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We recently reported that styrenel and 2-substittrted styrenes1,2 undergo efficient addition and

addition-trapping reactions with a range of organolithium reagents providing diethyl ether is used as the

solvent (Equation 1).3 We also showed that when the addition-carboxylation reactions are carried out in the

presence of (-)-sparteine, reasonable enantiomeric excesses (up to 72% with 2-methoxystyrene) can be

obtained.4 In view of our interest in the preparation of bioactive tetralins,5 we deeided to explore the tandem

intermolecular carbolithiation-intramolectrlar carbolithiation approach to their synthesis outlined in Equation

2. The intramolecular cyclisation is obviously related to the work by Bailey et al. concerning organolithium

cyclisations on to alkenes and alkynes.6,7 Most published examples of this reaction are of the 5-exe-trig or 5-

exo-dig type, although there are a limited number of 6-exo-trig6a and 6-exo-dig7 processes known. The

combination of this proven methodology with styrene carbolithiation would, in principle, provide a novel and

versatile route to substituted tetralins.s
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Suitable cyclisation precursors, designed to test tbe scope and limitations of the methodology

outlined in Equation 2, were prepared from commercially available 2-bromostyrene 1 by the copper-catalysed

Grignard procedure9 shown in Scheme 1.10 The alkylation yields, which are unoptimised, were considered

acceptable given the potential for elimination from the homoallylic iodides.
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Scheme 1
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The organolithium addition reactions of 2a - 2fwere then explored (Scheme 2). Alkynes 2a-c were

studied first, commencing with the dialkyl alkyne 2a. Addition of butyllithium to a solution of 2a in diethyl

ether gave two separable adducts in a combined yield of 79V0. The adducts were shown to be allcyne 3 and

allene 4. This result confirmed our belief that organolithium addition reactions to compounds 2 would occur

preferentially at the styrene site, but indicated that the 6-exo-cyclisation was not facile with an inactivated

alkyne. We therefore moved on to look at phenylalkyne 2b. In this case butyllithium addition again

occurred regioselectively at the styrene site but, most pleasingly, cyclisation then followed to produce, after

protonation, tetralin 5 (74%), accompanied by allene 6 (9%). With trimethylsilylalkyne 2C the cyclisation

was even more efficient with vinylsilane 7 being isolated in 80’%yield as the only product. In both of these

successful examples, the adducts 5 and 7 were isolated as 1:1 mixtures of E- and Z-alkenes; the rapid

equilibration of a–phenyl and cr,-trimethylsilyl vinyllithium reagents has been noted before.7b

Having demonstrated the viability of the tandem intermolecular carbolithiation-intramolecular 6-

exo-dig cyclisation we moved on to examine the corresponding 6-exe-trig process with the activated alkenes

2d-f. T~atment of styrene 2d with butyllithium gave, after protonation, the 1,2-dialkylated tetralin 8 in 71%

yield with a 2.2:1 predomominance of an isomer tentively assigned as having the mans-configuration. With

the corresponding vinylsilanes 2e and 2f, the reactions were efficient and they were rdso stereoselective as

tetralin 9 was isolated regardless of which silane was employed.11 The 1,2-mans-configuration was

tentatively assigned to 9 by comparison of IH- and 13C-chemicalshifts with the published values for the 1,2-

dimethyltetralins,sa and because no nOe could be observed between the methine protons.

The reactions shown in Scheme 2 were all carried out using butyllithium as initiating nucleophile

and protonation at the completion of the reaction. The methodology is extremely versatile in that a range of

nucleophilic organolithium reagents and electrophiles can be employed. Thus (Scheme 3), with styrene 2f

hexyllithium followed by protonation gave tetralin 10, and butyllithium followed by formulation with DMF

gave 11(desilylation occurring during work-up).

We are currently exploring further the synthetic potential of these processes with particular

emphasis on asymmetric variants4 and applications in medicinal chemistry.
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Scheme 2
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