

Tetrahedron Letters 41 (2000) 161-163

TETRAHEDRON LETTERS

Stereoselective addition of sodium organyl chalcogenolates to alkynylphosphonates: synthesis of diethyl 2-(organyl)-2-(organochalcogenyl)vinylphosphonates

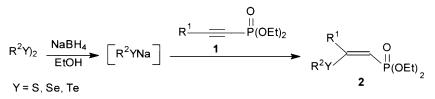
Antonio L. Braga,* Elenilson F. Alves, Claudio C. Silveira and Leandro H. de Andrade Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil

Received 30 July 1999; revised 20 October 1999; accepted 21 October 1999

Abstract

Organyl thiolate, selenolate or tellurolate anions reacted with alkynylphosphonates 1 to give diethyl 2-(organyl)-2-(organochalcogenyl)vinylphosphonates [β -organochalcogenyl vinylphosphonates] 2 in satisfactory yields. The reaction was stereoselective, giving predominantly or exclusively the (*Z*)-stereoisomer. © 1999 Elsevier Science Ltd. All rights reserved.

In the last few decades, there has been remarkable interest in the synthesis of vinylic chalcogenides and their synthetic applications.^{1a} Diethyl 2-(organyl)-2-(organochalcogenyl)vinylphosphonates [β -organochalcogenyl vinylphosphonates] **2** are intermediates of great synthetic potential since they combine the well-known chemical reactivity of vinylic chalcogenides^{1a} and vinylic phosphonates.^{1b} The selenium derivatives were recently prepared by Pd-mediated stereoselective selenophosphorylation of alkynes.²


Hydrometallation of acetylenes is a widely used method for the synthesis of vinylic metal and metalloid derivatives.^{1a} In this communication we describe a new, general and stereoselective method to synthesize β -organochalcogenyl vinylphosphonates **2** by means of the hydrochalcogenation of diethyl 1-alkynylphosphonates **1**.

We started our investigations with the hydrotelluration of alkynylphosphonates.³ The reaction was performed by addition of alkynylphosphonates to a solution of sodium organyl tellurolate, prepared by reduction of diorganyl ditellurides with sodium borohydride in ethanol at room temperature⁴ (Scheme 1). The β -organotelluranyl vinylphosphonates were formed in satisfactory yields with total regio- and *Z*-stereoselectivity (Table 1). The same procedure was used for the synthesis of β -organosulfanyl and organoselanyl vinylphosphonates. However, in these cases, the stereoselectivity was lower than for the tellurium analogues, probably as a result of the lower nucleophilicity of the organyl thiolate and selenolate anion. In all cases studied, only the regioisomer shown in Scheme 1 was obtained. This result can be

^{*} Corresponding author. E-mail: albraga@quimica.ufsm.br (A. L. Braga)

^{0040-4039/00/\$ -} see front matter © 1999 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)02044-4

rationalized in terms of a Michael-type addition with carbanion stabilization by the diethoxyphosphinyl group.^{1b}

Scheme 1.

 Table 1

 Preparation of diethyl 2-(organyl)-2-(organochalcogenyl)vinylphosphonates 2

$(\mathbf{R}^2\mathbf{Y})_2$	R ¹	time (h)	E:Z ^b	Yield (%) ^a	$(\mathbf{R}^2\mathbf{Y})_2$	R ¹	time (h)	E:Z ^b	Yield (%) ^a
(PhTe) ₂	Ph	4	0:100	69	(PhSe) ₂	<i>n</i> -Bu	22	0:100	33
(PhTe) ₂	<i>n</i> -Bu	5	0:100	60	(PhSe) ₂	$\bigcirc \forall$	19	0:100	26
(PhTe) ₂	$\bigcirc \downarrow$	5	0:100	41	(<i>n</i> -BuSe) ₂	Ph	21	37:63	68
(<i>n</i> -BuTe) ₂	Ph	4	0:100	50	$(n-BuSe)_2$	<i>n</i> -Bu	22	28:72	70
(<i>n</i> -BuTe) ₂	<i>n-</i> Bu	5	0:100	49	(PhS) ₂	<i>n</i> -Bu	21	0:100	46
(<i>n</i> -BuTe) ₂	$\bigcirc \downarrow$	4	0:100	42	(PhS) ₂	Ph	19	30:70	57
(PhSe) ₂	Ph	21	0:100	40	(PhS) ₂	∕_+	19	0:100	34

^a Isolated yields. ^b The ratios of *E*- and *Z*-isomers were estimated on the basis of ¹H NMR data.

The exclusive Z-stereochemistry was expected by analogy with the hydrotelluration of acetylenes.⁵ These configurations were confirmed by NMR spectral analysis, especially NOESY experiments, for all the compounds **2**.

In summary, a novel method for the synthesis of diethyl 2-(organyl)-2-(organochalcogenyl)vinylphosphonates **2** has been established. It is expected that the reactions described above will find considerable application in organic synthesis.

Acknowledgements

The authors thank the following agencies for support: CNPq, CAPES, DAAD and FAPERGS.

References

- 1. For reviews on the synthetic utility of vinylic selenides/tellurides and vinylic phosphonates, see: (a) Comasseto, J. V.; Ling, L. W.; Stefani, H. A.; Petragnani, N. *Synthesis* **1997**, 373. (b) Minami, T.; Motoyoshiya, J. *Synthesis* **1992**, 333.
- 2. Tanaka, M.; Choi, N.; Han, L. J. Am. Chem. Soc. 1996, 118, 7000.
- 3. Oh, D. Y.; Gil, J. M.; Sung, J. W.; Park, C. P. Synth. Commun. 1997, 27, 3171.
- 4. Typical procedure: To a solution of RYNa [generated in situ from R²YYR² (1.0 mmol) and NaBH₄ (2.2 mmol)] in absolute ethanol (10 mL) the 1-alkynylphosphonate **1** (2.0 mmol) was added dropwise at room temperature. The reaction mixture was

stirred for the time indicated in Table 1. Then the mixture was poured into a saturated aqueous solution of NH₄Cl (10 mL) and the aqueous layer was extracted with ethyl acetate (2×25 mL). The organic layer was dried (MgSO₄) and evaporated. The residue was purified by flash chromatography on silica gel with ethyl acetate:hexane (3:7). Selected spectral and analytical data for **2** (R²Y=PhTe; R¹=*n*-Bu): ¹H NMR (200 MHz, CDCl₃): δ 7.92 (d, *J*=7.6 Hz, 2H), 7.42–7.21 (m, 3H), 6.27 (d, ²*J*_{P-H}=16.4 Hz, 1H), 4.11 (dq, ³*J*_{P-H}=7.5 Hz, *J*=7.2 Hz, 4H), 2.21 (t, *J*=7.8 Hz, 2H), 1.40–1.23 (m, 2H), 1.35 (t, *J*=7.2 Hz, 6H), 1.00 (sext, *J*=7.4 Hz, 2H), 0.66 (t, *J*=7 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 154.75 (d, ²*J*_{P-C}=6.3 Hz), 141.43, 128.58, 128.27, 115.33 (d, ¹*J*_{P-C}=192 Hz), 115.29, 61.27 (d, ²*J*_{P-C}=5 Hz), 41.67 (d, ³*J*_{P-C}=23 Hz), 31.56, 21.16, 15.94 (d, ³*J*_{P-C}=6.2 Hz), 13.05; ³¹P NMR (161 MHz, CDCl₃) δ 15.33 (s); MS *m*/*z* (relative intensity) 426 (M+2, 25), 347 (15), 219 (76), 163 (80), 81 (100); IR (KBr, film; cm⁻¹) 3064, 2956, 1559, 1433, 1391, 1292, 1231, 1163, 1027, 965. Anal. calcd for C₁₆H₂₅O₃PTe: C, 45.33; H, 5.94. Found: C, 44.91; H, 5.80.

5. Barros, S. M.; Dabdoub, M. J.; Dabdoub, V. M. B.; Comasseto, J. V. Organometallics 1989, 8, 1661.