associated with neoquassin in the original substance, for it may represent a decomposition product resulting from the operation involved, or it is possible the unknown component was not eluted from the adsorbent. Both considerations seem doubtful, for a methanolic solution of the original material was rapidly and quantitatively passed through a column of aluminum oxide without separation or apparent change. However, a solution of neoquassin added to a solution of the uncrystallizable material failed to effect a synthesis of the original substance.

Summary

A hitherto unrecorded constituent of Jamaica quassia wood is described. It has the physical properties of an individual compound, but in reality consists of a complex of neoquassin and one or more unknown materials, which apparently separate as mixed crystals.

Beltsville, Md.

Received October 7, 1942

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF RICHMOND]

Local Anesthetics. II. Alkoxybenzoates of 2-Monoalkylamino-2-methyl-1-propanols and 2-Monoalkylamino-1-butanols^{1,2}

By J. Stanton Pierce, J. M. Salsbury, Walter W. Haden and L. H. Willis

In a recent paper from this Laboratory,³ the preparation of β -monoalkylaminoethanol esters of alkoxybenzoic acids was described. Goldberg, Ringk and Spoerri⁴ reported aminobenzoates of β -monoalkylaminoethanols in which branching occurs on the alpha carbon of the amino alcohol.

We have mono-alkylated 2-amino-2-methyl-1propanol and 2-amino-1-butanol, which are now on the market, and have been engaged in the preparation of esters of these amino alcohols with alkoxybenzoic, alkoxycinnamic, alkoxynaphthoic, diphenylacetic, acetyltropic, acetylmandelic and p- and *m*-nitrobenzoic acids, with the expectation of reducing the latter to the aminobenzoate esters. The recent report of Kremer and Waldman⁵ on p-nitrobenzoic and p-aminobenzoic esters of 2-monoalkylamino-2-methyl-1-propanols makes it desirable to report the results thus far obtained. This paper takes up the preparation of 2-monoalkylamino-2-methyl-1-propanols, 2-monoalkylamino-1-butanols and the alkoxybenzoates of these amino alcohols.

Alkylation of 2-amino-2-methyl-1-propanol and 2-amino-1-butanol with the lower alkyl halides usually was carried out by heating equimolar quantities of the amino alcohol and alkyl bromide in a sealed tube or under reflux at 100° for two hours. For the introduction of the amyl, hexyl, heptyl, allyl and benzyl radicals, usually the molar quantity of amino alcohol was doubled and in the introduction of the latter two groups, chlorides were used instead of bromides. The reaction product was dissolved in dilute hydrochloric acid, separated from unchanged alkyl halide, in case the reaction was not complete, and treated with excess concentrated sodium hydroxide. The alkylation product rose to the surface of the hot solution as an oil. The oil was vacuum distilled and the distillate redistilled at atmospheric pres-The 2-monoalkylamino-2-methyl-1-prosure. panols except the allyl, solidified on cooling. Several of the 2-monoalkylamino-1-butanols showed a tendency to crystallize, reaching a maximum in the case of 2-monobenzylamino-1-butanol. The crystals of this compound, on separation, reverted to a mixture of liquid and crystals.

In a previous paper from this Laboratory,³ the preparation and isolation of β -monoalkylaminoethyl alkoxybenzoate hydrochlorides was described. The same general procedure, with some modifications, was used to obtain hydrochlorides of alkoxybenzoates of 2-monoalkylamino-2-methyl-1-propanols and 2-monoalkylamino-1-butanols.

Experimental

Examples are given of the preparation of 2-*n*-amylamino-2-methyl-1-propanol and of the condensation of this amino alcohol with *p*-ethoxybenzoyl chloride.

2-*n***-Amylamino-2-methyl-1-propanol.**—A mixture of 113 g. (0.75 mole) of *n*-amyl bromide and 134 g. (1.5 moles) of 2-amino-2-methyl-1-propanol was heated in two sealed tubes for two hours at 100° . The contents of the tubes were combined and dissolved in 500 ml. of water and 80 ml. of concentrated hydrochloric acid. No oil remained undissolved. To the acid solution was added a solution of 100 g. of sodium hydroxide in 100 ml. of water. The oil which rose to the surface was vacuum distilled, yielding

⁽¹⁾ Acknowledgment is made to Dr. E. Emmet Reid, Research Adviser to the Chemistry Department of the University of Richmond, for his advice in this work.

⁽²⁾ This research was made possible by a grant from Chas. C. Haskell and Co., Inc., Richmond, Va.

⁽³⁾ J. Stanton Pierce, J. M. Salsbury and J. M. Fredericksen, THIS JOURNAL, 64, 1691-1694 (1942).

⁽⁴⁾ Goldberg, Ringk and Spoerri, ibid., 61, 3562-3564 (1939).

⁵⁾ Kremer and Waldman, ibid , 64, 1089-1090 (1942)

108 g. of product, boiling $103-135^{\circ}$ (30 mm.). On redistillation, there was obtained 70 g. (58%) of 2-*n*-amylamino-2-methyl-1-propanol; b. p. 212-222°.

TABLE I

β -Monoalkylaminoalkanols

	There is the start	В.р.,	M. p.,ª	N::+ 07				
R	formula	(cor.)	(uncor.)	Caled.	rogen, % Found			
(a) 2-Monoal	kylamino-2-r	nethyl-1-p	ropanols:	RNHC(CH ₅) ₂ CH ₂ OH			
Ethyl ^b	C6H15ON	167 - 170	72-73	11.95	11.91, 11.87			
u-Propy1 ^b	C7H17ON	185 - 188	36-37.3	10.68	10.41, 10.43			
n-Buty1b	C8H19ON	202 - 204	68-69	9.64	9.59, 9.61			
n-Amyl ^b	C ₉ H ₂₁ ON	218 - 221	56 - 59	8.80	8.50, 8.55			
n-Hexyl	$C_{10}H_{23}ON$	235 - 238	62 - 62.5	8.08	7.82, 7.81			
n-Heptyl	C11H25ON	253 - 256	50 - 52	7.48	7.13, 7.14			
Iso-butyl ^b	C8H19ON	184 - 187	48 - 49	9.64	9.52			
Iso-amyl ^b	C ₉ H ₂₁ ON	214 - 217	73 - 74	8.80	8.48, 8.52			
Allyl	C7H15ON	183 - 187		10.84	11.20			
Benzyl	C11H17ON	277 - 280	53-57	7.81	7.55, 7.55			
(b) 2-Monoalkylamino-1-butanols: RNHCH(C2H6)CH2OH								
Ethyl	C6H16ON	177-179		11.95	11.95, 11.96			
n-Propyl	C7H17ON	192 - 193		10.68	10.44, 10.43			
n-Butyl	C8H19ON	210 - 213		9.64	9.40, 9.47			
n-Amyl	C ₈ H ₂₁ ON	227 - 230		8.80	8.52, 8.53			
n-Hexyl	C10H23ON	247 - 252		8.08	7.68			
n-Heptyl	$C_{11}H_{25}ON$	263 - 266		7.48	7.13, 7.15			
Iso-butyl	C8H19ON	195 - 198		9.64	10.01, 10.04			
Iso-amyl	C ₈ H ₂₁ ON	221 - 224						
Allyl	C7H15ON	194 - 197		10.84	10.91,10.87			
Benzvl	C11H17ON	283 - 285		7.81	7.51. 7.50			

^{*a*} The melting points of the distilled amino alcohols were taken without recrystallization of the products, since it was found that recrystallization raised the melting point only slightly. ^{*b*} Also prepared by Kremer and Waldman.⁵

Hydrochloride of p-Ethoxybenzoate of 2-Mono-namylamino-2-methyl-1-propanol.---To 15.9 g. (0.1 mole) of 2-mono-n-amylamino-2-methyl-1-propanol was added 12.5 ml. (0.15 mole) of concentrated hydrochloric acid. The excess hydrochloric acid was removed by vacuum evaporation. To the solid hydrochloride of 2-mono-namylamino-1-propanol was added 18.4 g. (0.1 mole) of pethoxybenzoyl chloride. The reaction mixture was heated, with occasional shaking, in an oil-bath at 100° for thirty minutes, at 130° for thirty minutes, and at 150° for fifteen minutes. The reaction mixture was dissolved in 60 ml. of 95% ethanol, poured into 800 ml. of N sodium hydroxide solution, and extracted with 125 ml. of isopropyl ether. The ether solution was extracted with 1500 ml. of 0.4 Nhydrochloric acid. The acid solution was made basic with sodium hydroxide and the free base of the amino alcohol ester was extracted with 150 ml. of isopropyl ether. The isopropyl ether solution was saturated with dry hydrogen chloride, yielding 23 g. (67%) of an oily precipitate of the hydrochloride of β -mono-*n*-amylamino- β , β -(dimethyl)-ethyl p-ethoxybenzoate, which solidified within a few minutes. On two crystallizations from acetone, this product melted at 127-129°.

In this study, approximately sixty alkoxybenzoates of 2-monoalkylamino-2-methyl-1-propanols and 2-monoalkyl-

amino-1-butanols were prepared, that their anesthetic activity might be tested. In some runs in which very insoluble ester hydrochlorides were formed, the products were isolated by precipitation with a large excess of hydrochloric acid and by filtration. Table II gives the melting points and chloride analyses of the hydrochlorides of the above alkoxybenzoates which were most readily crystallized.

TABLE II

β-MONOALKYLAMINOALKYL ALKOXYBENZOATE

		IIIDKOCHL	ORIDES		
R	R'	M. p., °C. (uncor.)	Empirical formula	Chlor Caled.	ine, % Found
(a) β -Mono	alkylamino	$-\beta,\beta$ -(dimeth	nyl)-ethyl alkoz	ybenzo	ate hy
droch	1lorides: R	OC6H4COO	CH ₂ C(CH ₃) ₂ NH	R'•HCl	
p-Methyl	n-Butyl	154-155	C16H26O3NC1	11.23	11.11
p-Ethyl	n-Amyl	128 - 129	C18H30O3NCl	10.31	10.15
p-Ethyl	n-Hexyl	135 - 136	C19H32O3NCl	9.91	9.82
o-Ethyl	n-Butyl	118 - 120	$C_{17}H_{28}O_{3}NC1$	10.75	10.86
m-Ethyl	n-Butyl	106 - 108	$C_{17}H_{28}O_{3}NCl$	10.75	10.67
m-Ethyl	n-Amyl	73-76	C18H30O2NC1	10.31	9.82
¢-n-Propyl	n-Butyl	98 - 100	C18H30O3NC1	10.31	10.38
<i>p</i> -n-Propyl	n-Amyl	103-1 06	C19H82O3NCl	9.91	10.06
p-n-Propyl	n-Hexyl	118 - 120	$C_{20}H_{34}O_3NC1$	9.53	9.34
p-n-Butyl	Ethyl	136 - 138	$C_{17}H_{28}O_{3}NCl$	10.75	10.47
p-n-Butyl	n-Propyl	105 - 107	C18H30O3NC1	10.31	10.24
p-n-Butyl	n-Butyl	125 - 127	C19H32O3NC1	9.91	9.66
p-n-Butyl	n-Hexyl	122 - 123	C21H26O2NC1	9.19	9.21
p-n-Butyl	Benzyl	161 - 162	$C_{22}H_{30}O_3NCl$	9.05	9.02
o-n-Butyl	n-Butyl	91 - 94	$C_{19}H_{32}O_3NC1$	9,91	9.96
p-n-Amyl	n-Propyl	112 - 113	C19H32O3NCl	9.91	10.00
p-n-Amyl	n-Butyl	125 - 126	C ₂₀ H ₃₄ O ₈ NC1	9.53	9.64
p-n-Amyl	n-Amyl	103 - 104	C21H36O3NCl	9.19	9.01
p-n-Amyl	Benzyl	139 - 140	C23H32O3NC1	8.74	8.79
p-n-Hexyl	n-Butyl	125.5 - 127	$C_{21}H_{36}O_3NCl$	9.19	9.11
p-n-Heptyl	n-Propyl	108-110	C ₂₁ H ₃₆ O ₃ NC1	9.19	9.11
p-n-Heptyi	n-Butyl	117-118	$C_{22}H_{38}O_{3}NCl$	8.86	8.80
p-n-Heptyl	n-Amyl	105 - 106	C28H40O2NC1	8.57	8.56
p-n-Heptyl	n-Hexyl	105 - 107	$C_{24}H_{42}O_8NCl$	8.28	8.25
(b) β-Mono	alkylamino	-β-ethyl-eth	yl alkoxybenzo	ate hy	drochlo
rides	3: ROC ₆ H ₄	COOCH2CH	I(C2H5)NHR'·H	C1	
p-Ethyl	Ethyl	184 - 185	$C_{15}H_{24}O_{3}NCl$	11.75	11.42
p-Ethyl	n-Butyl	134 - 135	$C_{17}H_{28}O_{3}NC1$	10.75	10.82
p-Ethyl	n-Hexyl	135 - 136	C19H32O3NCl	9.91	9.88
p-Ethyl	Benzyl	181 - 184	$C_{20}H_{26}O_3NCl$	9.74	9.64
p-n-Propyl	n-Butyl	129 - 131	C18H30O3NCl	10.31	10.25
p-n-Propyl	n-Hexyl	112 - 114	C20H34O3NCl	9.53	9.33
¢-Iso-propyl	n-Butyl	119 - 121	C ₁₈ H ₃₀ O ₃ NCl	10.31	10.29

The β -monoalkylaminoalkyl alkoxybenzoate hydrochlorides reported in this paper are being tested pharmacologically by Dr. C. C. Haskell. The results will be reported elsewhere.

C19Ha2O3NC1

 $C_{21}H_{35}O_3NCl$

9 91

9.19

9.85

8.76

114 - 116

108 - 109

Summary

A series of hydrochlorides of alkoxybenzoates of 2-monoalkylamino-2-methyl-1-propanols and of 2-monoalkylamino-1-butanols is described.

RICHMOND, VA.

p-n-Butvl

p-n-Heptyl

n-Butyl

n-Propyl

RECEIVED SEPTEMBER 1, 1942