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An Efficient Approach to Original Substituted 2-Arylidene-2H-[1,4]-oxazin-
3(4H)-ones via a Tandem Intramolecular P(O→C) Migration/Horner–
Wadsworth–Emmons Olefination Sequence
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Abstract: A useful tool for the synthesis of 2-arylidene-2H-[1,4]-
oxazin-3(4H)-one derivatives is described. Starting from bisvi-
nylphosphate intermediate, the key step is an intramolecular
P(O→C) migration combined with a Horner–Wadsworth–Emmons
olefination as a one-pot procedure.
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The versatility and synthetic utility of the enol phosphate
function in organic synthesis have been largely demon-
strated in the recent literature.1 During the course of our
studies directed toward the synthesis of new nitrogen con-
taining derivatives, we intended to prepare 2-arylidene-
2H-[1,4]-oxazin-3(4H)-ones derivatives I (Figure 1).
While benzofused derivatives like 2-arylidene-2H-[1,4]-
benzoxazin-3(4H)-ones II2 or also arylidene-1,3-dihy-
droindol-2-ones III3 have been largely studied because of
their biological activities on the central nervous system or
their efficiency as kinase inhibitors, there has been, to the
best of our knowledge, no report on the synthesis of 2-
arylidene-2H-[1,4]-oxazin-3(4H)-one derivatives I. In ad-
dition, in recent years the synthesis of a-methylene-g-lac-
tams, isosteric analogues of the naturally occurring a-
methylene-g-lactones, has received considerable attention
as a consequence of the proven biological properties of
this motif.4 By using our previously described methodol-
ogy based on palladium-catalyzed cross-coupling reac-
tions of vinyl phosphate intermediates,5 we want to report
herein an efficient access to a variety of substituted 2-
arylidene-2H-[1,4]-oxazin-3(4H)-one derivatives I. The
latter might be not only of potential interest in terms of bi-
ological activity and of synthesis but also it would allow
access to new heterocyclic scaffolds.

A few years ago, Wiemer et al.6 demonstrated that enol
phosphates derived from five- and six-membered rings
undergo a 1,3-phosphorus migration to afford b-keto-
phosphonates upon deprotonation with LDA. Since
Wiemer’s initial report, the scope of this rearrangement
has been expanded to include cyclic enones, esters, lac-
tones, and lactams, some mechanistic information has

been generated and diastereoselective variant has been
unveiled.7 This elegant rearrangement has given access to
phosphono ketones that had been inaccessible or difficult
to obtain by classical methods until then. Taking into ac-
count this result, we postulated that functionalized 2-
arylidene-2H-[1,4]-oxazin-3(4H)-one derivatives I could
be obtained via an intramolecular P(O→C) migration af-
ter basic treatment of the bisvinylphosphate 2 combined
successively with a Horner–Wadsworth–Emmons
olefination8 and a palladium cross-coupling reaction on
the remaining enol phosphate function.

In order to demonstrate the feasibility of this strategy and
to get the best yields, different approaches were tested.
First of all, we tried to isolate the intermediary phospho-
nate 3 before performing the Horner–Wadsworth–
Emmons olefination. To this aim and as previously report-
ed,5c treatment of the N-Boc derivative 1 with KHMDS
(2.5 equiv) in the presence of HMPA (2.5 equiv) in THF
at –78 °C provided a bispotassium enolate which was im-
mediately trapped by reaction with diphenylchlorophos-
phate (2.2 equiv, THF, –78 °C, 15 min). Without
isolation, this mixture was exposed to additional KHMDS
(1 equiv). After stirring for one hour at –78 °C, the bis-
vinylphosphate 2 rearranged through an intramolecular
migration of the diphenyl phosphoryl group from oxygen
to the a-carbon to provide the required a-phosphonolac-
tam 3.9 After purification by silica gel chromatography,
the a-phosphonolactam 310 was isolated in only 20% yield
together with 9% of the parent bisvinylphosphate 2. Even
if the conversion of vinylphosphate 2 into a-phosphono-
lactam 3 corresponds to a balanced reaction, a very clean
rearrangement was observed based upon the TLC control
of the mixture. So the low yield may be attributed to the
instability of the a-phosphonolactam 3.

As this step suffers from problem of reproducibility, alter-
native bases were studied. No improvement was observed
when LiHMDS [(Scheme 1, (iii) conditions] was used as
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a base even when changing the sequence of reagent addi-
tions, and varying the temperature for enolate formation.
More encouraging results were obtained by using n-butyl-
lithium [Scheme 1, (iv) conditions]. In this case, the 1,3-
phosphorus migration reaction was tested directly from
the worked up bisvinylphosphate 2, obtained in 64% yield
the from N-Boc morpholine-3,5-dione 1.11 The desired a-
phosphonolactam 3 was then isolated in just 32% yield as
the only product.

To circumvent this problem and to improve the general
yield, we attempted to perform the Horner–Wadsworth–
Emmons olefination as a one-pot procedure without iso-
lating the intermediary phosphonate 3 (Scheme 2). Start-
ing from N-Boc morpholine-3,5-dione 1 and using
KHMDS as a base, after a complete conversion of the
vinylphosphate 2 into a-phosphonolactam 3 (TLC con-
trol), 3,4,5-trimethoxybenzaldehyde (2 equiv) was then
added at –78 °C to induce the Horner–Wadsworth–
Emmons olefination. The mixture was quickly warmed to
0 °C (1 h) and the desired exoarylidene derivative 4a was
isolated as a single stereoisomer.12a The small coupling
constant (J < 5 Hz) observed between the exocyclic vinyl
proton and the carbon of the carbonyl (3JC–H = 3,5 Hz)
confirmed the (Z)-geometry of the introduced double
bond.12 Unfortunately, this one-pot procedure was charac-
terized by a low yield (16%).

To achieve the intramolecular P(O→C) migration and the
Horner–Wadsworth–Emmons olefination as a one-pot
procedure, we next examined the protocol using n-BuLi
as a base (Table 1). In this case, we started directly from
the isolated bisvinylphosphate 2, prepared as reported
above. Treatment of 2 with n-BuLi (1.2 equiv) at –78 °C
in THF for 10 minutes led to the formation of a-
phosphonolactam 3 via an 1,3-phosphorus migration. The

use of this intermediate in the Horner–Wadsworth–
Emmons reaction was validated by addition of various al-
dehydes to the crude mixture to give the exo-alkylidene or
-arylidene derivatives 4a–e13 which were isolated, albeit
in fair or modest yields (Table 1). The slight instability of
the alkylidene derivatives 4d and 4e could explain why
the yields were so moderate in this case (Table 1, entries
4 and 5). Unfortunately, no improvement was observed by
performing the Horner–Wadsworth–Emmons olefination
as a separate step on the isolated a-phosphonolactam 3. In
fact, arylidenes 4 were thus obtained with comparable
yields. Accordingly, it appears that this is the limiting
step. In addition to the convenient tandem 1,3-phosphorus
migration–Horner–Wadsworth–Emmons olefination se-
quence, one of the attractive features of our approach lies
in its inherent versatility since a wide range of aldehydes
could be used. The remaining enol phosphate function
could eventually be subjected to various reactions.

In order to achieve our synthetic route to 2-arylidene-2H-
[1,4]-oxazin-3(4H)-one derivatives I, palladium-cata-
lyzed reactions were then investigated on enol phosphates
4. The Stille coupling reaction14 was performed with var-
ious tin reagents in the presence of catalytic Pd(PPh3)4 and
anhydrous LiCl in refluxing THF. The desired original
compounds 5a–c15 were isolated in modest yields
(Table 2, entries 1–4). In addition, treatment of enol phos-
phate 4b with triethylammonium formate, palladium ace-
tate and triphenylphosphine5c in THF gave the basic
heterocyclic system 5e isolated in fair yield (48% yield,
Table 2, entry 5). It is noteworthy that by submitting vi-
nylphosphate 4 to classical basic Suzuki coupling condi-
tions [PhB(OH)2,PdCl2(PPh3)2, Na2CO3 2 M, THF], a
degradation reaction was observed.

Scheme 1 Reagents and conditions: (i) KHMDS (2.5 equiv), HMPA (2.5 equiv), THF, ClP(O)(OPh)2 (2.2 equiv), –78 °C, 15 min; (ii)
KHMDS (1 equiv), THF, –78 °C, 1 h, 3 (20% via not isolated 2), or (iii) LiHMDS (1 equiv), 3 (17% via not isolated 2), or (iv) n-BuLi (1 equiv),
3 (32% via isolated 2).
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Because of their potential biological activity, the selected
2-arylidene-2H-[1,4]-oxazin-3(4H)-one derivatives 5a–e
were then tested on a variety of highly purified kinases
(CK1, CDK5/p25, GSK-3a/b, DYRK1A)16,17 (Table 3).
In the CDK inhibitors family, the most advanced mole-
cule is the purine analogue [R-roscovitine (CYC-202)].18

Unfortunately, in all cases the kinases tested were poorly
or not inhibited (IC50 >10 mm).

To sum up, we have developed a new and easy method
that provides a useful tool for the synthesis of 2-arylidene-
2H-[1,4]-oxazin-3(4H)-one derivatives via an efficient
tandem 1,3-phosphorus migration/Horner–Wadsworth–
Emmons olefination sequence. In addition, it is worth not-

ing that the presence of different functional groups in
many positions of these heterocycles makes such com-
pounds useful for further structural modifications and
suitable as intermediates for more complex polycyclic
structures (via Diels–Alder cycloaddition for instance).
Experiments designed to explore the potentiality offered
by this original heterocyclic system are in progress and
will be described in due course.
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Table 1 Rearrangement into a-Phosphonolactam 3 Combined with Horner–Wadsworth–Emmons Olefinations

Entry Aldehydes Products 4 Yield (%)a

1 4a 42

2 4b 56

3 4c 35

4 MeCHO 4d 22

5 MeCH2CHO 4e 36

a Yields are calculated for the two-step reaction starting with bisvinylphosphate 2.
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Meijer and Olivier Lozach (Cell Cycle Group UMR 7150 &
UPS2682 Roscoff, France) for the biological tests on kinases.
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HRMS: m/z calcd for C27H27NO9

23Na [M +Na]+: 532.15835; 
found: 532.1582.
Compound 5b: yellow solid; mp 140–141 °C. HRMS (EI): 
m/z calcd for C19H13NO4 [M – C4H8 – CO2]

+: 319.08446; 
found: 319.0838.
Compound 5c: yellow oil. HRMS (EI): m/z calcd for 
C17H11NO5 [M – C4H8 – CO2]

+: 309.06372; found: 
309.0642.
Compound 5d: yellow oil. HRMS (EI): m/z calcd for 
C19H13NO2 [M – C4H8 – CO2]

+: 287.09463; found: 
287.0969.
Compound 5e: yellow oil. HRMS (EI): m/z calcd for 
C16H17NO4 [M]+: 287.11576; found: 287.1166.

(16) Minireview: Soos, T. J.; Meijer, L.; Nelson, P. J. Drug News 
Perspect. 2006, 19, 325.

(17) Kinase activities assay were performed as reported in ref. 15 
and 17.

(18) (a) Bach, S.; Knockaert, M.; Reinhardt, J.; Lozach, O.; 
Schmitt, S.; Baratte, B. J. Biol. Chem. 2005, 280, 31208. 
(b) Bettayeb, K.; Tirado, O. M.; Marionneau-Lambert, S.; 
Ferandin, Y.; Lozach, O.; Morris, J. C.; Mateo-Lozano, S.; 
Drueckes, P.; Schächtele, C.; Kubbutat, M.; Liger, F.; 
Marquet, B.; Joseph, B.; Echalier, A.; Endicott, J.; Notario, 
V.; Meijer, L. Cancer Res. 2007, 67, 8325. (c) Reinhardt, 
J.; Ferandin, Y.; Meijer, L. Protein Expr. Purif. 2007, 54, 
101.
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