

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis of 3-methyl-2-cyclohexenones catalyzed by mercury(II) salts and their microwave assisted BiCl₃ catalyzed aldol condensations

Chen Zhang^{a,*}, Bi-Song Wang^a, Shi-Feng Chen^a, Shao-Qiao Zhang^a, Dong-Mei Cui^b

^a College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China ^b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China

ARTICLE INFO

Article history: Received 4 August 2010 Received in revised form 23 August 2010 Accepted 24 August 2010 Available online 1 October 2010

Keywords: 3-Methyl-2-cyclohexenones Mercury(II) salts BiCl₃ Microwave Lewis acid Aldol condensation

ABSTRACT

HgSO₄ catalyzed hydrative cyclization of 1,6-heptadiynes is present. This reaction proceeded smoothly under the mild condition for differently 4-sustituted 1,6-diynic substrates giving corresponding 3-methyl-2-cyclohexenones with high to excellent yield. The microwave assisted aldol condensation of cyclohexenones under the catalysis of BiCl₃ afforded 3-styryl-cyclohexenones with high regio- and stereo-selectivity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The cyclohexenone derivatives are the starting materials and intermediates in many important natural products and synthetic drug syntheses [1]. Many synthetic methods for the construction of the conjugate cyclohexenone ring have been reported [2]. We have recently developed hydrative cyclization of 1,6-diynes to produce 3,5-substituted conjugate cyclohexenone ring systems using Au(I) or Pt(II) as a catalyst [3]. On the other hand, the aldol condensation is a very classic method for the formation of carbon-carbon bond. This reaction is important for the synthesis of natural products and other potentially biologically relevant substances. Control of the mixed aldol condensation between two different carbonyl compounds which present several possible sites for enolization is a challenging problem for synthetic chemists [4]. For α,β -unsaturated ketones, however, not only γ -position but also α '-position are capable of being deprotonated to form alkylation products. In the literature, Yamamoto and co-workers reported the directed aldol condensation of α , β -unsaturated cyclohexenones with aldehydes to generate γ -alkylation products by LDA, but this type condensation by Lewis acid has not been reported previously [5]. Herein,

we wish to report the hydrative cyclization of 1,6-diynes in the presence of $HgSO_4$ and the subsequent of $BiCl_3$ catalyzed aldol condensation of the corresponding cyclohexenone derivatives with aldehydes.

2. Results and discussion

2.1. Mercury(II) salts catalyzed hydrative cyclization of 1,6heptadiynes

Our initial studies focused on testing the feasibilities for the hydrative cyclization of 4,4-di(isopropanoloxycarbonyl)-1,6-heptadiyne (**1a**), catalyzed by mercury(II) salts (Table 1). The expected compound **2a** was isolated with 71% yield (entry 1) at 70 °C for 3 h from reaction of **1a** with H₂O (1000 mol%) using HgSO₄ (20 mol%) as the catalyst and trifluoromethanesulfonate (30 mol%) as the cocatalyst. To decrease the amount of catalyst (HgSO₄) to 5 mol% was ineffective to this reaction (entry 2), but yield of **2a** was reduced to 57% when the amount of HgSO₄ was reduced to 1 mol%. We test the effectives of the amount of H₂O, and found that a decrease in the amount of H₂O to 150 mol% should increase formation of **2a** (yield 81%, entry 4). However, formation of **2a** was decreased to 44% or 23% yield when the solvent had been changed to EtOH or reduced the amount of additive of trifluoromethanesulfonic acid to 10 mol%

^{*} Corresponding author. Tel./fax: +86 571 88208449. E-mail address: chenzhang@zju.edu.cn (C. Zhang).

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.08.037

Table 1

Hg(II) salt catalized hydrative cyclization of **1a**.

Entry	Cat. (mol%)	H ₂ O (mol%)	Additive (mol%)	Solvent	Temp. (°C)	Time (h)	Conv. (%)	Yield of 2 (%) ^b
1	HgSO ₄ (20)	1000	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	71
2	$HgSO_4(5)$	1000	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	71
3	$HgSO_4(1)$	1000	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	57
4	$HgSO_4(5)$	150	CF ₃ SO ₃ H (30)	МеОН	70	3	>99	81
5	$HgSO_4(5)$	150	CF ₃ SO ₃ H (30)	EtOH	70	3	>99	44
6	$HgSO_4(5)$	150	CF ₃ SO ₃ H (10)	MeOH	70	3	>99	23
7	Hg(OAc) ₂ (20)	1000	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	68
8	$Hg(OAc)_2(5)$	1000	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	69
9	$Hg(OAc)_2(5)$	150	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	71
10	$Hg(OAc)_2(5)$	150	CF ₃ SO ₃ H (30)	EtOH	70	3	>99	50
11	HgCl ₂ (20)	1000	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	70
12	$HgCl_2(5)$	150	CF ₃ SO ₃ H (30)	MeOH	70	3	>99	17
13	$HgSO_4(5)$	150	CF ₃ SO ₃ H (30)	MeOH	100	3	>99	46
14	HgSO ₄ (5)	150	CF ₃ SO ₃ H (30)	MeOH	rt	10	~ 5	trace

^aThese reaction were carried out at 70 °C in MeOH (2 mL) for 3 h.

^b Isolated yield.

(entries 5 and 6). Non obvious changes of yield of **2a** were observed when mercury(II) acetate was used as catalyst to the same reaction compared with mercury(II) sulfate, even though the amount reduced to 5 mol% (entry 7 and 8), **2a** was generated with 71% yield when the amount of H₂O was reduced to 150 mol% (entry 9), changed solvent to ethanol induced to decrease formation of **2a** (entry 10). When mercury(II) dichloride (20 mol%) was used for this reaction, **2a** was isolated with 70% yield (entry 11). We also test the same reaction by adding H₂O with 150 mol%, **2a** was obtained with 17% yield (entry 12). According to the results, we fixed the conditions (entry 4) for investigating the scope of mercury(II) sulfonate catalyzed hydrative cyclization of 1,6-heptadiynes.

Having reaction conditions being established, various 1,6-diynes were subjected to the reaction with water in order to investigate the reaction scope and several represent active results are summarized in Table 2. 5,5-Dimethoxycarbonyl and 5,5-diethoxycarbonyl substituted 3-methyl-2-hexenones $(\mathbf{2b} \text{ and } \mathbf{2c})$ were obtained with high yield (Table 2, entries 2 and 3). Various 4-substituted 1,6-diynes were investigated, and the hydrative cyclization proceeded in mostly good efficiencies. The 5,5-di(alkoxycarbonyl)-substituted cyclohex-2-enones (2d and 2e) were isolated with high yields (entries 4 and 5). The cyclic products with different substituent group pairs, such as diphenylphosphoryl and ethoxycarbonyl (2f), or phenyl and methoxycarbonyl (2h), or with single ethoxycarbonyl substituented (2i) were obtained with excellent yield respectively (entries 6, 8 and 9). From reaction of 1g, compound 2h was also obtained with 11% yield which was formed from 2g via esterification of nitrile group (entry 7). Only 2b was isolated with 45% yield from the reaction of 1j.

2.2. Microwave assisted BiCl₃ catalyzed aldol condensation of cyclohexenones with aldehydes

Microwave dielectric heating causes an extremely rapid and uniform energy transfer to the reactants of chemical reactions. This will minimize by-product formation and increase product yields. Next we studied an improved, microwave assisted aldol condensation of methyl 3-mehyl-5-oxo-1-phenylcyclohex-3-ene-1-carboxylate (**2h**) with 2,3-dimethoxy (**3a**) (Table 3). Our initial experiments were conducted using Hg(OTf)₂, Bi(NO₃)₃·5H₂O, Fe(OTf)₂, PPh₃AuCl₃, PPh₃AuNO₃, CuCN, or HgCl as the catalyst; however, the condensation product 4a was formed in very low yield (entries 1–7, Table 3). When we used the BiCl₃ (10 mol%) as the catalyst, the yield of **4a** improved significantly (entries 8-13, Table 3). The best result was obtained by conducting the reaction in 150 °C for 1 h affording 4a in 91% yield with perfect oxo-regioselectivity and high E-selectivity (entry 8, Table 3). It is remarkable to note that the reaction proceeded extremely well in the absence of any solvent (entries 14-16). To further assess the scope of this process, we have examined the aldol condensation of several cyclohexenones with aldehydes under the optimized reaction conditions in entry 8 of Table 3. The cyclohexenone with substituted group pairs, such as dimethoxycarbonyl 2b is well tolerated, the corresponding adducts being formed in 50% (entry 3, Table 4). Various aldehydes were then examined, not only benzaldehyde but also electron-donating groups on benzene ring of benzaldehydes gave good isolated yields of the corresponding adducts (entries 2-5). In all cases, adducts were obtained with high selectivity.

3. Conclusion

In conclusion, we have described a useful process of mercury(II) salts-catalyzed hydrative cyclization of 1,6-heptadiyne to provide 3-methyl-5-substituted-2-derivatives, advantages of the present method are the easily accessible starting materials, mild conditions, lack of coproducts and the fact that several types of functional groups were tolerated. We also have developed a directed micro-wave associated aldol condensation of the corresponding 3-methyl-5-substituted-2-hexenone derivatives with aromatic aldehydes catalyzed by BiCl₃ with perfect regioselectivity and high *E*-selectivity.

4. Experemental

4.1. General

Under otherwise noted, materials were obtained from commercial suppliers and used without further purification. Diynes were prepared by the procedures in the literature. Thin layer chromatography (TLC) was performed using silica gel 60 F254 and visualized using UV light. Column chromatography was performed with silica

Table 2

Mercury(II) sulfate catalyzed hydrative cyclization of 4-substituted 1,6-heptadiynes.^a

Table 2 (continued)

 a All the reactions were performed with 1 (0.5 mmol), H_2O (0.75 mmol), and catalyst (HgSO4, 5 mol%) refluxed at 70 $^\circ C$ in MeOH (2 mL).

^b Isolated yields after column chromatography.

^c Compound **2h** was obtained with 11% yield as by-product.

gel (mesh 300–400). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz or 500 MHz spectrometer in CDCl₃ with Me₄Si as an internal standard. Data are reported as follows: chemical shifts in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad and m = multiplet), coupling constant (Hz) and integration. Infrared spectra (IR) were obtained on a 370 FT-IR spectrometer; absorptions are reported in cm⁻¹. Mass spectra (MS) and high resolution mass spectra (HRMS) were obtained at the Zhejiang University of Technology Mass Spectrometry Facility.

4.2. General procedure for the hydrative cyclization of diynes

To a reactor containing diyne (0.5 mmol), methanol (2 mL), and H_2O (150 mol%) under nitrogen $HgSO_4$ (5 mol%) and TfOH (30 mo% l) were added. The resulting yellow solution was then sealed and

Table 3Lewis acid catalyzed aldol condensation of 2h with 3a.^a

Entry	Cat. (mol%)	Solvent	Temp. (°C)	Time (h)	Yield of 4a (%) ^b
1	Hg(SO ₃ CF ₃) ₂	_	150	1	14
2	Bi(NO ₃) ₃ ·5H ₂ O	_	150	1	trace
3	PPh ₃ AuCl ₃	_	150	1	trace
4	PPh ₃ AuNO ₃	_	150	1	trace
5	CuCN	_	150	1	trace
6	Fe(SO ₃ CF ₃) ₂	_	150	1	11
7	HgCl	_	150	1	trace
8	BiCl ₃	_	150	1	91
9	BiCl ₃	_	150	2	82
10	BiCl ₃	_	150	3	32
11	BiCl ₃	_	200	1	55
12	BiCl ₃	_	100	1	27
13	BiCl ₃	_	100	3	33
14	BiCl ₃	THF	150	3	trace
15	BiCl ₃	DME	150	3	trace
16	BiCl ₃	MeCN	150	3	trace

 a All the reactions were performed with 2h (0.14 mmol), 3a (0.56 mmol), and catalyst (10 mol%).

^b Isolated yields after column chromatography.

Table 4

The condensation reaction of 3-methyl-2-cyclohexenones with aromatic benzaldehyde^a:

^a All the reactions were performed with **2** (0.14 mmol), **3** (0.56 mmol), and catalyst (10 mol%).

^b Isolated yields after column chromatography.

^c Determined by ¹H NMR analysis.

stirred at 70 °C for 3–10 h until the starting diyne was consumed, as judged by TLC. The mixture was quenched with a saturated solution of NaHCO₃ and then extracted with ethyl acetate (20 mL \times 3). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel) (Eluent: hexane/ethyl acetate) to yield the corresponding products in an analytically pure form.

4.3. General procedure for the aldol condensation of 3-methyl-2cyclohexenone with aldehydes

To a reactor containing 3-methyl-2-cyclohexenone (0.14 mmol) and aldehyde (0.56 mmol) BiCl₃ (5 mol%) was added. The resulting

yellow solution was then sealed and reacted at 150 °C for 1–3 h under the MW condition. The mixture was quenched with a saturated solution of NaHCO₃ and then extracted with ethyl acetate (20 mL \times 3). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel) (Eluent: hexane/ethyl acetate) to yield the corresponding products.

4.3.1. (E)-Methyl 3-(2,3-dimethoxystyryl)-5-oxo-1-phenylcyclohex-3-enecarboxylate (4a) (E/Z = 100:6)

Mp: 139–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.95 (d, J = 13 Hz, 1H), 3.07 (d, J = 13 Hz, 1H), 3.00 (d, J = 13 Hz, 1H), 3.07 (d, J = 13 Hz, 1H), 3.07 (s, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 6.09 (s, 1H), 6.91

(t, J = 21 Hz, 2H), 7.05 (t, J = 13 Hz, 1H), 7.18 (d, J = 6 Hz, 1H), 7.30 (t, J = 13 Hz, 1H), 7.37 (t, J = 12 Hz, 2H), 7.41 (d, J = 6 Hz, 2H), 7.50 (d, J = 13 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 174.0, 154.9, 153.0, 147.7, 130.3, 129.9, 129.8, 129.0, 127.8, 127.7, 125.7, 124.3, 118.2, 113.0, 61.3, 55.8, 52.9, 51.7, 46.0, 34.4. HRMS (EI) for C₂₄H₂₄O₅: calcd. 392.1624. Found 392.1617.

4.3.2. (E)-Methyl 5-oxo-1-phenyl-3-styrylcyclohex-3enecarboxylate (E/Z = 100:5)

¹H NMR (400 MHz, CDCl₃): major: δ 2.95 (d, J = 13 Hz, 1H), 3.04 (d, J = 13 Hz, 1H), 3.30 (d, J = 13 Hz, 1H), 3.55 (d, J = 13 Hz, 1H), 3.64 (s, 3H), 3.83 (s, 3H), 6.09 (s, 1H), 6.92 (d, J = 13 Hz, 1H), 7.16 (d, J = 13 Hz, 1H), 7.30 (m, 2H), 7.37 (t, J = 12 Hz, 4H), 7.41 (d, J = 6 Hz, 2H), 7.51 (d, J = 6 Hz, 2H); minor: δ 6.22 (d, J = 9.6 Hz, 1H), 6.83 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 174.0, 154.3, 140.0, 135.9, 135.7, 129.3, 128.9, 128.6, 127.8, 127.7, 127.4, 125.7, 52.8, 51.6, 45.9, 34.5. HRMS (EI) for C₂₂H₂₀O₃: calcd. 332.1412. Found 332.1413.

4.3.3. (E)-Dimethyl 3-(3,4-dimethoxystyryl)-5-oxocyclohex-3-ene-1,1-dicarboxylate (4c) (E/Z = 100:3)

Mp: 139–142 °C; ¹H NMR (400 MHz, CDCl₃) major: δ 2.96 (s, 2H), 3.23 (s, 2H), 3.76 (s, 6H), 3.92 (s, 3H), 3.93 (s, 3H), 6.05 (s, 1H), 6.72 (d, *J* = 13 Hz, 1H), 6.86 (d, *J* = 7.0 Hz, 1H), 7.08 (m, 3H); minor: 5.68 (d, *J* = Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 174.1, 154.8, 150.3, 149.2, 140.0, 136.0, 128.9, 127.8, 125.7, 121.6, 111.0, 109.1, 55.9, 51.6, 45.8,34.4. HRMS (EI) for C₂₀H₂₂O₇: calcd. 374.1366. Found 374.1356.

4.3.4. (E)-Methyl 3-(4-methoxystyryl)-5-oxo-1-phenylcyclohex-3enecarboxylate (**4d**)

Mp: 91–95 °C; ¹H NMR (400 MHz, CDCl₃) major: δ 2.95 (d, J = 13 Hz, 1H), 3.02 (d, J = 13 Hz, 1H), 3.29 (d, J = 13 Hz, 1H), 3.56 (d, J = 13 Hz, 1H), 3.65 (s, 3H), 3.85 (s, 3H), 6.07 (s, 1H), 6.76 (d, J = 13 Hz, 1H), 6.91 (d, J = 7 Hz, 2H), 7.12 (d, J = 13 Hz, 1H), 7.30 (t, J = 12 Hz, 1H), 7.37 (t, J = 12 Hz, 2H), 7.42 (d, J = 6 Hz, 2H), 7.47 (d, J = 7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) major: δ 196.8, 174.0, 160.7, 154.8, 140.1, 135.7, 128.9, 128.5, 127.7, 126.8, 126.4, 125.7, 114.4, 55.3, 52.8, 51.6, 45.9, 34.5; HRMS (EI) for C₂₃H₂₂O₄: calcd. 362.1518. Found 362.1511.

4.3.5. (E)-Methyl 5-oxo-1-phenyl-3-(3,4,5-trimethoxystyryl) cyclohex-3-enecarboxylate (**4e**)

Mp: 105–109 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.96 (d, J = 13 Hz, 1H), 3.04 (d, J = 13 Hz, 1H), 3.30 (d, J = 13 Hz, 1H), 3.57 (d, J = 14 Hz,

1H), 3.64 (s, 3H), 3.87 (s, 3H), 3.90 (s, 6H), 6.10 (s, 1H), 6.74 (s, 2H), 6.82 (d, J = 13 Hz, 1H), 7.10 (d, J = 13 Hz, 1H), 7.30 (t, J = 11 Hz, 1H), 7.38 (t, J = 12 Hz, 2H), 7.42 (d, J = 6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 174.0, 154.3, 153.4, 139.9, 136.0, 131.3, 128.9, 127.9, 127.8, 127.5, 125.7, 125.5, 104.5, 61.0, 56.1, 52.9, 51.6, 45.8, 34.5. HRMS (EI) for C₂₃H₃₀O₆: calcd. 402.2042. Found 402.2047.

Appendix A. Supplementary information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jorganchem.2010.08.037.

References

- (a) For examples: E.J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis. Wiley & Sons, New York, 1989;
 - (b) T.-L. Ho, Symmetry: A Basis for Synthesis Design. Wiley& Sons, New York, 1995;

(c) C. Girlanda-Junges, F. Keyling-Bilger, Gaby Schmitt, B. Luu, Tetrahedron 54 (1998) 7735;

- (d) A. Braca, N. De tommasi, L.-D. Bari, C. Pizza, M. Politi, I. Morelli, J. Nat. Prod. 64 (2001) 892.
- [2] (a) D.D. Phillips, A.W. Johnson, J. Org. Chem. 21 (1956) 587;
 (b) H. Rubinstein, J. Org. Chem. 27 (1962) 3886;
 (c) G. Stork, R.L. Danheiser, B. Ganem, J. Am. Chem. Soc. 95 (1973) 3414;
 (d) P.L. Stotter, K.A. Hill, J. Org. Chem. 38 (1973) 2576;
 (e) M.E. Kuehne, W.H. Parsons, J. Org. Chem. 42 (1977) 3408;
 (f) W.G. Dauben, D.M. Michno, J. Org. Chem. 42 (1977) 682;
 (g) B.-D. Chong, Y.-I. Ji, S.-S. Oh, J.-D. Yang, W. Baik, S. Koo, J. Org. Chem. 62 (1997) 9323;
 (h) G.P.-J. Hareau, M. Koiwa, S. Hikichi, F. Sato, J. Am. Chem. Soc. 121 (1999) 3640;
 (i) F.Y. Zhang, E. Corey, J. Org. Lett. 2 (2000) 1097.
- (1) T.Y. Zhang, D. Cor, Y. Levi, J. 2000 (107).
 (3) C. Zhang, D.-M. Cui, L.-Y. Yao, B.-S. Wang, Y.-Z. Hu, T. Hayashi, J. Org. Chem. 73 (2008) 7811;
 (b) D. M. Cui, Y. N. Ko, D. W. Zhuang, O. Wang, C. Zhang, Tatrabadron, Lett. 51

(b) D.-M. Cui, Y.-N. Ke, D.-W. Zhuang, Q. Wang, C. Zhang, Tetrahedron. Lett. 51 (2010) 980;

- (c) C. Zhang, J.-F. Qi, D.-M. Cui, Q. Wang, X.-L. Wang, Molecules 15 (2010) 5045.
 [4] (a) O.H. House, in: R. Breslow (Ed.), Modern Synthetic Reactions, W.A. Benjamin, Inc., Menlo Park, CA, 1972 (Chapter 10 and references therein);
 (b) C.H. Heathcock, in: B.M. Trost (Ed.), Comprehensive Organic Synthesis, vol. 2, Pergamon Press, Oxford, 1991 (Chapter 1.5 and references therein);
 (c) C.H. Heathcock, in: R. Scheffold (Ed.), Modern Synthetic Methods 1992, vol. 6, VHCA and VCH, Basel, Weinheim, and New York, 1992 (Chapter 1 and references therein).
- [5] (a) S. Saito, M. Shiozawa, M. Ito, H. Yamamoto, J. Am. Chem. Soc. 120 (1998) 813;
 (b) Y. Hatanaka, I. Kuwajima, J. Org. Chem. 51 (1986) 1934.