Synthesis of New β-Hydroxy Nitrate Esters as Potential Glycomimetics or Vasodilators

Huseyin Cavdar^[a] and Nurullah Saracoglu*^[a]

Keywords: Cyclitols / Epoxidation / Nucleophilic addition / Ring expansion / Lewis acids

New β -hydroxy nitrates have been synthesized by the ringopening reaction of epoxides with Bi(NO₃)₃·5H₂O, which was used both as a catalyst and reagent. The synthesized molecules are both potential cyclitol mimetics and vasodilators as a result of their hydroxy groups and nitrate esters. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

Highly hydroxylated cycloalkanes are often referred to as cyclitols. Cyclitols are important compounds due to their potential use as glycosidase inhibitors, which are receiving considerable attention for their chemotherapeutic applications against diabetes, cancer, and viral infections.^[1] For instance, inositols and, in particular, myo-inositol (1) derivatives play a central role in the cellular signal of various glycosidase enzymes and may have therapeutic applications.^[2] Owing to the fundamental importance of cyclitols, there has been considerable interest in recent years in the design of new-generation cyclitol mimetics containing multiple hydroxy groups.^[3] Organic nitrates^[4] (RONO₂) are an important class of compounds that are widely used to treat a number of cardiovascular diseases,^[5] including congestive and coronary heart failure, and are also of particular benefit in the treatment of angina pectoris attacks,^[6] unstable angina^[6a,7] and acute myocardial infection.^[6a,8] Because the use of glyceryl trinitrate^[9] (2, GTN) in the treatment of Angina pectoris has been shown to cause several adverse effects, the search for new organic nitrates with reduced side-effects and improved oral bioavailability has greatly increased in recent years. Isosorbide dinitrate (3, ISDN) and mononitrate are clinically used as vasodilators.^[10] The synthesis of four selectively nitrated derivatives 4-7^[11] of myoinositol has been reported in studies of hypotensive and cardiovascular activity.

E-mail: nsarac@atauni.edu.tr

Epoxides are versatile organic synthetic intermediates. For instance, 1,2-substituted β -hydroxy nitrates can be prepared through the facile ring-opening of epoxides. As a first approach to the synthesis of hydroxy nitrates, the classic methods used involve either the reaction of epoxides in nitric acid^[12] or the nitration of halohydrins with AgNO₃.^[13]

These methods require highly acidic conditions and the use of an expensive silver salt, respectively. A second approach involves the ring-opening of the epoxides by the nitrate ion prepared from NH₄NO₃, Bu₄NNO₃ or NaNO₃ in the presence of Lewis acids.^[14] The use of NO in air,^[15] (NH₄)₂Ce(NO₃)₆^[16] and ZrO(NO₃)₂^[17] in equivalent amounts has also been reported for the direct preparation of hydroxy nitrates from epoxides. Recently, the ring-opening of various epoxides using Bi(NO₃)₃·5H₂O to give β-hydroxy nitrates has been accomplished by Das et al.^[18] and Salvador and co-workers.^[19]

Functionalized organic nitrates are also intermediates in organic transformations. In fact, nitrates are the protected form of hydroxy groups and can be reduced to the corresponding alcohols by using catalytic hydrogenation^[20] or reduction reagents.^[21] Herein, we report the formation of new nitrate esters as possible glycomimetics and vasodilators by

[[]a] Department of Chemistry, Atatürk University, Erzurum 25240, Turkey Fax: +9-442-236-0948

Supporting information for this article is available on the WWW under http://www.eurjoc.org/ or from the author.

FULL PAPER

bismuth(III) nitrate mediated ring-opening of various mono- and diepoxides under mild reaction conditions. We selected bismuth nitrate pentahydrate, $Bi(NO_3)_3 \cdot 5H_2O$, as it is relatively non-toxic, readily available at low cost, insensitive to air and requires no special care during its hand-ling.^[22]

Results and Discussion

In our focused efforts to synthesize new-generation cyclitols or vasodilators through epoxide ring-opening reactions with $Bi(NO_3)_3 \cdot 5H_2O$, three types of epoxides were selected: (i) carbocyclic mono-epoxides, (ii) diepoxides, and (iii) epoxides with a tricyclic framework. Initially, the reaction of cyclooctene epoxide 8 (1 equiv.) and bismuth nitrate pentahydrate (1 equiv.), both as a nitrating agent and as a catalyst, was investigated at room temperature with dichloromethane as the solvent. The corresponding β -hydroxy nitrate 9 was obtained as the single reaction product and was characterized by ¹H and ¹³C NMR (Scheme 1). The cyclooctene epoxide 8 was selected due to its double bond which can be easily functionalized. Then we turned our attention to the bromination reaction of 9 to observe the behaviour of the double bond and the free alcohol group in the molecule.^[23] Compound 9 was treated with bromine in dichloromethane at -30 °C (Scheme 1). After purification by column chromatography and crystallization, two products were obtained. As the major product, we isolated the bicyclic ether-bridged product 10. The structure of the second product was determined to be the tetrabromide $11^{[24]}$ by NMR and elemental analysis. The structure of 10 was confirmed by chemical transformation; the bromine and nitrate of 10 were eliminated with 1,8-diazabicyclo[5.4.0]undec-7ene (DBU) to afford 9-oxabicyclo[4.2.1]nona-2,4-diene (12).^[25] For the formation of 10 and 11, we propose the mechanism depicted in Scheme 1. The formation of 10 and 11 from 9 might well be explained by the formation of intermediate 13. The exo attack of the hydroxy group on the

Scheme 1.

bromonium ion 13 produces 10. The addition of bromine to intermediate 13 yields 14. Substitution of the hydroxy and nitrate groups of 14 by HBr results in the formation of 11.

In an analogous manner, the epoxides $16^{[26]}$ and $17^{[27]}$ were selected as substrates to combine the tremendous ringopening power of the oxiranes with bismuth nitrate. The reactions were performed at room temperature in CH₂Cl₂ and these epoxides underwent stereoselective ring-opening to the corresponding products **18** and **19** as single products in yields of 85 and 73%, respectively (Scheme 2).

Scheme 2.

Owing to the fundamental importance of the two organic nitrates, isosorbide dinitrate (3) and polyhydroxylated cycloalkanes, we shifted our attention to the synthesis of molecules with two nitrate functionalities. For this reason, syn- and anti-diepoxides (20 and 21) were first synthesized by oxidation of 1,4-cyclohexadiene with excess m-chloroperbenzoic acid (m-CPBA) and separation by silica gel column chromatography (Scheme 3).^[28] As the syn-diepoxide **20** has electrophilic centres, two isomeric *trans*- β -hydroxy nitrates could be expected to form. To introduce two nitrate groups through the ring-opening reaction of epoxides, we treated the diepoxide 20 with bismuth nitrate in dichloromethane at room temperature. After completion of the reaction in 20 min, the spectroscopic data of the crude product revealed that only one dinitrate ring-opened product 24 was formed upon nitrate addition from the initially formed mono-nitrate adduct 26 in quantitative yield (Scheme 3). In particular, the three aliphatic carbon signals observed for 24 support the predicted symmetrical structure; the other possible isomer 27 should have four carbon resonance signals because of its axis of symmetry. The ring-opening reaction of the anti isomer 21 by a similar procedure yielded the dinitrate product 25 as a single product. The structure of 25 was determined by four carbon resonance signals. The other possible isomer 29 was not observed. The regiochemical outcome of the ring-opening reactions of these cyclohexene oxide type systems can be understood on the basis of the usual stereoelectronic factors that favour a trans-diaxial ring-opening mode. Figure 1 shows the AM1-calculated optimized geometries of the mono-epoxides 26 and 28, in which both have steric effects on the axial position due to the hydrogen atom in 26 and the hydroxy groups in 28. These could control the regioselectivity of the addition of the second nitrate.

Scheme 3. Reagents and conditions: (a) $Bi(NO_3)_3 \cdot 5H_2O$, room temp., 20 min, 74%; (b) $Bi(NO_3)_3 \cdot 5H_2O$, room temp., 20 min, 71%.

So as to obtain new di-β-hydroxy nitrates as potential glycosidases or vasodilators, we also used the syn-1,5-cyclooctadiene diepoxide 30, prepared from m-CPBA oxidation, as a substrate for the ring-opening reaction with bismuth nitrate in CH₂Cl₂; we isolated only one product in quantitative yield (Scheme 4).^[29] We presumed that the isolated product was the dinitrate 31. Because of the steric hindrance of the first added nitrate functionality, we concluded that the second nitrate group attacks to form syn-1,5-dinitrate 31 instead of 1,4-dinitrate 32 due to axial interactions. We carried out AM1 and PM3 calculations on both possible products and found that the isomer 31 (-133.47 and -125.79 kcal/mol, by the AM1 and PM3 methods, respectively) is thermodynamically more stable than the isomer 32 (125.50l and -119.6l kcal/mol for the AM1 and PM3 methods, respectively). Furthermore, we prepared syn-diepoxide 33 by photo-oxygenation using tetraphenylporphyrin (TPP) as a sensitizer of 1,3-cyclohexadiene followed by the CoTPP-catalyzed reaction (Scheme 4).^[30] The diepoxide 33 prepared was submitted to the ring-opening reaction with bismuth nitrate. Theoretically, the formation of three products (two symmetrical and one unsymmetrical) could be expected. However, the nitrated toxocarol derivative 34 was obtained as the sole product (Scheme 4). Although the three carbon signals observed for the molecule clearly indicate the formation of a symmetrical product, the alkoxy protons (CHOH) in molecule **34** resonate at $\delta = 4.04$ ppm

Figure 1. Optimized geometries of the mono-epoxides 26 and 28.

as a doublet (d, J = 5.6 Hz). The multiplet at $\delta = 5.30$ – 5.19 ppm relating to CHONO₂ shows that these protons are adjacent to both alkoxy and methylenic protons.

Scheme 4. Reagents and conditions: (a) $Bi(NO_3)_3$ ·5H₂O, room temp., 16 h, 70%; (b) $Bi(NO_3)_3$ ·5H₂O, room temp., 30 min, 85%.

After the successful formation of the mono- and di- β hydroxy nitrates from the rigid carbocyclic epoxides we investigated the ring-opening activity of bismuth nitrate towards epoxides in bicyclic skeletons. Norbornene epoxide (**35**)^[31] was selected as a test molecule. After the reaction of **35** with bismuth nitrate in CH₂Cl₂, the reaction mixture was purified by chromatography on silica gel to give two isomeric products (Scheme 5). Careful examination of the reaction products revealed the formation of Wagner– Meerwein rearrangement products instead of the expected *trans* ring-opened product **38**.

Scheme 5.

The structural assignments of the products were revealed by ¹H NMR spectroscopy. For both products, the relative configurations of the nitrate and skeleton structure of the molecules were determined from the coupling constants of the relevant protons. Whereas the methine proton connected to the nitrate (CHONO₂) in molecule **37** resonates at $\delta = 4.98$ ppm as a doublet of doublet of doublets (ddd, J = 7.1, 3.6, 2.8 Hz), the corresponding resonance in **36** at $\delta = 4.98$ ppm is a doublet of doublets (dd, J = 7.9, 2.9 Hz). The long-distance coupling constant (J = 2.8 Hz) in mole-

FULL PAPER

cule 37 (M or W orientation; the long-range coupling between 7*syn*-H and 2*endo*-H) supports the *exo* position of the nitrate, whereas there is no long-range coupling in the *endo*-nitrate structure 36. Double resonance experiments were also used for the characterization of 36 and 37. Irradiation of the bridge alkoxy proton converted the signal of the CHONO₂ proton into a doublet of doublets in 37. However, no similar behaviour was observed for 36 due to the *endo*-nitrate. Moreover, the large coupling constants (J= 13.9 Hz for 37 and J = 14.5 Hz for 26) for the geminal 3 and 3' protons are in agreement with the proposed structures.

In this reaction, the products **36** and **37** are Wagner– Meerwein rearrangement products, possibly obtained via intermediate **39** (Scheme 6). It is not possible to explain the products by the classic addition of nitrate to the epi ion **39**. In short, this mode of reaction shows a non-classic carbocation rearrangement.

Scheme 6.

Comparison of the results obtained during the final experiment with the others indicates that the structure of the carbocycle containing the epoxide ring affects the reaction outcome. We assume that steric effects in the intermediate 39 force the system to undergo a skeleton rearrangement. In this manner, to investigate the effect of the double bond on the skeleton rearrangement, the exo-benzonorbornadiene epoxide (43)^[32] was treated with bismuth nitrate in CH₂Cl₂. A sole ring-opened product 44 was obtained in quantitative yield. A reasonable mechanism for the formation of 44 is shown in Scheme 7. The reaction may well proceed via non-classic carbocation intermediate 46. The structure of 44 was elucidated on the basis of ¹H NMR spectroscopic data. The coupling constants relating to the methylenic protons (ddd, J = 13.4, 7.3, 3.3 Hz) and methine proton (dd, J = 7.3, 3.3 Hz) adjacent to the nitrate fully support the rearrangement product 44. Although the methylenic protons of 44 resonate as an AB system at δ = 2.33 and 2.12 ppm, the large coupling constants show that these protons are in an ethano bridge, not in a methano bridge. Extensive NMR studies did not reveal the formation of any second product. These observations indicate that the

exo face of the cation 46 is more accessible than the *endo* face, which is blocked by the benzene ring. Thus, the existence of a double bond (or aromatic ring) in the bicyclic carbon skeleton affects the product number, as well as the reaction outcome.

Conclusions

The present study using epoxides and bismuth nitrate produced not only new mono- and di- β -hydroxy nitrates as possible glycomimetics and vasodilators as well as synthetic precursors, but also led to insights into the reaction mechanisms. Monocarbocyclic oxiranes open to give products with *trans* stereo- and regioselectivity, whereas the epoxides fused to a bicyclic carbon framework are exposed to skeleton rearrangement through a non-classic carbocation mechanism.

Experimental Section

General Methods: Melting points were determined with a Büchi 539 capillary melting apparatus and are uncorrected. Infrared spectra were recorded with a Mattson 1000 FT-IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded with 200 (50) and 400 (100) MHz Varian spectrometers and are reported in δ units with SiMe₄ as the internal standard. Elemental analyses were carried out with a Leco CHNS-932 instrument.

Calculation Methods: All calculations were performed by using SPARTAN04 software for Windows, version 1.0.0.^[33] Energies were refined by using the semiempirical AM1 and PM3 methods.

Typical Procedure for the Synthesis of β-Hydroxy Nitrates: $Bi(NO_3)_3$. $5H_2O$ (1 mmol) was added to a solution of the epoxide (1 mmol) in CH_2Cl_2 (1 mL) at room temperature. The reaction was completed in 5 min–18 h as verified by TLC. Then the reaction mixture was filtered through filter paper and the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography or crystallization.

trans-[1*S*(*R*),8*S*(*R*),*Z*]-8-Hydroxycyclooct-4-enyl Nitrate (9): The product 9 was obtained from 8 (250 mg, 2.02 mmol) and $Bi(NO_3)_3$.

5H₂O (978 mg, 2.02 mmol) as described above by a typical procedure for 16 h. After filtration, the residue was purified by column chromatography (silica gel, 30 g), eluting with ethyl acetate/hexane (15:85). Elution gave the product **9** as a colourless oil (280 mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ = 5.71 (ddd, *J* = 17.3, 11.2, 7.3 Hz, 1 H, A part of AB system, =CH), 5.62 (ddd, *J* = 13.0, 8.8, 3.9 Hz, 1 H, CHONO₂), 3.96 (ddd, *J* = 13.0, 8.8, 3.9 Hz, 1 H, CHONO₂), 3.96 (ddd, *J* = 13.0, 8.8, 3.9 Hz, 1 H, CHONO₂), 3.96 (ddd, *J* = 13.0, 8.8, 3.9 Hz, 1 H, CHONO₂), 3.96 (ddd, *J* = 13.0, 8.8, 3.9 Hz, 1 H, CHOH), 2.48–2.37 (m, 2 H, CH₂), 2.28–2.08 (m, 4 H, CH₂), 1.84–1.23 (m, 2 H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 130.2, 128.5, 86.0, 71.8, 33.2, 28.6, 23.0, 22.7 ppm. IR (CH₂Cl₂): $\tilde{\nu}$ = 3418, 3018, 2937, 2867, 1722, 1629, 1576, 1482, 1467, 1449, 1318, 1283, 1209, 1138, 1122, 1059, 1014, 973, 863, 737 cm⁻¹. C₈H₁₃NO₄ (187.19): calcd. C 51.33, H 7.00, N 7.48; found C 51.02, H 7.18, N 7.60.

Bromination of *trans*-[1*S*(*R*),8*S*(*R*),*Z*]-8-Hydroxycyclooct-4-enyl Nitrate (9): A solution of Br₂ (427 mg, 2.67 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a solution of 9 (500 mg, 2.67 mmol) in CH₂Cl₂ (7 mL) at -30 °C and the mixture was stirred for 1 h. The reaction mixture was warmed to room temperature and the solvent of the mixture was removed under pressure. The residue was purified by column chromatography (silica gel, 30 g), eluting with ethyl acetate/hexane (3:97). The first elution gave the tetrabromide 11 (350 mg, 30%) and the second fraction provided 10 (485 mg, 68%).

[1*S*(*R*),2*S*(*R*),5*R*(*S*),6*R*(*S*)]-5-Bromo-9-oxabicyclo[4.2.1]nonan-2-yl Nitrate (10): Yield 360 mg, 51%, recrystallized from CH₂Cl₂/hexane as white crystals, m.p. 61–62 °C. ¹H NMR (200 MHz, CDCl₃): $\delta = 5.38-5.31$ (m, 1 H, CHONO₂), 4.83–4.75 (m, 1 H, OCH), 4.64–4.61 (m, 1 H, CHBr), 4.20–4.10 (m, 1 H, OCH), 2.30–1.90 (m, 8 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 85.10, 84.11, 79.34, 54.59, 31.50, 30.12, 28.22, 27.66 ppm. IR (CH₂Cl₂): <math>\tilde{v} = 2958, 1630, 1280, 1062, 936, 857 cm⁻¹. C₈H₁₂BrNO₄ (266.09): calcd. C 36.11, H 4.55, N 5.26; found C 35.99, H 4.52, N 5.25.$

[1*S*(*R*),2*S*(*R*),6*S*(*R*),6*S*(*R*)]-1,2,5,6-Tetrabromocyclooctane (11): Yield 260 mg, 22%, recrystallized from CH₂Cl₂/hexane as white crystals, m.p. 129–130 °C. ¹H NMR (200 MHz, CDCl₃): δ = 4.78– 4.75 (m, 4 H, CHBr), 2.86–2.79 (m, 4 H, CH₂), 2.15–2.08 (m, 4 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 59.2, 28.8 ppm. IR (CH₂Cl₂): \tilde{v} = 2922, 1426, 1217, 1065, 994, 762 cm⁻¹. C₈H₁₂Br₄ (427.80): calcd. C 22.46, H 2.83; found C 22.68, H 2.59.

(2Z,4Z)-9-Oxabicyclo[4.2.1]nona-2,4-diene (12): DBU (1.15 g, 7.57 mmol) was added to a solution of 10 (100 mg, 0.38 mmol) in toluene (3 mL) and the mixture was heated at reflux for 3 h. After cooling, H₂O was added to the reaction mixture and the mixture was extracted with diethyl ether. The organic layer was washed with water and dried with MgSO₄. After removal of the solvent in vacuo, the residue was purified by silica gel thin-layer chromatography. Elution with diethyl ether/hexane (25:75) gave 12 (40 mg, 87%, oil at room temperature). ¹H NMR (200 MHz, CDCl₃): δ = 6.14–6.06 (m, 2 H, AA' part of AA'BB' system, =CH), 5.85–5.75 (m, 2 H, BB' part of AA'BB' system, =CH), 4.71–4.63 (m, 2 H, OCH), 2.24–2.12 (m, 4 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 140.6, 126.4, 80.1, 41.9 ppm. IR (CH₂Cl₂): \tilde{v} = 2925, 1732, 1633, 1067, 913, 744 cm⁻¹. C₈H₁₀O (122.16): calcd. C 78.65, H 8.25; found C 79.01, H 8.08.

trans-[1*S*(*R*),6*S*(*R*)]-6-Hydroxycyclohex-3-enyl Nitrate (18): The reaction was performed following the typical procedure described above for 20 min starting from 16 (200 mg, 2.08 mmol) and Bi(NO₃)₃·5H₂O (1.01 g, 2.09 mmol). The mixture was filtered and the residue purified by column chromatography (silica gel, 30 g), eluting with ethyl acetate/hexane (5:95). Elution gave the product

18 as a colourless oil (280 mg, 85%). ¹H NMR (200 MHz, CDCl₃): $\delta = 5.65-5.49$ (m, 2 H, =CH), 5.10 (ddd, J = 15.3, 8.9, 6.3 Hz, 1 H, CHONO₂), 3.98 (ddd, J = 15.3, 8.9, 6.3 Hz, 1 H, CHONO₂), 3.98 (ddd, J = 15.3, 8.9, 6.3 Hz, 1 H, CHONO₂), 3.98 (ddd, J = 12.3, 8.9, 6.3 Hz, 1 H, CHON), 2.78– 2.50 (m, 2 H, CH₂), 2.30–2.03 (m, 2 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 126.4$, 124.9, 85.2, 69.1, 35.0, 31.1 ppm. IR (CH₂Cl₂): $\tilde{v} = 3570$, 3392, 3040, 2908, 2854, 1631, 1557, 1441, 1422, 1348, 1314, 1278, 1213, 1159, 1100, 1070, 1040, 997, 973, 867, 792, 755 cm⁻¹. C₆H₉NO₄ (159.14): calcd. C 45.28, H 5.70, N 8.80; found C 44.93, H 5.53, N 8.70.

trans-[2S(R), 3S(R)]-3-Hydroxy-1, 2, 3, 4-tetrahydronaphthalen-2-ylNitrate (19): The reaction was performed following the typical procedure described for 16 h starting from 17 (140 mg, 0.96 mmol) and Bi(NO₃)₃·5H₂O (465 mg, 0.96 mmol). The product 19 was recrystallized from CH₂Cl₂/hexane as yellow crystals (145 mg, 73%, m.p. 54–55 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.26–7.20, (m, 2 H, aryl), 7.19–7.07 (m, 2 H, aryl), 5.27 (ddd, J = 12.9, 8.3, 5.4 Hz, 1 H, CHONO₂), 4.16 (ddd, J = 12.9, 8.3, 5.4 Hz, 1 H, CHOH), 3.25 (dd, J = 16.8, 5.4 Hz, 1 H, A part of AB system, CH₂), 2.97 (dd,J = 16.8, 8.3 Hz, 1 H, A part of AB system, CH₂), 2.92–1.30 (m, 2 H, CH₂), 2.82 (m, 1 H, OH) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 132.9, 132.0, 129.2, 129.0, 127.2, 127.0, 83.4, 67.7, 36.3,$ 32.4 ppm. IR (CH₂Cl₂): \tilde{v} = 3565, 3402, 3066, 3025, 2908, 2853, 1717, 1635, 1585, 1496, 1455, 1440, 1423, 131, 1321, 1276, 1217, 1161, 1111, 1059, 983, 953, 871, 749 cm⁻¹. $C_{10}H_{11}NO_4$ (209.20): calcd. C 57.41, H 5.30, N 6.70; found C 57.51, H 5.08, N 6.63.

Reaction of 1,4-Cyclohexadiene with *m***-CPBA:** A mixture of 1,4cyclohexadiene (2.50 g, 31.25 mmol) and *m*-CPBA [15.54 g (70%), 62.50 mmol] in dichloromethane (100 mL) was cooled in a salt-ice bath and stirred for 2 h. Dichloromethane (50 mL) was added and the reaction mixture was then washed with 10% NaOH (3×100 mL) and water (50 mL), dried with MgSO₄, filtered and the solvent removed under reduced pressure. The residue (3.42 g) was subjected to silica gel chromatography using ethyl acetate/hexane (10:90). The first fraction gave **21** (2.35 g, 67%). Then the column was eluted with CH₂Cl₂ to give **20** (850 mg, 24%).

syn-1,4-Cyclohexadiene Diepoxide (20): Yield 625 mg, 18%, colourless crystals from CH₂Cl₂/hexane, m.p. 61–62 °C. ¹H NMR (200 MHz, CDCl₃): δ = 3.02 (d, *J* = 1.4 Hz, 4 H, OCH), 2.68 (d, *J* = 16.5 Hz, 2 H, A part of AB system, CH₂), 2.24 (dd, *J* = 16.5, 1.4 Hz, 2 H, B part of AB system, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 51.1, 25.5 ppm. IR (CH₂Cl₂): \tilde{v} = 3009, 2990, 2929, 1470, 1424, 1353, 1279, 1266, 1095, 1023, 933, 897, 835, 810, 788, 771 cm⁻¹. C₆H₈O₂ (112.13): calcd. C 64.27, H 7.19; found C 64.01, H 6.99.

anti-1,4-Cyclohexadiene Diepoxide (21): Yield 1.95 g, 56%, colourless crystals from CH₂Cl₂/hexane, m.p. 181–182 °C. ¹H NMR (200 MHz, CDCl₃): δ = 3.07–3.05 (m, 4 H, OCH), 232–2.30 (m, 4 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 50.9, 25.9 ppm. IR (CH₂Cl₂): \tilde{v} = 2925, 2854, 1729, 1464, 127, 1074, 750 cm⁻¹. C₆H₈O₂ (112.13): calcd. C 64.27, H 7.19; found C 64.30, H 7.38.

[1*R*(*S*),2*R*(*S*),4*R*(*S*),5*R*(*S*)]-2,5-Dihydroxycyclohexane-1,4-diyl Dinitrate (24): The product 24 was prepared following the typical procedure described above for 20 min starting from 20 (250 mg, 2.23 mmol) and Bi(NO₃)₃·5H₂O (2.18 g, 4.46 mmol). The product 24 was recrystallized from CH₂Cl₂/hexane as white crystals (395 mg, 74%, m.p. 113–114 °C). ¹H NMR (200 MHz, CD₃COCD₃): δ = 5.25 (ddd, *J* = 10.7, 7.1, 4.0 Hz, 2 H, CHONO₂), 5.86 (d, *J* = 4.0 Hz, 2 H, OH), 4.05 (ddd, *J* = 10.7, 7.1, 4.0 Hz, 2 H, A part of AB system, CH₂), 2.02 (ddd, *J* = 10.7, 7.1, 4.0 Hz, 2 H, B part of AB system, CH₂) ppm. ¹³C NMR (50 MHz, CD₃COCD₃): δ = 84.8, 68.6, 34.3 ppm. IR (CH₂Cl₂): \tilde{v} = 3398, 2925, 2856, 1716, 1635,

FULL PAPER

1442, 1276, 1181, 1067, 1015, 961, 854, 751 cm $^{-1}$. C_6H_{10}N_2O_8 (238.15): calcd. C 30.26, H 4.23, N 11.76; found C 30.50, H 4.08, N 11.67.

[1*S*(*R*),3*S*(*R*),4*S*(*R*),6*S*(*R*)]-4,6-Dihydroxycyclohexane-1,3-diyl Dinitrate (25): The product 25 was prepared following the typical procedure described above for 20 min starting from 21 (850 mg, 7.59 mmol) and Bi(NO₃)₃·5H₂O (7.36 g, 15.18 mmol). The product 25 was recrystallized from CH₂Cl₂/hexane as white crystals (1.29 g, 71%, m.p. 172–173 °C). ¹H NMR (200 MHz, CDCl₃): δ = 5.10 (q, *J* = 5.8 Hz, 2 H, CHONO₂), 4.18 (q, *J* = 5.8 Hz, 2 H, CHOH), 2.31 (t, *J* = 5.8 Hz, 2 H, CH₂), 2.07 (t, *J* = 5.8 Hz, 2 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 83.1, 67.7, 37.7, 29.2 ppm. IR (CH₂Cl₂): \hat{v} = 3753, 3378, 2931, 1638, 1441, 1326, 1279, 1181, 1090, 1069, 1015, 950, 862, 752 cm⁻¹. C₆H₁₀N₂O₈ (238.15): calcd. C 30.26, H 4.23, N 11.76; found C 30.41, H 4.20, N 11.70.

[1*R*(*S*),2*R*(*S*),5*R*(*S*),6*R*(*S*)]-2,6-Dihydroxycyclooctane-1,5-diyl Dinitrate (31): The product 31 was prepared following the typical procedure described above for 16 h starting from 30 (600 mg, 4.29 mmol) and Bi(NO₃)₃·5H₂O (4.16 g, 8.57 mmol). The residue was purified by column chromatography (silica gel, 30 g), eluting with ethyl acetate/hexane (40:60). Elution gave the product 31 (800 mg, 70%, recrystallized from CH₂Cl₂/hexane as white crystals, m.p. 91–92 °C). ¹H NMR (400 MHz, CD₃OD): δ = 5.05 (ddd, *J* = 10.5, 8.0, 2.3 Hz, 2 H, CHONO₂), 3.79 (ddd, *J* = 10.5, 8.0, 2.3 Hz, 2 H, CHONO₂), 3.79 (ddd, *J* = 10.5, 8.0, 2.3 Hz, 2 H, CHONO₂); δ = 87.9, 70.8, 28.5, 24.3 ppm. IR (CH₂Cl₂): \tilde{v} = 3386, 2941, 1629, 1365, 1278, 1086, 1008, 977, 860, 755 cm⁻¹. C₈H₁₄N₂O₈ (266.21): calcd. C 36.09, H 5.30, N 10.52; found C 35.99, H 5.38, N 10.65.

[1*R*(*S*),2*R*(*S*),3*S*(*R*),4*S*(*R*)]-2,3-Dihydroxycyclohexane-1,4-diyl Dinitrate (34): The product 34 was prepared following the typical procedure described above for 30 min starting from 33 (500 mg, 4.46 mmol) and Bi(NO₃)₃·5H₂O (4.34 g, 8.94 mmol). The product 34 was recrystallized from CH₂Cl₂/hexane as white crystals (900 mg, 85%, m.p. 88–89 °C). ¹H NMR (200 MHz, CDCl₃): δ = 5.30–5.19 (m, 2 H, CHONO₂), 4.04 (d, *J* = 5.6 Hz, 2 H, CHOH), 3.04–2.91 (m, 2 H, OH), 2.22–2.03 (m, 2 H, AA' part of AA'BB' system, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 82.4, 71.6, 24.7 ppm. IR (CH₂Cl₂): \tilde{v} = 3403, 2940, 1634, 1440, 1315, 1276, 1068, 996, 853, 755 cm⁻¹. C₆H₁₀N₂O₈ (238.04): calcd. C 30.26, H 4.23, N 11.76; found C 30.03, H 4.40, N 11.75.

Reaction of Norbornene Epoxide (35) with Bi(NO₃)₃·5H₂O: The reaction was performed following the typical procedure described above for 30 min starting from **35** (800 mg, 7.27 mmol) and Bi(NO₃)₃·5H₂O (3.53 g, 7.27 mmol). The mixture was filtered and the residue was purified by column chromatography (silica gel, 30 g), eluting with ethyl acetate/hexane (5:95). The first elution gave the product **36** as a colourless oil (380 mg, 30%). Then the column was eluted by ethyl acetate/hexane (7:93) to give **37** (850 mg, 68%).

[2*R*(*S*),7*R*(*S*)]-7-Hydroxybicyclo[2.2.1]heptan-2-yl Nitrate (36): ¹H NMR (200 MHz, CDCl₃): δ = 4.78 (dd, *J* = 7.9, 2.9 Hz, 1 H, CHONO₂), 4.25 (m, 1 H, CHOH), 2.31–2.29 (m, 1 H, CH), 2.18–2.13 (m, 1 H, CH), 2.05–1.95 (m, 2 H, CH₂), 1.87 (dd, *J* = 14.5, 7.9 Hz, 1 H, A part of AB system, CH₂), 1.69–1.53 (m, 1 H, CH₂), 1.27–1.20 (m, 2 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 86.5, 78.7, 46.6, 41.2, 37.2, 26.8, 23.6 ppm. IR (CH₂Cl₂): \tilde{v} = 3375, 2967, 2882, 1618, 1282, 1148, 1037, 1005, 935, 867, 758 cm⁻¹. C₇H₁₁NO₄ (173.17): calcd. C 48.55, H 6.40, N 8.09; found C 48.82, H 6.55, N 8.45.

[25(*R*),7*R*(*S*)]-7-Hydroxybicyclo[2.2.1]heptan-2-yl Nitrate (37): Yield 730 mg, 58%, colourless crystals from CH₂Cl₂/hexane, m.p. 47–48 °C. ¹H NMR (200 MHz, CDCl₃): δ = 4.98 (ddd, *J* = 7.1, 3.6, 2.8 Hz, 1 H, CHONO₂), 4.05 (br. s, 1 H, CHOH), 2.35 (d, *J* = 4.4 Hz, 1 H, CH), 2.26–2.20 (m, 1 H, CH), 2.14–2.11 (m, 1 H, CH₂), 2.03 (dd, *J* = 13.9, 7.1 Hz, 1 H, A part of AB system, CH₂), 1.98–1.54 (m, 2 H, CH₂), 1.28–1.16 (m, 2 H, CH₂) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 88.7, 81.3, 46.4, 42.6, 37.4, 26.7, 24.4 ppm. IR (CH₂Cl₂): \tilde{v} = 3343, 2965, 2925, 1625, 1279, 1157, 1085, 1068, 966, 865, 757 cm⁻¹. C₇H₁₁NO₄ (173.17): calcd. C 48.55, H 6.40, N 8.09; found C 48.77, H 6.35, N 8.23.

[2R(S),9R(S)]-9-Hydroxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-2-yl Nitrate (44): The product 44 was prepared following the typical procedure described above for 18 h starting from 43 (400 mg, 2.53 mmol) and $Bi(NO_3)_3 \cdot 5H_2O$ (1.23 g, 2.53 mmol). The residue was purified by column chromatography (silica gel, 10 g), eluting with ethyl acetate. Elution gave the product 44 (350 mg, 63%, recrystallized from CH₂Cl₂/hexane as white crystals, m.p. 102–103 °C). ¹H NMR (400 MHz, CDCl₃): δ = 7.29–7.21 (m, 1 H, aryl), 7.20–7.15 (m, 3 H, aryl), 4.95 (dd, J = 7.3, 3.3 Hz, 1 H, CHONO₂), 4.08 (m, 1 H, CHOH), 3.53 (m, 1 H, CH), 3.36–3.35 (m, 1 H, CH), 2.35 (m, 1 H, OH), 2.33 (ddd, J = 13.4, 7.3, 3.3 Hz, 1 H, A part of AB system, CH_2), 2.12 (dd, J = 13.4, 7.3 Hz, 1 H, B part of AB system, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 145.0, 139.0, 128.0, 123.3, 122.4, 85.3, 83.8, 52.4, 48.2, 32.3 ppm. IR (CH₂Cl₂): $\tilde{v} = 3386, 2941, 1629, 1365, 1278, 1086, 1008, 977,$ 860, 755 cm⁻¹. C₁₁H₁₁NO₄ (221.21): calcd. C 59.73, H 5.01, N 6.33; found C 60.03, H 4.82, N 6.25.

Acknowledgments

The authors are indebted to the Department of Chemistry and Atatürk University for financial support of this work.

- a) A. B. Hughes, A. J. Rudge, Nat. Prod. Rep. 1994, 11, 135– 162; b) G. S. Jacob, Curr. Opin. Struct. Biol. 1995, 5, 605–611;
 c) B. Ganem, Acc. Chem. Res. 1996, 29, 340–347; d) M. Bols, Acc. Chem. Res. 1998, 31, 1–8; e) T. D. Heightman, A. T. Vasella, Angew. Chem. Int. Ed. 1999, 38, 750–770; f) P. Sears, C.-H. Wong, Angew. Chem. Int. Ed. 1999, 38, 2300–2324; g) T. Suami, Top. Curr. Chem. 1990, 154, 257–283; h) R. J. Ferrier, S. Middleton, Chem. Rev. 1993, 93, 2779–2831; i) A. Martinez-Grau, J. Marco-Contelles, Chem. Soc. Rev. 1998, 27, 155–162; j) Y. Landais, Chimia 1998, 52, 104–111; k) C. R. Johnson, Acc. Chem. Res. 1998, 31, 333–341; l) A. Berecibar, C. Grandjean, A. Siriwardena, Chem. Rev. 1999, 99, 779–844.
- [2] a) G. Rassu, L. Auzzas, L. Pinna, L. Battistini, C. Curti in Studies in Natural Products Chemistry (Ed.: Atta-ur-Rahman), Elsevier, Amsterdam, 2003, vol. 29, pp. 449–520; b) T. Hudlicky, D. A. Entwistle, K. K. Pitzer, A. J. Thorpe, Chem. Rev. 1996, 96, 1195–1220; c) V. H. Lillelund, H. H. Jensen, X. F. Liang, M. Bols, Chem. Rev. 2002, 102, 515–553; d) B. V. L. Potter, D. Lampe, Angew. Chem. Int. Ed. Engl. 1995, 34, 1933–1972; e) T. Suami, Pure Appl. Chem. 1987, 59, 1509–1520; f) T. Suami, S. Ogawa, Adv. Carbohydr. Chem. Biochem. 1990, 48, 21–90; g) G. Rassu, L. Auzzas, L. Battistini, G. Casiraghi, Mini-Rev. Org. Chem. 2004, 1, 343–357.
- [3] a) O. Andriuzzi, C. Gravier-Pelletier, P. Vogel, L. Le Merrer, *Tetrahedron* 2005, *61*, 7094–7104; b) E. Sisu, M. Sollogoub, J.-M. Mallet, P. Sinaÿ, *Tetrahedron* 2002, *58*, 10189–10196.
- [4] a) G. R. Thatcher, A. C. Nicolescu, B. M. Bennett, V. Toader, *Free Radical Biol. Med.* 2004, *37*, 1122–1143; b) G. R. J. Thatcher, H. Weldon, *Chem. Soc. Rev.* 1998, *27*, 331–337.

- [6] a) B. K. Pchelka, A. Loupy, J. Plenkiewicz, A. Petit, L. Blanco, *Tetrahedron: Asymmetry* 2001, *12*, 2109–2119; b) R. M. Gunnar, C. Fisch, *Circulation* 1990, *82*, 664–707; c) J. O. Parker, *New Engl. J. Med.* 1987, *316*, 1635–1642.
- [7] C. R. Conti, Am. J. Cardiol. 1987, 60, 31H-34H.
- [8] D. O. Williams, E. A. Amsterdam, D. T. Mason, *Circulation* 1975, 51, 421–427.
- [9] a) M. Govoni, S. Casagrande, R. Maucci, V. Chiroli, P. Tocchetti, J. Pharmacol. Exp. Ther. 2006, 317, 752–761; b) F. Benedini, G. Bertolini, F. Ferrario, R. Guindani, A. Sala, J. Heterocycl. Chem. 1994, 31, 1589–1592.
- [10] a) N. Mukerjee, R. Pietruszko, J. Biol. Chem. 1994, 269, 21664–21669; b) J. D. Parker, J. O. Parker, New Engl. J. Med. 1998, 338, 520–531.
- [11] a) M. Brufani, M. C. Cesta, L. Donnarumma, L. Filocamo, G. Gostoli, S. Lappa, E. Ferrari, P. G. Pagella, *Carbohydr. Res.* 1991, 218, 229–232; b) J. R. Lawrence, *Drugs Today* 1986, 22, 449–467.
- [12] P. L. Nichols, A. B. Magnusson, J. D. Ingham, J. Am. Chem. Soc. 1953, 75, 4255–4258.
- [13] N. S. Marans, R. P. Zelinski, J. Am. Chem. Soc. 1950, 72, 5330– 5331.
- [14] a) N. Iranpoor, P. Salehi, *Tetrahedron* 1995, *51*, 909–912; b) N. Iranpoor, T. Tarrian, Z. Movahedi, *Synthesis* 1996, 1473–1476;
 c) N. Iranpoor, H. Firouzabadi, M. Shekarize, *Org. Biomol. Chem.* 2003, *1*, 724–727.
- [15] a) Z. Liu, R. Li, D. Yang, L. Wu, *Tetrahedron Lett.* 2004, 45, 1565–1566; b) Y. Fan, X. Shang, Z. Liu, L. Wu, *Synth. Commun.* 2006, 36, 3149–3152; c) W. Wu, Q. Liu, Y. Shen, R. Li, L. Wu, *Tetrahedron Lett.* 2007, 48, 1653–1656.
- [16] J. R. Hanson, M. Troussier, C. Uyanik, F. Viel, J. Chem. Res. (S) 1998, 118–119.
- [17] B. Das, M. Krishnaiah, K. Venkateswarlu, *Tetrahedron Lett.* 2006, 47, 6027–6029.
- [18] B. Das, M. Krishnaiah, K. Venkateswarlu, V. S. Reddy, *Helv. Chim. Acta* 2007, *90*, 110–113.
- [19] R. M. A. Pinto, J. A. R. Salvador, C. Le Roux, *Tetrahedron* 2007, 63, 9221–9228.
- [20] M.-Y. Chang, C.-Y. Lin, T.-C. Wu, Tetrahedron Lett. 2006, 47, 5445–5449.

- [21] a) D. R. Fabio, T. Rossi, R. J. Thomas, *Tetrahedron Lett.* 1997, 38, 3587–3590; b) W. Wu, Q. Liu, Y. Shen, R. Li, L. Wu, *Tetrahedron Lett.* 2007, 48, 1653–1656.
- [22] For bismuth(III)-catalyzed epoxide opening, see: a) N. R. Swamy, G. Kondaji, K. Nagaiah, Synth. Commun. 2002, 32, 2307–2312; b) T. Ollevier, E. Nadeau, Tetrahedron Lett. 2008, 49, 1546–1550; c) A. McCluskey, S. K. Leitch, J. Garner, C. E. Caden, T. A. Hill, L. R. Odell, S. G. Stewart, Tetrahedron Lett. 2005, 46, 8229–8232; d) J. S. Yadav, K. Rajasekhar, M. S. R. Murty, Synlett 2005, 12, 1945–1947; e) S. Antoniotti, E. Dunach, Eur. J. Org. Chem. 2004, 16, 3459–3464; f) M. M. Khosaei, A. R. Khosropour, K. Ghozati, Tetrahedron Lett. 2004, 45, 3525–3529; g) T. Ollevier, G. Lavie-Compin, Tetrahedron Lett. 2003, 44, 6501–6504; i) T. Ollevier, G. Lavie-Compin, Tetrahedron Lett. 2003, 43, 7891–7893.
- [23] A. Takahashi, M. Aso, M. Tanaka, H. Suemune, *Tetrahedron* 2000, 56, 1999–2006.
- [24] a) H. Detert, B. Rose, W. Mayer, H. Meier, *Chem. Ber.* 1994, 127, 1529–1532; b) W. Mayer, H. Meier, *Chem. Ber.* 1989, 122, 509–517; c) V. Janout, P. Cefelin, *Tetrahedron Lett.* 1983, 24, 3913–3916.
- [25] M. R. Detty, J. Org. Chem. 1980, 45, 274-279.
- [26] M. S. Gultekin, E. Salamci, M. Balci, *Carbohydr. Res.* 2003, 338, 1615–1619.
- [27] a) D. J. Darensbourg, C. C. Fang, J. L. Rodgers, *Organometal-lics* 2004, 23, 924–927; b) K. Arai, M. M. Salter, Y. Yamashita, S. Kobayashi, *Angew. Chem. Int. Ed.* 2007, 46, 955–957.
- [28] a) M. Gruber-Khadjawi, H. Honig, C. Illaszewicz, *Tetrahe-dron: Asymmetry* **1996**, 7, 807–814; b) D. Vourloumis, G. C. Winters, K. B. Simonsen, M. Takahashi, B. K. Ayida, S. Shandrick, Q. Zhao, Q. Han, T. Hermann, *ChemBioChem* **2005**, 6, 58–65; c) T. W. Craig, G. R. Harvey, G. A. Berchtold, *J. Org. Chem.* **1967**, *32*, 3743–3749.
- [29] J. Rudolph, K. L. Reddy, J. P. Chaing, K. B. Sharpless, J. Am. Chem. Soc. 1997, 119, 6189–6190.
- [30] K. K. Maheshwari, P. De Mayo, D. Wiegand, Can. J. Chem. 1970, 48, 3265–3268.
- [31] a) M. Klawonn, M. K. Tse, S. Bhor, C. Döbler, M. Beller, J. Mol. Catal. A 2004, 218, 13–19; b) G. Majetich, R. Hicks, Synlett 1996, 649–651.
- [32] P. D. Bartlett, W. P. Giddings, J. Am. Chem. Soc. 1960, 82, 1240–1246.
- [33] Spartan v. 5.0, Wave function, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA, 92612, 2003.

Received: May 16, 2008 Published Online: August 1, 2008