
Apoptosis is a genetically programmed form of cell death
which is essential for normal development and health.1) Neu-
rodegenerative diseases involve apoptotic cell death.2) Recent
studies have suggested that the compounds which inhibit the
apoptosis process can prevent a neurodegenerative disease.3,4)

Consequently, apoptosis inhibitors can be considered as po-
tential neurorescuing agents. In addition, specific apoptosis
inhibitors might be useful tools to investigate the molecular
events involved in cell death.

Trifluoromethyl ketones (TFMKs) are interesting com-
pounds in the design of enzymatic inhibitors.5—7) The strong
electron-withdrawing effect of the fluorine atom causes
TFMKs to form stable hydrates or hemiketals in aqueous so-
lution, whose tetrahedral geometry resembles the transition
state of the water addition process to the carbonyl group of a
peptide substrate. Consequently, TFMKs are potent in-
hibitors of a variety of serine esterases, juvenile hormone es-
terase, mammalian carbonyl esterases, or antennal esterases
in insects.8)

Continuing our efforts in the development of new syn-
thetic methods9—12) and new biological activity13,14) of
TFMKs, we now want to report on a neuroprotective effect of
TFMKs on apoptosis induced by low extracellular K1 in cul-
tured cerebellar granule neurons (CGNs).

MATERIALS AND METHODS

Cell Culture Culture enriched in granule neurons were
obtained from 8-d-old Wistar rats as described previously.15)

Cells were plated in basal medium Eagle (BME) supple-
mented with 10% fetal bovine serum, 2 mM L-glutamine,
25 mM KCl, and 50 mg/ml gentamicin on 48-well plate or 60-
mmf dish coated with poly-L-lysine. Cells were plated at a
density of 2.53105/cm2. Cytosine-b-D-arabinofuranoside
(AraC, 10 mM) was added to the culture medium 18—22 h
after plating to prevent proliferation of nonneuronal cells.

Treatment of Cultures and Assessment of Neuronal
Survival After 12—13 d in vitro in 25 mM KCl medium,
the culture medium was replaced with serum-free BME
medium containing 5 mM KCl and supplemented with L-glut-
amine, gentamicin and AraC at the concentrations indicated
above (LK). The test compounds were dissolved and diluted

in ethanol, and 200-fold concentrated compounds were
added directly to the low K1/serum-free medium. Control
cultures were maintained in serum-free BME medium sup-
plemented with 25 mM KCl (HK). After 20—24 h maintained
in LK or HK, neuronal survival was determined by 3-(4,5-di-
methyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assay. The assay relies on the ability of the mitochon-
dria of live cells to reduce MTT to a water-insoluble blue for-
mazan product. In brief, cultures were washed twice and
BME medium containing 500 mg/ml MTT was added. After
90-min incubation at 37 °C, the reaction was stopped by
adding a lysing buffer [20% sodium dodecyl sulfate (SDS) in
50% aqueous N,N-dimethylformamide solution, pH 4.7]. The
absorbance was measured spectrophotometrically at 570 nm
after a further overnight incubation at 37 °C. The percent sur-
vival was defined as [absorbance (experimental-blank)/ab-
sorbance (HK-blank)]3100, and the blank was the value
taken from wells without cells. Results obtained were ana-
lyzed by a one-way analysis of variance (ANOVA).

DNA Fragmentation Analysis Total genomic DNA was
extracted and the extent of DNA fragmentation was analyzed
by agarose gel electrophoresis as described.16) After treat-
ment with RNase A (50 mg/ml) and Proteinase K (0.1 mg/ml)
at 37 °C for 30 min and 0.2% SDS at 56 °C for 60 min, solu-
ble DNA was subjected to electrophoresis in a 1.2% agarose
gel and visualized by ethidium bromide staining.

Preparation of Neutrophils Human neutrophils in
blood were isolated by Dextran-Histopaque method as previ-
ously described17) with minor modifications.18) Purification of
neutrophils was performed to minimize exposure of the cells
to bacterial endotoxin. Purity of neutrophils was greater than
95%. Cell number was counted by a Coulter counter model
ZM (Coulter, U.S.A.), and diluted in RPMI 1640 medium to
the final required concentrations and kept on ice until exam-
ined.

Measurement of Caspase-3 Activity Neutrophils were
harvested after being exposed to TNF-a (100 ng/ml)/cyclo-
heximide (1 mg/ml) for 3 h, and resuspended in hypotonic
lysis buffer (25 mM HEPES, pH 7.5, containing 5 mM MgCl2,
5 mM EDTA, 5 mM EGTA, 5 mM dithiothreitol, 2 mM phenyl-
methylsulfonyl fluoride, 10 mg/ml pepstatin A and 10 mg/ml
leupeptin). Then cells were lysed by subjecting them to four
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cycles of freezing and thawing. After centrifugation
(150003g, for 20 min at 4 °C) of the cell lysates, supernatant
was used as caspase-3 activated fraction. The fraction was in-
cubated with test compound at 30 °C for 10 min, then cas-
pase-3 substrate, as described previously.19,20) Caspase-3 ac-
tivities were expressed as the amount of liberated AMC (7-
amino-4-methylcoumarin) cleaved from Ac-L-aspartyl-L-glu-
tamyl-L-valyl-L-aspartyl (DEVD)-AMC, measured by using
spectrofluorometer (Fluoroskan, Dainippon Pharmaceutical
Co., Ltd., Japan).

Materials Trifluoromethyl ketones (4, 12) were syn-
thesized by reactions of mandelic acid or 3-phenyllacetic
acid with trifluoroacetic anhydride (TFAA).10) Compounds
(13, 14) were prepared by treatment of the corresponding 
N-alkyl-N-methoxycarbonylphenylalanines with TFAA.11)

Compound 15 (mp 81—84 °C) was obtained in 91% yield by
the catalytic reduction of N-(2,6-dichlorobenzoyl)-2-trifluo-
roacetylpyrrolidine.9) Other compounds (1—3, 5—11) are
commercially available.

RESULTS AND DISCUSSION

We screened our in-house library of TFMKs, most of them
previously synthesized in our laboratory.9—12) To our knowl-
edge, this is the first report on the screening of TFMKs for
their neuroprotective activity (Table 1 and Fig. 1). Potassium
(K1) deprivation-induced apoptosis of CGNs represents one
of the best in vitro models of neuronal apoptosis.21,22) The
cultures of CGNs are formed by a homogenous population of
granule neurons which can survive up to 15 d when they are
maintained in fetal bovine serum-containing BME supple-
mented with 25 mM K1.23) Apoptosis of CGNs can be in-
duced by lowering the extracellular K1 concentration from
25 to 5 mM, as evidenced by morphological and biochemical
methods.21,22,24) A switch to low K1 concentration decreases
viability of CGNs by .50% when measured after 24 h. Neu-
ronal survival was determined by the MTT assay. The apop-
tosis after K1 deprivation was reported previously to be
blocked by treatment with actinomycin D (Act-D),24) cyclo-
heximide (CHX),24) forskolin,25) C3-fullero-tris-methanodi-

carboxylic acid,26) and caspase-3 inhibitors.27)

As a result of screening to obtain possible lead structures
bearing a trifluoroacetyl group, a-trifluoromethyl diketone
(2) and trifluoromethyl ketone (11) were identified as the
most potent inhibitor of apoptosis in CGNs. In an effort to
further define this novel inhibitory activity, a series of struc-
turally similar compounds was screened in order to deter-
mine the importance of the a-trifluoromethyl diketone
group. The trifluoromethyl ketones tested were classified as
follows: ketones (1, 11), a-diketone (2), b-diketone (3), a-
hydroxyketones (4, 12), a-amido ketones (13—15), and al-
cohols (10) (Table 1). Among them, a-diketone (2) and
PhCH2COCF3 (11) rescued most CGNs from death caused
by low K1 and its protection potency was similar to those of
Act-D and CHX.24)

With the COCOR series, the non-fluorinated ketones were
as follows: PhCOCOCH3 (5), PhCOCHO (6), PhCOCO2H
(7), PhCOCO2CH3 (8), PhCOCH2COCH3 (9). The protection
potency decreased in the order: 8.7..5, 6, 9. It is noted that
non-fluorinated a-diketone (5) did not exhibit protection ac-
tivity. These data suggest the importance of the a-trifluo-
romethyl diketone moiety for the apoptosis-inhibition. The
EC50 values of 2, 4, 7, 8, and 11 were 1.20, 2.26, 2.03, 0.44,
and 1.73 mM, respectively.

A electrophoresis pattern of genomic DNA extracted from
LK-exposed CGNs for 24 h were drastically fragmented and
effectively suppressed by treatment of compounds 2 (30 mM)
and 11 (30 mM) (Fig. 2). The results suggest that these com-
pounds suppress the apoptosis induced by lowering extracel-
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Table 1. Effects of Trifluoromethyl Ketones on K1 Deprivation-Induced Apoptosis of CGNs

Viability (%) normalized to high K1 (25 mM)
Compound

0 1 mM 3 mM 10 mM 30 mM 100 mM

1 53.864.8 56.164.2 55.565.1 55.564.3 56.764.3 58.964.7
2 50.062.1 54.165.5 65.767.5 71.466.2 72.065.5 66.064.0
3 43.462.8 42.1610.6 48.266.2 51.564.7 52.8611.4 38.967.6
4 48.964.1 52.864.8 58.764.3 62.663.8 58.461.9 64.166.5
5 51.863.4 52.364.7 51.464.8 53.065.1 49.865.1 50.165.2
6 50.863.9 53.466.4 52.766.0 49.6610.0 36.967.1 19.662.0*
7 50.263.6 54.566.0 52.967.7 60.965.0 61.265.7 57.663.9
8 50.763.0 60.462.8 60.364.3 65.465.9 61.964.7 61.764.9
9 53.264.5 54.064.0 48.565.3 40.363.4 24.961.0* 23.060.8*

10 50.064.6 57.166.5 52.666.0 57.365.5 48.964.4 51.865.0
11 50.762.7 58.363.2 70.565.6 74.865.7 78.163.8 77.363.1
12 47.066.5 51.960.2 54.465.9 53.869.1 57.762.2 43.865.9
13 45.568.7 51.568.1 47.469.2 58.3611.0 62.361.3 33.1615.2
14 45.568.7 45.460.0 48.7610.5 46.069.7 42.266.9 41.1613.0
15 47.066.5 46.965.1 47.164.2 45.463.1 39.8617.6 34.8626.7

TPCK 43.462.8 45.862.9 45.764.1 9.4622.4 3.9617.9 9.3637.5

* p,0.05 compared with the vehicle control, using ANOVA analysis.

Fig. 1. Structures of TFMKs (1—15)



lular K1 concentration in CGNs.
In agreement with previous reports,24) both Act-D

(0.5 mg/ml) and CHX (5 mg/ml) rescued most CGNs from
death caused by low K1. As Act-D and CHX are thought to
act at the upstream of several apoptotic cascades, they may
exhibit powerful neuroprotective effects. Since 2 and 11
showed potent neuroprotection, it is interesting to know
where TFMKs effect this potency.

Caspases, a family of cystein proteases, play a critical role
in execution of apoptosis and are responsible for many of the
biological and morphological changes associated with apop-
tosis.28,29) Recent report suggested that caspase-3 activity is
up-regulated and specific caspase-3 inhibitors moderately
suppressed cell death during low K1-induced apoptosis in
CGNs.27) Thus, the caspase inhibitors, carboxybenzoxy-L-as-
partyl-L-glutamyl-L-valyl-L-aspart-1-ylfluoromethane (Z-
DEVD-FMK, caspase-3 inhibitor) and carboxybenzoxy-L-
valyl-L-alanyl-L-b-methyl-aspart-1-ylfluoromethane (Z-VAD-
FMK, non-selective caspase inhibitor) used at 200 mM, di-
minished death by 50—60%, whereas 200 mM acetyl-Tyr-Val-
Ala-Asp-aldehyde (Ac-YVAD-CHO, caspase-1 inhibitor)
was not protective in our assay systems, as previously
shown.27) These inhibitors are the peptides including the
amino acid sequence with an enzymatic cleavage site. There-
fore, it is useful if the simple compounds (2 and 11) have in-
hibitory activity on caspases. On the other hand, the chy-
motrypsin inhibitor N-tosyl-L-phenylalanyl chloromethylke-
tone (TPCK) had no effect on K1-deprivation-induced apop-
tosis at concentrations tolerated by CGNs (Table 1).24) There-
fore, the apoptosis-inhibitory activity of TFMKs was sus-
pected to be related to the inhibition of caspase-3. We exam-
ined the inhibitory activity of TFMKs against caspase-3 acti-
vated fraction from neutrophils.20) However, the neuroprotec-
tive activity of TFMKs was unrelated to the caspase-3 activ-
ity.

Previous studies from our laboratories have shown that a-
trifluoromethyl acyloins (4, 12) can induce apoptosis of
human cancer cells in vitro, whose induction was mediated
by activation of the caspase pathway.14) Two structurally re-
lated PhCOCOCF3 (2) and PhCOCH(OH)CF3 (4) differ in
their apoptosis-modulating activity. These distinct inhibitory
modes of action by 2 and 4 are interesting. It could be sug-
gested the existence of several pathways and/or regulation

mechanisms of apoptosis by cell type and physiological state.
A correlation between the structural and biochemical differ-
ences of 2 and 4 may serve as a model system for under-
standing apoptosis.

In conclusion, the present study demonstrated that a-tri-
fluoromethyl diketone (2) and 1,1,1-trifluoro-3-phenyl-2-
propanone (11) are neuroprotective in an in vitro model of
K1 deprivation-induced apoptosis of CGNs and may be at-
tractive lead compounds for further development as a neu-
rorescuing agent. The extensive structure-relationship in this
type of compound, including the inhibition mechanism of
apoptosis, will be reported in due course.
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Fig. 2. Effects of Compounds 2 and 11 on Low K1 (LK)-Induced DNA
Fragmentation in Cultured Cerebellar Granule Cells

Lane 1, unexposed to LK medium; Lane 2, exposed to LK for 24 h; Lane 3 and 4, ex-
posed to LK and treated with compounds 2 (30 mM) and 11 (30 mM), respectively.


