
Vol.17 No.5 J. Comput. Sci. & Technol. Sept. 2002 

Kernel Projection Algorithm for Large-Scale SVM Problems 

WANG Jiaqi (2E~1%~), TAO Qing ([N ~1) and WANG Jue (21~ ~ )  

Institute of Automation, The Chinese Academy of Sciences, Beijing 100080, P.R. China 

E-maih wang_jq@yeah.net; wangj@iamail.ia.ac.cn 

Received December 28, 2001; revised May 28, 2002. 

Abs t r ac t  Support Vector Machine (SVM) has become a very effective method in sta- 
tistical machine learning and it has proved that training SVM is to solve Nearest Point pair 
Problem (NPP) between two disjoint closed convex sets. Later Keerthi pointed out that it is 
difficult to apply classical excellent geometric algorithms directly to SVM and so designed a 
new geometric algorithm for SVM. In this article, a new algorithm for geometrically solving 
SVM, Kernel Projection Algorithm, is presented based on the theorem on fixed-points of pro- 
jection mapping. This new algorithm makes it easy to apply classical geometric algorithms 
to solving SVM and is more understandable than Keerthi's. Experiments show that the new 
algorithm can also handle large-scMe SVM problems. Geometric algorithms for SVM, such as 
Keerthi's algorithm, require that two closed convex sets be disjoint and otherwise the algo- 
rithms are meaningless. In this article, this requirement will be guaranteed in theory by using 
the theoretic result on universal kernel functions. 
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1 I n t r o d u c t i o n  

Recently, Support  Vector Machine (SVM) has become a very effective method in statistical machine 
learning [1]. Firstly, SVM is based on the statistical learning theory and minimizes structural  risk rather  
than the empirical one. Secondly, the maximal  margin algorithm is given, which is only concerned 
with the operation of dot product. Finally, the kernel method is applied to solve nonlinear problems. 
Then training SVM is converted into finding the solution of Quadratic Programming (QP). 

However, the classical algorithms about  QP are too slow to handle large-scale problems. Although 
Sequential Maximal Optimization (SMO) can solve SVM very fast, it is still necessary to explore 
geometric explanation and algorithms for SVM because there have been many intuitive geometric 
algorithms for large-scale problems. While QP conceals the nature of problems, the geometric method 
for learning problems may be regarded as a vehicle for understanding profound ideas and more efficient 
methods can be easily explored. 

In 1996, Bennett  proved that  training SVM is to solve the Nearest Point pair Problem (NPP) 
between two disjoint closed convex sets [2]. Later this idea was also given in [3-5]. Keerthi  pointed 
out that  it is difficult to apply the classical Gilbert algorithm, which does well in the Minimal Normal 
Problem (MNP),  to solving NPP. In fact, MNP is the special case of NPP and thus solving MNP is 
simpler. Keerthi designed a new algorithm for NPP  motivated by the Gilbert algorithm. Compared 
with SMO, Keerthi 's  algorithm is intuitive and understandable. 

In this article, we point out that  the solution of linear SVM is a fixed-point of projection mapping 
by using the result in [6]. Based on this idea and Swap algorithm in [6], solving SVM is further 
converted into doing MNP. Then the Gilbert algorithm can be easily applied into solving SVM and 
so the difficulty pointed out by Keerthi is overcome. Our algorithm is more understandable than  
Keerthi 's  because it is only required to understand Gilbert 's  algorithm and the concept of fixed-point. 
Some experiments show that  our algorithm can also handle large-scale SVM problems. 

This research is supported by the NKBRSF of China (Grant No.G1998030508), the National Natural Science 
Foundation of in China (Grant No.60175032) and the Pilot Program of the Knowledge Innovation Project of Chinese 
Academy of Sciences. 
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The geometric algorithms for SVM require that  two closed convex sets be disjoint, and otherwise 
the algorithms are meaningless. This requirement cannot be guaranteed when Keerthi combines his 
algorithm on NPP with the classical kernel function for nonlinear SVM. By using the theorems in 
topology and functional analysis, we have proved that  some kernel functions are universal, namely, 
correcdy classifying two arbitrary sample sets [121. In this article, this theoretical result will be ex- 
plained geometrically and by using universal kernel functions the requirement mentioned above would 
be guaranteed in theory such that the geometric algorithms for SVM become reasonable. 

In all, the primary contributions of this article are: 
1) A new way to geometrically solve SVM is pioneered by using the concept of fixed-points of 

projection mapping such that many excellent geometric algorithms, such as Gilbert algorithm, can be 
applied to SVM. 

2) Based on the analysis of universal kernel functions, it is guaranteed that two dosed convex sets 
are disjoint in theory. Therefore the geometric algorithms for SVM become reasonable. 

In addition, we will define Relative Maximal Margin in this article since we find that  the computing 
cost is related to it rather than Maximal Margin. But Maximal Margin is regarded as the benchmark of 
computation cost in [3]. The nature of support vectors wilI also be more deeply understood. Support 
vectors are trivial for linear SVM, but crucial for nonlinear SVM. Support vectors representing the 
classifier are not unique while the classifier is unique. 

T a b l e  i 
Notations 

Ra 
Meaning  of notat ions 

&dimensional Euclidean space 
F Feature space 

P, Q Point sets in sample space 
I , J  

u , v  

D', V Bounded, closed and convex subsets  of F 
Z 

w u v  

7rU, 7rV 

rc C/ ~/ 

rr C/ , ~r # 

d(., .) 

Index sets of P and Q respectively and I I I =  n, tJI = m 
Bounded, dosed and convex subsets  of R d 

Minkowski set difference of U and V ,  Z = U - V =_ { u  - v : u E U , v  6 V }  

7r U o Tr V 
Projection operators  on U and V respectively 
~r C/ o rr 9 

Projection operators on 0 and V respectively 
Euclidean distance 

The remainder of this paper is arranged as follows. Geometric interpretation of linear SVM is given 
in Section 2. Section 3 introduces the Projection algorithm combining the Swap algorithm with the 
NPP algorithm. Section 4 is devoted to the definition of feature mappings and kernel functions and the 
explanation of polynomial and Gaussian Radius Basis Function (RBF) kernel. The Kernel Projection 
algorithm, three experiments and some discussions will be given in Sections 5 and 6. Conclusions are 
summarized in the last section. Notation, which will be used in this paper, can be found in Table 1. 

2 Linear S V M  

Linear SVM is a hyperplane that separates positive samples from negative samples with Maximum 
Margin. In the linear case, the margin is defined 
by the distance between the nearest positive and 
negative samples to the hyperplane (See [7] and 
left figure in Fig.l).  

Maximizing the margin can be expressed by 
the following optimization problem 

min~l{c0H 2 s.t. V i < I O J ,  gi(<w,p,}+b) >_ 1. 

(1) 
This optimization problem can be converted 

/ 
11 . i' / / 
/ Margm/ ,~..~argin,, 

/ 1 
/ / 

Fig. 1. Left figure: based on discrete points, can optimal 
hyperplane and suppor t  vectors be found without the QP 
method? Right figure: it is easy to find them via the NPP  
algori thm (geometric method).  
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into the following dual form 

1 
max ~ a i - - ~  ~ aictjyiYj<Pi,qj) s.t. Z YiCti-~O' ai>--O' V i E I U J  (2) 

iEIuJ i , j E I u J  iEIuJ 

It seems that  there is no choice but the QP method for the optimization problem (2). In fact, 
there are bet ter  methods for SVM. In this section, the maximal margin algorithm in the linear case 
based on the shortest distance between two disjoint closed convex hulls spanned by samples will be 
described. 

The following theorem is elementary in convex analysis. 
T h e o r e m  2.1. Let Pi,P2,. . . ,Pr~ be vectors in R d. Let U be the smallest closed convex set con- 

taining p i , p 2 , . . . , p n ,  then U = {u = E i=i  aipi : E i= l  ai = 1, ai  _> 0, i = 1 , 2 . . . , n } .  U is also 
called the closed convex hull of pi ,p2, .  . . ,p,~ or the closed convex set spanned by Pi ,P2, . .  . ,P~. 

From Hahn-Banach separation theorem, the following theorem is obtained. 
T h e o r e m  2.2. P and Q are linearly separable if and only if their closed convex hulls are disjoint. 

The separation hyperplane decided by their closed convex hulls is in fact a linear classifier between P 
and Q. 

Obviously, the existence problem of linear classifier is solved by Theorem 2.2. However, how to get 
the linear classifier? Except solving the optimization problem (2), the following idea may  be better.  

Assume that  U and V are the closed convex hull of sample sets Pi,P2, . . .  ,P,~ and ql, q2 , . . . ,  q-~, 
respectively and the two sample sets are linearly separable. Consider the following quadratic pro- 
gramming problem: 

min E aipi E c~jqj 2 - s . t .  vi zuJ (3) 
iEI j E J  iEI j 6 J  

Problem (3) can be strictly proved to be equivalent to (2) [2'3]. 
* * . . n . f r ~  . 

If a l a 2 , . . .  ,a , , /3r , /3~, . . . ,13,~ is a solution of (3) and let u* = ~ i = t  c~iPi, v* = 2~=iNq~ and 
w = u* - v*, u* and v* is the nearest point pair between U and V. [lu* - v*[I = minueu, ,~v I I~  - v i i ,  
which is denoted as d(U, V), is called the shortest distance between U and V. The linear classifier 
between two sample sets is a hyperplane, which passes the center of u* and v* with normal vector 
co. This classifier is just the same as the one determined by (2) since the problems (2) and (3) are 
equivalent. Those points for a ;  r 0 (i = 1, 2 , . . . , n )  and/3~ 7~ 0 (j  = 1, 2 , . . . , m )  are just support  
vectors (See the right figure in Fig.l) .  

Fig.2. Left figue: the classification of two 

According to the above geometric description, one can un- 
derstand SVM from another viewpoint. If  the prior knowl- 
edge is unknown, it is reasonable to equally separate two sam- 
ple sets. For the classification of two samples in the two- 
dimensional space, the perpendicular bisector should be re- 

samples. Right figure: the classification of garded as the classifier. If  there are more than  two samples, 
more than two samples, the classification between two sample sets is equivalent to tha t  

between their convex hulls according to the Hahn-Banach theorem. Here the classifier determined by 
SVM is the perpendicular bisector between the two convex hulls, which is in fact tha t  between the 
two nearest points. (See Fig.2) 

In addition, one can easily understand why only the operation of dot product  is concerned in the 
algorithms for SV1V[. For example, if only <a, a), (a, b}, <b, b}, <x, a>, <x, b} are known, then <x, a> - 

2 = 0 is a classifier. Here "a" and "b" are trained samples and "x" is a test sample. 
Therefore, the dot products  of every two samples are sufficient for implementing the classification and 
the value of each sample is unnecessary. 

From the view of SVM, the classifiers determined by (2) and (3) are the same. However, their 
description about SVM is different intrinsically. The optimization problem (2) is based on the margin 
of two discrete point sets while (3) is based on the shortest distance between two disjoint convex hulls. 
Although QP can still be applied in (3), there are many efficient and intuitive geometric methods for 
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(3). Moreover, the geometric description makes the nature of learning 
problems clearer. For example, support vectors are trivial in the linear case 
since the classifier only depends on the nearest point pair of two disjoint 
convex hulls naturally. However, support vectors are crucial if kernel is 
applied in the nonlinear case because the nearest points in the feature 
space cannot be represented without them. In addition, the solution of 
SVM is not unique since the representation of the nearest points may be 
different, but the classifier decided by SVM is fixed. For example, the 
nearest point u* may be represented by either support vectors P1 and P2 
or support vectors P1 and P3 (See Fig.a). 

/ t 
,' Margin/' 

// ] // 

Fig.3. Support vectors 
representing the nearest 
points are not unique. 

3 P r o j e c t i o n  A l g o r i t h m  f o r  L i n e a r  S V M  

Def in i t i on  3.1 ( M i n i m a l  N o r m a l  P r o b l e m ) .  Let  U be a bounded and closed convex set in 
E d, where o an origin in R d and o ~ U. Solving M N P  is to f ind a u E U such that Vx E U~ 

- o i l  _< I lx  - o i l .  
As pointed out in [3], solving NPP between U and V is equivalent to the MNP of Z, which is the 

Minkowski set difference of U and V. It seems that MNP of Z is simpler than NPP, but MNP of Z 
is not simpler because of too many vertices of Z. Thus Keerhi pointed out that  it is difficult to apply 
some excellent geometric algorithms for MNP, such as the Gilbert algorithm, to solving SVM directly. 
Keerthi designed a geometric algorithm for SVM motivated by the Gilbert algorithm. 

Recently, it has been proved that the nearest point pair between U and V is the fixed-point of 
projection mapping in the Hilbert space. Then the corresponding algorithm on finding this fixed-point 
named Swap algorithm is presented[ 6]. According to this result we further point out that  the solution 
of SVM is the fixed-point of projection mapping and apply the Swap algorithm to SVM. Then solving 
SVM is converted into doing MNP such that a new way to geometrically solve SVM is pioneered. 
This new way makes it possible to apply many excellent geometric algorithms of MNP such as the 
Gilbert algorithm, and the difficulty pointed out by Keerthi witl be overcome. Then by combining the 
Swap algorithm with the Gilbert algorithm, a new geometric algorithm for SVM, named Projection 
algorithm, is given in this article. Some definitions and lemmas in [6] will be introduced in the following 
in order to make it easy to understand that SVM is just the fixed-point of projection mapping. 

De f in i t i on  3.2. Let  U be a bounded and closed convex set in R d. Let o be a point  in R a and 

o ~ U. u is the project ion o f o  on U i f  and only i f u  E U and Vx ~ U, Ilu - oil <_ lira - oIt. 7ru: o -~ u 
is called a project ion operator on U. 

Def in i t i on  3.3. Let U and V be two disjoint, bounded and closed convex subsets in R a and 7ON 
and zrv project ion operations on U and V ,  respectively. Let  7ruv - 7cu o zry and 7cur : U -+ U is 
named by the alternate project ion operation. ~ruv(u)  is a alternate projection of  u on U i f  u E U. 

L e m m a  3.1. 7cur : U --~ U is a non-expansive operator and there exists a f ixed-point  of  the 
operator 7ruv : U -+ U. 

L e m m a  3.2. Let U and V be two disjoint, bounded and closed convex subsets in R a and 7cu and 
Try project ion operations on U and V ,  respectively. 

(1) I f  u E U satisfies that  there exists v E V such that d(u, v) = d(g,  V)  then u is a f ixed-point of  
the operator: 7ruv : U --+ U. 

(2) Conversely ,  i f  u E U and u is a f ixed-point of  Truv, then d(u, rcv(u))  = d(U, V ) .  
T h e o r e m  3.1. The Swap algorithm converges to a point  u E U such that u and v = ~rv(u) satisfy 

d(u, v) = d(U, V ) .  

The idea of the Swap algorithm is shown in Fig.4 and the details can be found in [6]. 
To use the Swap algorithm, a fast algorithm projecting a point on a convex hull is needed and a 

local search procedure has been introduced in [6]. Unfortunately, it can only be applied in a three- 
dimensional space. In the higher space, we will apply Gilbert algorithm Is], MDM algorithm [9] or 
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Hybrid algorithm [1~ to Swap algorithm. The details about these algorithms can be found in [3]. Here 
we only introduce Gilbert algorithm for simplicity and its process is shown in Fig.5. 

"-2"-. 
u = ~ ,+ l= ,~u(v i ) - " '4  

V U 

Fig.4. Swap edgorithm. 

Gilbert algorithm is described as follows: 

Step 1. Choose  u0 E U and  er~, 
Step 2. Solve m i n ~ e p ( x  - o,u~ - o) and min (u i )  = x; 

o 

'U, 0 : ls i 

Fig.5. Gilbert  algorithm. 

Step 3. Ana ly t i ca l ly  solve ui.t-1 and  ui+l  is the  neares t  poin t  of o on the  segment  of ui a n d  min (u i ) ;  
Step 4. If llUt+lII z - (u~+l, m in (u i+ l )}  < err ,  t h e n  u = Ui+l and  stop,  o therwise  u, = u i+ l  a n d  go to S tep  

2. 

From the above analysis, the solution of SVM is a fixed-point of alternate projection operation 
a v  and hnear SVM will be solved geometrically by the Projection algorithm combining the Swap 

algorithm with the Gilbert algorithm. The difference between the Projection algorithm and Keerthi 's  
algorithm is that  the Projection algorithm converts NPP  between U and V into a simpler MNP 
of Z and the vertex number of the new convex hull Z does not increase. Therefore a new way to 
geometrically solve SVM is opened and the Gilbert algorithm can be used directly. 

Although no firm conclusion can be drawn from the limited experiments, the Swap algorithm has 
exhibited sub-linear empirical computational  cost [6]. Moreover, the Swap algorithm opens a way to 
get faster algorithms if a fast projection method required in the Swap algorithm is employed. 

4 N o n l i n e a r  S V M  

In Section 3 a geometric algorithm for linear SVM is presented. Recently the feature mapping and 
kernel method are very popular and efficient for solving nonlinear SVM. However, the kernel method 
does not guarantee that tile mapped points are linearly separable in the feature space. Linearly 
inseparable mapped points mean that two corresponding closed convex sets intersect. Obviously, the 
algorithms on NPP including Keerthi's algorithm and our algorithm will become meaningless if two 
closed convex sets intersect. 

Fortunately, we have proved the existence of universal ke.rnel functions in [121. In this article, the 
theoretical result will be used to solve the above problem. Here, we will give the intuitive analysis 
on the theoretical result and give an example on universal kernel functions. First, it is necessary to 
understand the nature of feature mappings and the kernel method from the following example (quoted 
from [111, see Fig.6). 

x ~ X2 
x 

. . . . . . .  ;-2. 
~ r  o ~x x a : l  

" o 9 o  O ~, 

a , "i 

% 

S 

z3 

x 
x X x 

~ x  
x x 

0 o ~  ~ 
o oo~ x Zi 

Fig.6. Feature mapping �9 : R z ~ R 3[11]. 
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Ezampte 1. A nonlinear classifier is required to separate two classes in a ~wo-dimensional sample 
space, while only a hyperplane is needed in the three-dimensional feature space via the feature mapping 
~ :  R ~ ~ R 3 here (zl z2,z3) =- (x~, xfl2xlx2,x~). 

(x~ ,x2)~-+~z~ ,z.z,z.jj 
From this simple example, the nonlinear classification problem can be converted into a linearly 

separable one in the high dimensional space if the classifier is a polynomial function ao + alx~ + 
v/2a2x'~x~ + a3x~ = 0. The Tietze extension theorem in [Fopo!ogy solves the existence problem, of 
nonlinear classifier, which is just like the Hahn-Banach separation theorem for the linear one. Here 
we will give a new explanation about the kernel method by using the Tietze extension theorem. 

Def in i t ion  4.1. Let Q1 and Q'2 be two disjoint and closed sets in R a. A mapping d~ : R d ~ H is 
called a feature mapping about classification of Q1 and Q2, if H is a Hilbert space, such that q~(Qt) 
and ~(Q2) are linearly separable in H,  and H is called a feature space about classification of Qt and 
Q2. Here, the dominant role of feature mappings, which guarantees linear separability, is obviously 
emphasized. 

Def in i t ion  4.2. Let ~ : R d --+ H be a feature mapping about classification of Q1 and @2. A 
mapping k : H x H ~ R, k ( x , y )  = ( ~ ( x ) , ~ ( y ) )  is called a kernel mapping corresponding to the 
feature mapping q~ about classification of Q1 and Q,,,. 

Def in i t ion  4.3. Let H be Banach space, a mapping ~ : R d --+ H is called a universal feature 
mapping, if  q~(Q1) and ~(Q2) are linearly separable in H for arbitrary disjoint closed sets Q~ and Q2 
in R ~. The corresponding kernel k is called a universal kernel mapping. 

From the Tietze extension theorem in Topology, the following theorem is obtained. 
T h e o r e m  4.1. Let X be a metric space, then for each two disjoint closed sets Q1 and Q~, there 

1 V z E Q 1  
ezists a continuous function f ( x )  : X -+ [-1,  1], such that f ( z )  = - 1  Vx E Q2 

The proof can be found in [12]. 
Since Q1 and Q2 are not closed convex but only closed, their empty intersection only means that 

they are linearly inseparable, or roughIy no inconsistent samples. Theorem 4.1 is in fact an existence 
theorem for nonlinear classifiers, guaranteeing that there is a nonlinear classifier for linear inseparable 
problems without inconsistent samples. 

When we discuss a classification problem, Q: and Q, are generally two bounded sets in a finite 
dimensional Euclidean space. The Tietze extension theorem guaraneees that there is a continuous 
function f separating Q1 and Q2. According to the Stone-Weierstrass theorem, for Ve > 0, there is 
an n-order polynomial a0 + a l z  + -.. + a,~a:" such that Ill - (ao - f-atz  + . . .  + a~x'~)ll < e. If e is 
small enough, ao -. a lx  ~- . . .  + a,~x "~ = 0 can be approximately regarded as a classifier. Therefore, 
the feature mapping can be constructed and nonlinear problems are converted into linearly separable 
problems in the high dimensional space similar to the above example. 

In fact, RBF can be extended to infinite terms according to Taylor series extension. This means 
that the dimension of the feature space is infinite. According to the above analysis, RBF can approach 
arbitrary continuous functions because RBt;' can always correspond an n-order polynomial function, 
where n is an arbitrary natural number. Therefore RBF is just a universal kernel function guaranteeing 
two disjoint closed convex sets, which is the requirement of the algorithm for NPP. More theoretical 
details on universal kernel fimctions can be found in [12j. 

5 K e r n e l  P r o j e c t i o n  A l g o r i t h m  f o r  N o n l i n e a r  S V M  

The Projection algorithm can solve linear SVM. In order to solve linearly inseparable problems in 
the sample space, the Kernel Projection algorithm is given in this section by combining the Projection 
algorithm with the kernel method. The reason for this combination is that only the operation of dot 
product is concerned in the Projection algorithm. In addition, the theoretical analysis in Section 4 
guarantees that this geometric algorithm is reasonable. 

The Kernel Projection algorithm is described as tbllows: 
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Step t. Choose xl E U, then ~(xl)  E U and the stopping criterion EP& 
Step 2. <P(x=+l) = rccr~(eP(x,)); 
Step 3. If Hei'(x~+l) - ~5(zn)iI 2 _< EPS, then go to Step 4, else x ,  = x,+~, go to Step 2; 
Step 4. (r rq>(Cb(x~))) is an approximate solution pair and stop. 

Here, the projection opera tor  rr can be solved th rough  Gilbert, M D M  or Hybr id  algori thms men- 
tioned in Section 3. Each point  in the feature space is represented only by the linear combinat ion of 
feature mapping in all samples and all the algebraic comput ing  in the high dimensional  feature space 
can be avoided entirely. For example, II~(x) - ~(y)[I 2 can be computed  by k(x, x) - 2k(x, y) + k(y, y). 

From the Kernel Projec t ion  algorithm, the Swap algori thm is employed as a shell p rogram for 
solving N P P  in the feature space. It  converts N P P  into a simpler M N P  and the number  of outer  
loops is usually small. In our experiment  on the two-spiral problem, two loops are enough for the 
classification. In addition, it has been reported tha t  an empirical computa t iona l  t ime of the Swap 
algorithm is sub-linear [6]. From our experiments,  it is obvious tha t  the computa t ion  t ime increases 
linearly with the size of samples and the number  of suppor t  vectors (See Fig.7 and Fig.8). So we think 
that  the Kernel Project ion algori thm can also handle large-scale SVM problems and its geometric 
meaning is more obvious. 

400 

300 

= 200 

I00 

1 2 3 
Size of samples (• 10 a) 

Fig.7. The relation between computational cost and 
size of sarnplcs. 

400 

:~ 300 

td9 
= 200 
'E 

[00 

0 ~ , 

ad0 s;o r;0 
Size of SV 

Fig.& The relation between computational cost and 
size of SV. 

6 E x p e r i m e n t s  a n d  F u r t h e r  D i s c u s s i o n  

The following experiment  results are obtained with a P I I I  600MHz processor and 256M bytes 
memory. Two spirals K1 and /(2 are given in polar coordinates:  K1 : p -- 8, K2 : p = 8 + 7r. In the 

-ilx-yll -~ 
experiments, RBF  c0e 2~2 is used. We find that  the appropria te  parameters  a and co can ensure 
the feature space linear separable, thus the Kernel Project ion algori thm can be applied. 

Experiment 1. 0 < 8 < 10rr. The  parameters  2c ~2 and Co are taken to be 3 and 1.5, respectively. 
We find tha t  the number  of suppor t  vectors almost does not change when the size of samples increases. 
The  relation between the comput ing  cost and the size of samples is shown in Fig.7. 

Experiment 2. T he  size of samples is always 63,000. The  parameters  2a 2 and co are taken to be 
0.7 and 4, respectively. We find out tha t  the number  of support  vectors increases when the range of 
8 becomes larger. The  relation between the comput ing  time and the size of suppor t  vectors is shown 
in Fig.8. 

Experiment 3. 0 < 8 < 10r~. The size of samples is 30,000, and 2(~ 2 = 3. We find tha t  the running 
time depends on Relative Maximal  Margin rather than  Maximal Margin and the larger Maximal 
Margin does not necessarily reduce tile running time. The details can be found in Table 2. 

The classical QP based on the Hessian matrix need to compute  the dot  product  of each two points. 
However. tile SMO and  geometric method  show that  this computa t ion  is unnecessary. SMO is to solve 



No.5 Kernel Projection Algorithm for Large-Scale SVM Problems 563 

a sequence QP of size two and this is done analytically. Similarly, geometric methods convert NPP of 
two disjoint convex sets into that of two or three points and this can also be done analytically. The 
computational cost of SVM is reduced since the Hessian matrix is avoided. Geometric methods and 
SMO are all competitive for solving large-scale SVM problems [a]. Although the objectives of SMO 
and geometric methods are equivalent, their descriptions are different. The former is to maximize the 
margin of two discrete point sets and the latter is to solve the shortest distance of two disjoint closed 
convex sets. While their computational costs are similar, the latter can be more easily understood 
than the former. 

T a b l e  2. Exper iments  on Relative Margin 
Parameter  in RBF co 1.5 2 2.5 

Maximal margin 0.1491 0.1614 0.1743 
Relative maximal margin  0.0994 0.0807 0.0697 

Running time (s) 45.596 54.939 61.358 
Support  vectors 264 315 356 

3 
0.1873 
0.0624 
66.125 

387 

-il~-yll = 
Although the existence problem of universal kernels is solved theoretically and RBF e 2~ 2 is 

just a universal kernel that  can convert arbitrary distribution samples into linear separable sets, there 
are still linearly inseparable cases in the feature space because of the rounding error in computers. The 

~ "  x I x 2 i feature mapping e 2~- (1, 7, ~ ( 7 )  ' ' " '  w~.' (~)'~' '" ') '  by which the RBF kernel can be constructed, 

cannot be extended to infinite terms because of the rounding error and thereby the dimension number 
of the feature space is not infinite. The smaller or, the higher the dimension of the feature space. 
Linearly inseparable problems may occur in the feature space if the dimension is not large enough. 
On the other hand, we find that the maximal margin lessens if the smaller cr is chosen. Thus it is 
unavoidable to adjust the parameters in kernel functions in order to solve both generalization and 
nonlinear problems. 

In the view of feature mapping, the new feature mapping co ~ is used such that all the mapped 
I1r 

points are on a hypersphere in the feature space. The corresponding kernel function is co k(x,~) = 

and co is the radius of the hypersphere. Experiments can be analyzed easily if mapped points are 

located in a hypersphere. RBF e 2~: just satisfies the above property and maps all sample points 
onto a hypersphere. 

-II~-vIP 
In this paper, a coefficient Co is used in RBF and thus k ( x , y )  = c0e 2~ This means that 

each point is mapped onto a hypersphere with the radius co in the featm'e space. If co is selected 
appropriately, the number of support vectors will become less and running time will also be reduced. 
A new concept, Relative Maximal Margin is defined as era, where m is Maximal Margin in the feature 
space. In [3], Maximal Margin is regarded as the benchmark of convergence speed, but we think 
that the convergence speed may be proportionally related to ~m rather than 'm (See Table 2). It is 
interesting that co is just related to the bound of the VC dimension. Thus Relative Maximal Margin m 
should be more natural than Margin. 

7 C o n c l u s i o n  

The Kernel Projection algorithm is presented in this paper, which combines the kernel method with 
the Projection algorithm. Experiments show that this geometric algorithm can handle large-scale SVM 
problems and its geometric meaning is more obvious. "What is more important is that solving SVM is 
converted into doing MNP and thus many excellent geometric algorithms can be applied. 

In addition, the theoretical analysis on universal kernel functions guarantees that the geometric 
algorithms for SVM are reasonable in theory. Although the soft margin idea has been applied to the 
NPP algorithm for SVM in [3], we think that there is a flaw. How to combine tile Kernel Projection 
algorithm with the soft margin idea is further reported in [13]. 
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A c k n o w l e d g e m e n t  ~r wou ld  like to t h a n k  the  referees  for t he i r  v a l u a b l e  c o m m e n t s  on  th is  
pape r .  
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