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Abstract-Ultrasonic irradiation of gallium metal with di-iodine and alkyl iodides, RI, 
rapidly gives high yields of [RGaI,] via a reactive intermediate material “GaI”. “GaI” also 
inserts into the metal-iodine bonds of [Fe(@,H,)(CO),Il and [Mo(q-C5H,Me)(CO),I] as 
witnessed by the synthesis of [Fe(r&HS)(CO)2Ga(~i-CgH4Me)2. pyridine] and [Mo(v- 
CSH4Me)(C0)3Ga12 - Et,O], whose crystal structures have been determined. 

We report an improved and very convenient syn- 
thesis for monoalkylgallium di-iodide compounds 
[RGaI,]. Previous routes to these compounds have 
involved the exchange reaction between the reactive 
and costly Me3Ga and GaI,, ’ or prolonged thermal 
reaction (l-2 weeks) between Ga and I2 or ther- 
mally prepared “GaI” with RI.2 A metal vapour 
synthesis route gave mixtures of the mono- and 
di-alkylated derivatives.3 

We have found that sonication of liquid gallium 
metal with di-iodine and alkyl iodides (RI) rapidly 
gives high yields of the monoalkylgallium di-iodides 
[RGaI,]. Typically, gallium metal (0.70 g, 10 mmol), 
di-iodine (1.27 g, 5 mmol) and the alkyl halide (ca 
2 cm3) in toluene (10 cm3) were sonicated under 
N2 using a Heat-Systems Ultrasonics cell dis- 
ruptor direct immersion horn sonicator, supplying 
ca 375 W, 20 kHz.4 

The mixture was warmed to melt the gallium 
(m.p. 30°C) before sonication. Upon sonication the 
gallium metal dispersed, the initially purple mix 
becoming first grey and then, after 2-8 min, 
turning into a colourless solution. Recrystallization 
of the products from toluene gave high yields of 
white crystalline [RGa12] [l(a) ; R = Me (70%) (b); 
R = Et (82%) (c) ; R = “Pr (80%) (d) ; R = ‘Pr 
(55%) (e); R = “Bu (90%) (f); R = n-pentyl 

*Author to whom correspondence should be addressed. 

(76%) ; le, If liquid at room temperature]. Cryo- 
scopic molecular weight determinations in p-xylene 
for la-c indicate a degree of association of 1.6-l .9 
(for ca O.Om.3 M in monomer equivalents). 

Many Lewis adducts are known for alkylgallium 
dichlorides,’ but adducts of [RGa12] are confined 
largely to those of MeGaI, with R’SH (R’ = Me, 
Et, “Pr and ‘Bu).~ Therefore, we have explored 
further reactions of [RGaI,]. 

Treatment of la-f with Lewis bases [Et,O, THF, 
pyridine, acridine, PMe,, PPh3, P(OPh)3 and 
AsPh,] gave 1 : 1 adducts, characterized by ‘H 
NMR and IR spectroscopy and mass spectrometry, 
all adducts showing a band near 540 cm- ’ in the IR 
spectrum associated with v(Ga-C). The adducts of 
lb with PPh3 and AsPh, dissociate on subjection to 
EI mass spectrometry, but cryoscopic molecular 
weight determinations in p-xylene showed them to 
be essentially monomeric in this solvent. 

Sonication of gallium metal and di-iodine in tolu- 
ene in the absence of alkyl iodide gave a pale green 
powder “GaI” (2). This material is surprisingly 
reactive and behaves as a monovalent gallium 
system. Thus treatment of 2 with excess RI and 
stirring at room temperature overnight or soni- 
eating for a few minutes gave the monoalkyl- 
gallium di-iodides (1). Treatment of 2 with tolu- 
ene solutions of tetrahydrofuran or PPh, gave 
apparent disproportionation to products that ana- 
lysed as Ga12 *THF and GaI, * PPh3, respectively, 
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together with the corresponding quantity of gallium 
metal. * 

The “GaI” prepared by sonication has a powder 
diffraction pattern that does not correspond either 
to that reported previously by Corbett or Chad- 
wick and their co-workers,7’8 or to those for low- 
valent gallium iodides reported by Gerlach et al.’ It 
may, however, be similar to the thermally-prepared 
“GaI” of Wilkinson and Worral, which they 
showed to contain at least Ga, GaJ, and Ga,I, by 
Raman spectroscopy. 2 Their “GaI” reacted much 
more slowly than our sonicated “GaI” with RI, 
possibly due to particle size effects. We were inter- 
ested to see whether “GaI” (2) would undergo 
oxidative addition reactions with metal-iodine 
bonds. Room temperature reaction with [Fe(q- 
CsH,)(CO),I] and recrystallization of the product 
from ether gave [Fe(q-CSH,)(CO)2Ga12 *(Et20),,] 
(3a). A similar but heated reaction of 2 with [MO@- 
CsH,Me)(CO),I] gave large amber crystals of 
[Mo(q-C5H4Me)(C0)3Ga12 - Et201 (4a). [Mo(q- 

C7H7)W%Il and PWPC&M~)(W~~~ gave 
[Mo(q-C,H,)(CO),GaI,*THF] (5) and [(MO@ 
Q,H,Me)(CO),),GaI] (6) by essentially analogous 
reactions. The adducts 3a and 4a readily lose some 
ether, although the last traces are retained ten- 
aciously. As with the simple alkylgallium di-iodides, 
both 3a and 4a readily undergo displacement of 
Et,0 to form 1: 1 adducts with pyridine (3b, 4b). 

Treatment of 3a with 2 equivalents of 
NaCSH,Me followed by reaction with pyridine 

* Satisfactory analyses have been obtained for all com- 
pounds except the Et,0 adducts, where all ether was 
removed before analysis. Compounds 1 and their adducts 
with Lewis bases were characterized by ‘H NMR, mass 
spectrometry and IR, all compounds showing bands in 
the Ga-C stretching region. ‘H NMR data for selected 
compounds {benzene[‘H,]} at 300 MHz; chemical shifts 
(6) in ppm. 

3b: 9.12 (d, 2H, pyridine), 6.46 (t, lH, pyridine), 6.23 
(t, 2H, pyridine), 4.30 (s, 5H, r]-CsH,). (3c; ether-free 
3a) : 3.99 (s). 

4a: 4.72 (d, 4H, q-C,H,Me), 3.80 (q, 4H, 
(MeCH&O), 1.59 (s, 3H, r]-C,H,Me), 0.92 (t, 6H, 
(MeCH&O). 4b: 9.03 (d, 2H, pyridine), 6.42 (t, IH, 
pyridine), 6.16 (t, 2H, pyridine), 4.91, 4.84 (AA, BB’, 
4H, &,H,Me), 1.69 (s, 3H, q-C,H,Me). 

5: 4.69 (s, 7H, q-C,H7), 3.95 (t, 2H, THF), 1.21 (m, 
2H, THF). 

6: 4.88, 4.77 (AA, BB’, 4H, q-C&,Me), 1.47 (s, 3H, 
+J,H,Me). 

7 : 8.28 (d, 2H, pyridine), 6.71 (t, lH, pyridine), 6.43 
(br. s, 4H, r,+‘-C,H,Me), 6.41 (br., 2H, pyridine), 5.74 (br. 
s, 4H, ‘I’-C5H4Me), 4.35 (s, 5H, q-CSHS), 2.25 (s, 6H, q’- 
C,H,Me). 
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Fig. 1. Molecular structure of [Mo(n-C,H,Me)(CO), 
GaIz - Et*01 (4a). Hydrogen atoms omitted for clarity. 
Selected bond lengths (A) and angles (“) as follows : 

Mo( I)---Ga( 1) 2.582(2) Mo(l)--Cp,,, 1.99 
Mo( I)--C( 1) 1.99(2) Ga(lW(1) 2.593(2) 
Mo( 1)-C(2) 1.98(2) Ga(lV(2) 2.582(2) 
Mo( 1)---C(3) 1.99(2) Ga(l)-O(l) 2.04(l) 

Mo(l)--Ga(l)-Wl) 115.8(3) 

Mo(l)--Ga(lW(l) 122.06(9) 
MO(l)-Ga(lbI(2) 113.88(9) 

I(l)-Ga(l)_-I(2) 106.20(9) 

I(l)--Ga(l>--O(l) 96.9(3) 

1(2)-Ga(lkG(l) 98.4(3) 

Cp,,,,-Mo(l)_Ga(l) 108.9 

where Cp,,,, refers to the computed centroid of the q- 
&H,Me ring. 

C(15)U 

Fig. 2. Molecular structure of [Fe@C,H,)(CO),Ga(rl’- 
C,H,Me)* spyridine] (7). Hydrogen atoms omitted for 
clarity. Selected bond lengths (A) and angles (“) as 
follows : 

Fe( 1 j-Ga( 1) 2.4272(9) Ga(l)--N(1) 2.101(4) 
Fe(l)--C(18) 1.734(8) Ga(l)--C(l) 2.076(5) 
Fe(l)--C(19) 1.744(7) Ga(l)--C(7) 2.058(S) 

Fe(l)-Cp,,,. 1.73 

Fe(l)--Ga(l)--N(1) 108.9( 1) 
Fe(l)--Ga(lN(1) 113.6(2) 

Fe(l)_Ga(lV(7) 119.1(2) 

Cp,,,.-Fe(l)-G(l) 119.5 

where Cp,,, refers to the computed centroid of the n- 
C,H, ring. 
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gives pale diamond-shaped crystals of [Fe(q- 
CSHs)(CO),Ga(q’-C,H,Me),.pyridine] (7) in 
modest yield. 

The crystal structures of 4a (Fig. 1) and 7 (Fig. 
2) have been determined* and they confirm the 

*Crystal data for 4a: C,SH,,Ga12Mo0,, crystal 
dimensions ca 0.3 x 0.4 x 0.5 mm, triclinic, space group 
Pi, a = 12.570(5), b = 10.049(14), c = 11.919(18) A, 
0: = 138.47(7), j3 = 91.12(7), y = 94.31(7)“, 3 < 28 < 46”, 
V = 988.9 A3, D, = 2.209 g cm-3, Z = 2, p = 50.84 

-I, F(OO0) = 612, R = 0.068, R, = 0.061 for 2071 
zrserved reflections [Z > 3a(Z)]. 

Crystal data for 7 : Cz4H2.,FeGaN02, crystal dimen- 
sions ca 0.2 x 0.2 x 0.4 mm, triclinic, space group 
PT, a = 9.828(2), b = 10.134(3), c = 12.955(7) A, 
tl = 121.29(3), fi = 96.34(3), y = 90.13(2)“, 3 < 26 < 48”, 
V= 1093.1 A3, D, = 1.474 g cmm3, Z= 2, p = 19.15 
cn-‘, F(OOO) = 496, R = 0.045, R, = 0.057 for 2303 
observed reflections [I > 30(Z)]. 

Data were collected using an Enraf-Nonius CADCF 
diffractometer employing graphite-monochromated Mo- 
K, radiation (2 = 0.71069 A). The heavy-atom positions 
were located using direct methods and the other non- 
hydrogen atoms located from subsequent difference syn- 
theses. The structures were refined using full-matrix least- 
squares procedures with anisotropic thermal parameters 
for all non-hydrogen atoms. Hydrogen atoms were 
placed in calculated positions (C-H = 0.96 A) with an 
isotropic thermal parameter of 1.3 times that of their 
supporting carbon atom, and refined riding on that car- 
bon atom. Crystallographic calculations were carried out 
using the Oxford CRYSTALS package. ’ ’ Atomic coor- 
dinates, bond lengths and angles, observed and cal- 
culated structure factors, and thermal parameters have 
been deposited at the Cambridge Crystallographic 
Centre. 

presence of a transition metal-gallium bond in each 
compound. The Ga-Fe bond length of 2.4272(9) 
8, in 7 is comparable to those in [(CHdH) 
Ga(THF)Fe(CO)& of 2510(l) and 2.521(2) A.‘” 

In conclusion, we have shown that sonication is 
a most convenient way of making alkylgallium di- 
iodides. Sonochemically-produced “GaI” behaves 
as a highly-reactive monovalent gallium system and 
can provide a new route to compounds containing 
transition metal-gallium bonds. 
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