COMMUNICATION

NEW SYNTHETIC PATHWAYS INTO THE ORGANOMETALLIC CHEMISTRY OF GALLIUM

MALCOLM L. H. GREEN,* PHILIP MOUNTFORD, GEOFFREY J. SMOUT and S. ROBERT SPEEL

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3AQ, U.K.

(Received 23 July 1990; accepted 4 September 1990)

Abstract—Ultrasonic irradiation of gallium metal with di-iodine and alkyl iodides, RI, rapidly gives high yields of [RGaI₂] via a reactive intermediate material "GaI". "GaI" also inserts into the metal–iodine bonds of $[Fe(\eta-C_5H_5)(CO)_2I]$ and $[Mo(\eta-C_5H_4Me)(CO)_3I]$ as witnessed by the synthesis of $[Fe(\eta-C_5H_5)(CO)_2Ga(\eta^1-C_5H_4Me)_2 \cdot pyridine]$ and $[Mo(\eta-C_5H_4Me)(CO)_3GaI_2 \cdot Et_2O]$, whose crystal structures have been determined.

We report an improved and very convenient synthesis for monoalkylgallium di-iodide compounds [RGaI₂]. Previous routes to these compounds have involved the exchange reaction between the reactive and costly Me₃Ga and GaI₃,¹ or prolonged thermal reaction (1–2 weeks) between Ga and I₂ or thermally prepared "GaI" with RI.² A metal vapour synthesis route gave mixtures of the mono- and di-alkylated derivatives.³

We have found that sonication of liquid gallium metal with di-iodine and alkyl iodides (RI) rapidly gives high yields of the monoalkylgallium di-iodides [RGaI₂]. Typically, gallium metal (0.70 g, 10 mmol), di-iodine (1.27 g, 5 mmol) and the alkyl halide (*ca* 2 cm³) in toluene (10 cm³) were sonicated under N₂ using a Heat-Systems Ultrasonics cell disruptor direct immersion horn sonicator, supplying *ca* 375 W, 20 kHz.⁴

The mixture was warmed to melt the gallium (m.p. 30°C) before sonication. Upon sonication the gallium metal dispersed, the initially purple mix becoming first grey and then, after 2–8 min, turning into a colourless solution. Recrystallization of the products from toluene gave high yields of white crystalline [RGaI₂][1(a); R = Me (70%) (b); R = Et (82%) (c); R = ⁿPr (80%) (d); R = ⁱPr (55%) (e); R = ⁿBu (90%) (f); R = n-pentyl

(76%); 1e, 1f liquid at room temperature]. Cryoscopic molecular weight determinations in *p*-xylene for 1a-c indicate a degree of association of 1.6–1.9 (for *ca* 0.06–0.3 M in monomer equivalents).

Many Lewis adducts are known for alkylgallium dichlorides,⁵ but adducts of $[RGaI_2]$ are confined largely to those of MeGaI₂ with R'SH (R' = Me, Et, "Pr and 'Bu).⁶ Therefore, we have explored further reactions of $[RGaI_2]$.

Treatment of **1a**-f with Lewis bases [Et₂O, THF, pyridine, acridine, PMe₃, PPh₃, P(OPh)₃ and AsPh₃] gave 1:1 adducts, characterized by ¹H NMR and IR spectroscopy and mass spectrometry, all adducts showing a band near 540 cm⁻¹ in the IR spectrum associated with v(Ga--C). The adducts of **1b** with PPh₃ and AsPh₃ dissociate on subjection to EI mass spectrometry, but cryoscopic molecular weight determinations in *p*-xylene showed them to be essentially monomeric in this solvent.

Sonication of gallium metal and di-iodine in toluene in the absence of alkyl iodide gave a pale green powder "Gal" (2). This material is surprisingly reactive and behaves as a monovalent gallium system. Thus treatment of 2 with excess RI and stirring at room temperature overnight or sonicating for a few minutes gave the monoalkylgallium di-iodides (1). Treatment of 2 with toluene solutions of tetrahydrofuran or PPh₃ gave apparent disproportionation to products that analysed as GaI₂. THF and GaI₃. PPh₃, respectively,

^{*} Author to whom correspondence should be addressed.

together with the corresponding quantity of gallium metal.*

The "GaI" prepared by sonication has a powder diffraction pattern that does not correspond either to that reported previously by Corbett or Chadwick and their co-workers,^{7,8} or to those for lowvalent gallium iodides reported by Gerlach et al.⁹ It may, however, be similar to the thermally-prepared "GaI" of Wilkinson and Worral, which they showed to contain at least Ga, Ga_2I_3 and Ga_2I_4 by Raman spectroscopy.² Their "GaI" reacted much more slowly than our sonicated "GaI" with RI, possibly due to particle size effects. We were interested to see whether "GaI" (2) would undergo oxidative addition reactions with metal-iodine bonds. Room temperature reaction with $[Fe(\eta C_{5}H_{5}(CO)_{2}I$ and recrystallization of the product from ether gave $[Fe(\eta-C_5H_5)(CO)_2GaI_2 \cdot (Et_2O)_n]$ (3a). A similar but heated reaction of 2 with $[Mo(\eta C_{1}H_{4}Me(CO)$ [] gave large amber crystals of $[Mo(\eta-C_5H_4Me)(CO)_3GaI_2 \cdot Et_2O]$ (4a). $[Mo(\eta-C_5H_4Me)(CO)_3GaI_2 \cdot Et_2O]$ $(C_7H_7)(CO)_2I$ and $[Mo(n-C_5H_4Me)(CO)_3]_2$ gave $[Mo(\eta-C_7H_7)(CO)_2GaI_2 \cdot THF]$ (5) and $[(Mo(\eta-C_7H_7)(CO)_2GaI_2 \cdot THF)]$ C_5H_4Me)(CO)₃)₂GaI] (6) by essentially analogous reactions. The adducts 3a and 4a readily lose some ether, although the last traces are retained tenaciously. As with the simple alkylgallium di-iodides, both 3a and 4a readily undergo displacement of Et_2O to form 1:1 adducts with pyridine (3b, 4b).

Treatment of 3a with 2 equivalents of NaC₅H₄Me followed by reaction with pyridine

4a: 4.72 (d, 4H, η -C₅H₄Me), 3.80 (q, 4H, (MeCH₂)₂O), 1.59 (s, 3H, η -C₅H₄Me), 0.92 (t, 6H, (MeCH₂)₂O). **4b**: 9.03 (d, 2H, pyridine), 6.42 (t, 1H, pyridine), 6.16 (t, 2H, pyridine), 4.91, 4.84 (AA', BB', 4H, η -C₅H₄Me), 1.69 (s, 3H, η -C₅H₄Me).

5: 4.69 (s, 7H, η -C₇H₇), 3.95 (t, 2H, THF), 1.21 (m, 2H, THF).

6: 4.88, 4.77 (AA', BB', 4H, η -C₅H₄Me), 1.47 (s, 3H, η -C₅H₄Me).

7: 8.28 (d, 2H, pyridine), 6.71 (t, 1H, pyridine), 6.43 (br. s, 4H, η^1 -C₅H₄Me), 6.41 (br., 2H, pyridine), 5.74 (br. s, 4H, η^1 -C₅H₄Me), 4.35 (s, 5H, η -C₅H₅), 2.25 (s, 6H, η^1 -C₅H₄Me).

Fig. 1. Molecular structure of $[Mo(\eta-C_5H_4Me)(CO)_3$ GaI₂·Et₂O] (4a). Hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°) as follows:

Mo(1)-Ga(1) 2.582(2)	Mo(1)-Cp _{cent.}	1.99
Mo(1)-C(1) 1.99(2)	Ga(1)—I(1)	2.593(2)
Mo(1)—C(2) 1.98(2)	Ga(1)I(2)	2.582(2)
Mo(1)C(3) 1.99(2)	Ga(1)-O(1)	2.04(1)
Mo(1)-Ga(1)-O(1)	115.8(3)	
Mo(1)— $Ga(1)$ — $I(1)$	122.06(9)	1
Mo(1)— $Ga(1)$ — $I(2)$	113.88(9)	I
I(1) - Ga(1) - I(2)	106.20(9)	1
I(1) - Ga(1) - O(1)	96.9(3)	
I(2)—Ga(1)—O(1)	98.4(3)	
Cp_{cent} —Mo(1)—Ga(1)	l) 108.9	

where $Cp_{cent.}$ refers to the computed centroid of the η - C_5H_4Me ring.

Fig. 2. Molecular structure of $[Fe(\eta-C_5H_5)(CO)_2Ga(\eta^1-C_5H_4Me)_2 \cdot pyridine]$ (7). Hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°) as follows:

Fe(1)—Ga(1) Fe(1)—C(18)	2.4272(9) 1.734(8)	Ga(1) - N(1) Ga(1) - C(1)	2.101(4) 2.076(5)
Fe(1) - C(19)	1.744(7)	Ga(1) - C(7)	2.058(5)
Fe(1)-Cp _{cent.}	1.73		
Fe(1)	Ga(1)N(1)	108.9(1)	
Fe(1)	Ga(1)C(1)	113.6(2)	
Fe(1)	-Ga(1)-C(7)	119.1(2)	
Cp _{cent}	-Fe(1)-G(1)	119.5	

where $Cp_{cent.}$ refers to the computed centroid of the η - C_5H_5 ring.

^{*} Satisfactory analyses have been obtained for all compounds except the Et₂O adducts, where all ether was removed before analysis. Compounds 1 and their adducts with Lewis bases were characterized by ¹H NMR, mass spectrometry and IR, all compounds showing bands in the Ga—C stretching region. ¹H NMR data for selected compounds {benzene[²H₆]} at 300 MHz; chemical shifts (δ) in ppm.

³b: 9.12 (d, 2H, pyridine), 6.46 (t, 1H, pyridine), 6.23 (t, 2H, pyridine), 4.30 (s, 5H, η -C₅H₅). (**3c**; ether-free **3a**): 3.99 (s).

gives pale diamond-shaped crystals of $[Fe(\eta - C_5H_5)(CO)_2Ga(\eta^1 - C_5H_4Me)_2 \cdot pyridine]$ (7) in modest yield.

The crystal structures of 4a (Fig. 1) and 7 (Fig. 2) have been determined* and they confirm the

*Crystal data for **4a**: $C_{13}H_{17}GaI_2MoO_4$, crystal dimensions *ca* 0.3 × 0.4 × 0.5 mm, triclinic, space group $P\bar{I}$, *a* = 12.570(5), *b* = 10.049(14), *c* = 11.919(18) Å, $\alpha = 138.47(7)$, $\beta = 91.12(7)$, $\gamma = 94.31(7)^\circ$, $3 \le 2\theta \le 46^\circ$, V = 988.9 Å³, $D_c = 2.209$ g cm⁻³, Z = 2, $\mu = 50.84$ cm⁻¹, F(000) = 612, R = 0.068, $R_w = 0.061$ for 2071 observed reflections $[I > 3\sigma(I)]$.

Crystal data for 7: $C_{24}H_{24}FeGaNO_2$, crystal dimensions *ca* $0.2 \times 0.2 \times 0.4$ mm, triclinic, space group *P*I, a = 9.828(2), b = 10.134(3), c = 12.955(7) Å, $\alpha = 121.29(3)$, $\beta = 96.34(3)$, $\gamma = 90.13(2)^\circ$, $3 \le 2\theta \le 48^\circ$, V = 1093.1 Å³, $D_c = 1.474$ g cm⁻³, Z = 2, $\mu = 19.15$ cm⁻¹, F(000) = 496, R = 0.045, $R_w = 0.057$ for 2303 observed reflections $[I > 3\sigma(I)]$.

Data were collected using an Enraf-Nonius CAD4-F diffractometer employing graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71069$ Å). The heavy-atom positions were located using direct methods and the other nonhydrogen atoms located from subsequent difference syntheses. The structures were refined using full-matrix leastsquares procedures with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were placed in calculated positions (C—H = 0.96 Å) with an isotropic thermal parameter of 1.3 times that of their supporting carbon atom, and refined riding on that carbon atom. Crystallographic calculations were carried out using the Oxford CRYSTALS package.¹¹ Atomic coordinates, bond lengths and angles, observed and calculated structure factors, and thermal parameters have been deposited at the Cambridge Crystallographic Centre.

presence of a transition metal-gallium bond in each compound. The Ga—Fe bond length of 2.4272(9) Å in 7 is comparable to those in [(CH₂=CH) Ga(THF)Fe(CO)₄]₂ of 2.510(1) and 2.521(2) Å.¹⁰

In conclusion, we have shown that sonication is a most convenient way of making alkylgallium diiodides. Sonochemically-produced "GaI" behaves as a highly-reactive monovalent gallium system and can provide a new route to compounds containing transition metal-gallium bonds.

REFERENCES

- 1. G. G. Hoffmann, Z. Naturf. 1985, 40B, 335.
- M. Wilkinson and I. J. Worral, J. Organomet. Chem. 1979, 166, 293.
- K. B. Starowieski and K. S. Klabunde, Appl. Organomet. Chem. 1989, 3, 219.
- K. S. Suslick (Ed.), Ultrasound: Its Chemical, Physical and Biological Effects. VCH Publishers, New York (1987).
- 5. U. Kruerke (Ed.), Gmelin Handbook of Inorganic Chemistry: Organogallium Compounds, Part 1. Springer, Berlin (1987).
- 6. G. G. Hoffmann, Z. Anorg. Allg. Chem. 1984, 514, 196.
- J. D. Corbett and R. K. McMullan, J. Chem. Soc. 1955, 77, 4217.
- J. R. Chadwick, A. W. Atkinson and B. G. Huckstepp, J. Inorg. Nucl. Chem. 1966, 28, 1021.
- C. Gerlach, W. Hönle and A. Simon, Z. Anorg. Allg. Chem. 1982, 486, 7.
- J. C. Vanderhooft, R. D. Ernst, F. W. Cagle Jr, R. J. Neustadt and T. H. Cymbaluk, *Inorg. Chem.* 1982, 21, 1876.
- D. J. Watkin, J. R. Carruthers and P. W. Betteridge, CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford (1985).