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which is easily oxidized to 7,7’dbmrbornyli&m. 

“Simple” vic-dilithioallcanes are “diffkult” because of their limited accessibility and their high reactivity. 

They cannot be prepared from the corresponding halogen compounds, often the most effective starling materials 

for organolithiums: vie-dihaloalkanes initially form &halolithioalkanes which usually eliminate lithium halide 

much faster than they exchange the remaining halogen for lithium.1 Other methods of carbanion generation 

(deprotonation, reduction of x-systems) can be applied for the preparation of a few “special” dilithium 

compounds2 but are incapable of generating two directly neighboring negative charges in a “normal” 

environment lacking special carbanion stabilizing features. “Simple” vicdilithioalkanes are expected to be more 

reactive towards ether solvents3 and have higher propensities for loss of lithium hydride than “normal” 

alkyllithiums. In accordance with calculations, l’,Zdilithioethane (I) generated in THF eliminates lithium 

hydride at temperatures below - 10 OC.4 

Two novel low temperature approaches to I and some of its derivatives have been explored in our 

laboratory. (1) On addition of CH212 to three equivalents of lithium p,p’-di-rert-butylbiphenyl (LiDBB) in 

THF at -100 “C the main product, CH2Li2 (ca. 50%). is accompanied by I which is formed in a low (cu. 

0.5%) steady state concentration (since it is formed as well as destroyed by CH212).4 In similar vein, mixtures 

(e.g. 1:lO) of 7,7_dilithionorcarane and 7,7’-dilithio-7,7’-dinorcsryl (II) were obtained by addition of LiDBB 

to 7.7-dihalonorcaranes,5 while, under the same conditions, 7,7-dibromonorbornane (III) led to 7.7- 

dilithionorbomane (IV), exclusively. 6.7 (2) I can be prepared in about 28% yield together with 1,4- 

clilithiobutane (28%) by reaction of solid ethylene at -195’ C with lithium vapour in a Klindig-Perret apparatus.* 

Unfortunately, the latter method seems not to be applicable to other olefiis. Even the strained double bond 

of 7,7’dinorbomylidene (V) proved unreactive towards lithium vapour. We now report that the product 

#Dedicated to Professor R.W. Hoffmann on the occasion of his 60th birthday. 
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expected from V, 7,7’-dilithio-7.7’-dinorbornyl (VI) could be generated via a third route to vic- 

dilithioalkanes: oxidative coupling of a gem-dilithioalkane. Our recent observation that tetraphenylethylene 

dilithium (cu. 18%) was one of the products of oxidation of dipbenyldilithiomethane with various organic 

halides was seminal.9 
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When one equivalent of a butyl halide dissolved in a small amount of ether was added at -100 T to a 

stirred solution (ether-THF, 5:l) of a mixture of IV (8590%) and 7-lithionorbomane (VII, lo-15%) the color 

of the solution turned from dark green (residual LiDBB from the preparation of IV + VII) to red after about 5 

minutes. Subsequent quenching with CH30D(CHBOH), followed by aqueous work-up, gaschromatography 

and analysis by NMR and mass spectrometry indicated that before the quench the reaction mixture had contained 

V, VI, VII and 7-butyl-7-lithionorbomane (VIII) in varying proportions (see Table 1). 

Table 1. Yields of V-VIII from a 9: l-Mixture of 7,7-Dilithionorbornane (IV) and 7-Lithionorbomane 

(VII) and Butyl Halides (%, based on IV+VII, internal standard: cycloheptane). 

Butyl halide v VI VII VJII 

t-BuC1 5 31 53 - 

n-BuCl 5 27 36 16 

n-BuBr 3 27 15 38 

VI could arise from coupling of a pair of 7-lithio-7-norbomyl radicals (IX) formed by single electron 

transfer from IV to the butyl halide. Alternatively, VI could arise from reaction of IV with 7-halo-7- 

lithionorbomane (X, Hal = Br or Cl), formed by halogen-lithium exchange or two consecutive one-electron 

transfer reactions from IV to butyl halide. V most probably originates from VI (see below). Coupling of IX 

with a butyl radical and hydrogen atom abstraction by IX could be sources of VIII and of part of VII, 

respectively. Jn the preparation of IV by LiDBB reduction of carbeno’id X (Hal = Br), the initial product formed 

by LiDBB and III, occurrence of IX is indicated by the formation of lo- 15% VII.6 Deprotonation of the butyl 

halides by IV and SN2 reaction between n-butyl halides and IV constitute other routes to VII and VIII, 

respectively. In fact, the increase of the proportion of VIII at the cost of VII, observed on going from r-BuCl 

to n-BuBr, argues for these modes, as does the formation of 7,7-dimethylnorbomane (XI) from IV and 

dimethyl sulfate.6 For steric reasons only monoalkylation appears possible with a butyl halide. 

The ratio of (V+VI):(VII+VIII) is about 3:5 for each of the three halides. It seems unlikely to us that a 

single species IV would partition into derivatives of dinorbomyl and of norbomane with each of the three butyl 
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halides in the same ratio. Therefore, we speculate that the proportion of dinorbomyl to norbomane derivatives 

found, reflects the proportion in which two different species of IV are present in the solution reacted, each 

yielding its own typical product with a butyl halide. In this view about 40% of IV would exist (ether-TIG, 5: 1, 

-100 “C) as a sterically hindered aggmgate (LiBr-complexed dimer?) that upon reaction with butyl halide would 

engage in single electron transfer (SET) processes creating juxtaposed pairs of IX (or IV+X) that collapse to 

give VI. About 60% of IV would be present as LiBr-complexed monomer that on butyl halides would either 

perform deprotonation and nucleophilic substitution, respectively, or produce “unpaired” IX by SET. 

“Unpaired” IX is deemed unable to yield VI, but should give VII (and possibly VIII). Evidence suggesting 

that symmetrical vie-dilithium compounds (RZLiC)Z, like VI, arise within aggregates, whereas lithium 

compounds containing a single R& moiety are formed from precursors that themselves contain only one R,C! 

unit was also obtained in our previous stmlies.Q 

Loss of lithium hydride, which severely limits the stabilities of “simple” vie-dilithioalkanes,4.* is 

impossible in VI In order to study the stability of this organolithium containing two vicinal tertiary carbanions. 

the reaction mixture obtained with r-butyl chloride (“mixture A”) was slowly warmed to room temperature. 

During this process the red color of the solution turned green, suggesting the formation of LiDBB. After 

quenching with methanol and work-up norbornane (XII, 50%) and V (30%) were indicated by 

gaschromatography. Apparently, VI is oxidized to V. To exclude excess r-butyl chloride as oxidant, in another 

experiment (a very small amount of) LiDBB was added to ‘mixture A” until the green color of LiDBB persisted. 

Upon warming the same yields of XII and V as in the previous experiment were obtained. It is concluded that 

VI reduces p,p’-di-terr-butylbiphenyl (DBB) formed together with IV and still present in “mixture A”. Most 

probably, the small amounts of V observed in all reaction mixtures obtained from IV and the butyl halides 

originate in the same way. Despite the increase of strain accompanying conversion of VI into V, the reducing 

power of VI exceeds that of LiDBB.10 In similar vein calculations indicate loss of L$ from monomeric I to be 

exothermic by 1.5 kcal/mol.ll Our failure to generate VI from V is in line with this. Why, then, does ethylene 

react with lithium vapour to form I? Aggregation is regarded as an important reason. It is expected to be 

extensive- and greatly stabilizing in the case of I, while sterically hindered VI should be much less influenced 

by this factor. Obviously, the terdary nature of its carbanionic centers imbues VI with &reased instability. 

1,2-Bis(bromomagnesio)ethane is more stable than I. l2 In an attempt to prepare the bromomagnesio- 

analogue of VI, a solution of MgBr2 in THF was added to “mixture A”. After stirring at -95 “C for about 10 

minutes, warming to 0 ‘C gave a greyish suspension of magnesium while, after protonation, approximately the 

same amounts of XII and V as before were found. This shows that VI reduces MgBr2 faster than it undergoes 

transmetallation. Loss of (e-+Li+) by VI also supersedes carboxylation: bubbling CO2 into “mixtum A” at -95 

“C followed by warming to room temperature gave V (41%) together with lithium norbomane-7carboxylate 

(41%). With dimethyl sulfate (added at -95 “C to “mixture A”, subsequently warmed to rcom temperature) 

protophilic reaction of VI predominated over reduction of DBB as indicated by the formation of 7,7’- 

dinorbomyl(27%) and 7-methyl-7,7’dinorbomyl(4%) besides V (7%) and 7-methylnorbornane (l6%).13 

In conclusion: (1) Oxidation of gem-dilithioalkanes by organic halides provides a new access to “simple” 

symmetrical vie-dilithioalkanes as exemplified by VI. (2) Easy loss in the presence of an oxidant of (e-+Li+) 

constitutes a third source of instability of vie-dilithioalkanes. besides elimination of lithium hydride and 

protophilic attack on appropriate substrates. 
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