; Ortwine, D.F.; Uhlendorf, S.E.; Werbel, L.M. J. Med. Chem. 1992, 35, 3429.
- 5. Desiraju, G.R. Acc. Chem. Res. 1991, 24, 290.
- 6. Cremer, D.; Pople, J.A. J. Am. Chem. Soc. 1975, 97, 1354.