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Abstract: 4-methoxy and 4-(2-trimethylsilylethoxy)pyrimidine bases were attached to the 5- 
position of the phenyl 2,3-dideoxy-l-seleno-glycero-pentofuranoside moiety. The presence of the 
silyl protecting group in the base is necessary to lead to neutral 13-anhydro nucleosides by 
inlramolecular glycosylafion. The subsequent ring opening affords 3'-deoxythymidine with complete 
stereocontrol. © 1998 Elsevier Science Ltd. All rights reserved. 

Since the discovery of the antiviral activity of 3'-azido-3'-deoxythymidine (AZT) 1 against the human 

immunodeficiency virus (HIV), there has been intense concern with synthesizing 2',3'-dideoxynucleosides and 

their analogs 2 as potential antiviral and antibiotic agents. 

Although the standard Vorbriiggen couplings 3 between 2-deoxyribose derivatives and pyrimidine or 

purine bases is one of the simplest methods for obtaining such nucleoside derivatives, the main problem in this 

approach is the lack of stereocontrol. Moreover, only 8-nucleosides usually exhibit high biological activity. 
An attractive way of forming selectively 8-nucleosides is based on the intramolecular glycosylation 

strategy. The key step in this approach is the attachment of the base to a 2-deoxy-pentofuranoside at the 5 -4,5,6 

(Scheme 1) or 3-B-position 7 (Scheme 2), and the formation of a B-anhydro-nucleoside intermediate by 

inlxamolecular attack on C-1. Lastly, a B-elimination 4 at C-5/C-6 or a basic hydrolysis 5-7 leads to the desired 

nucleoside. 
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Hence, as part of a general project which aims to use selenium in the stereoselective synthesis of 2'-deoxy 
and 2 ' , 3 ' - d ideoxy-nuc l eos ides ,  8 we devised an intramolecular strategy to synthesise them from 
selenoglycosides. 

Thus, the starting selenoglycoside 29 was prepared from 2-deoxyribose in five steps (Scheme 3): methyl 
glycoside synthesis, selective 5-OH protection, Barton deoxygenation, treatment with PhSeH in the presence of 
BF3.OEt2 - to  give compound 18b- and deprotection of the tBuPh2Si group. 

Scheme 3 
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On the other hand, pyrimidine derivatives (3a, 10a 3b 10b and 3c 11) w e r e  prepared from 2,4-dichloro- 

pyrimidine and 2,4-dichloro-5-methylpyrimidine. Subsequently, 3a, 3b and 3c were attached to phenyl 1- 

seleno-glycoside 2 following reported procedures; 5,7 using sodium hydride in DMF compounds 4a, 4b and 

4e12 were obtained in 60-70% yields (Scheme 3). 
We initially explored the inlramoleculm" glycosylation from 4a and 4b. The starting material generated -by 

activating the anomeric position with AgOTf- a charged anhydronucleoside in equilibrium with the oxonium ion 
(Scheme 4). The subsequent hydrolysis will lead to the formation of the desired nucleoside 5 or the furanose 6. 

However, all the attempts of glycosylation from the selenoglycosides 4a and 4b were negative. The 
reaction with AgOTf was monitored by TLC which indicated that the starting material disappeared and a different 
product with lower Rf was formed. But the single product isolated from the subsequent hydrolysis with 1N- 

NaOH at 0*C 5 was the C-1 hydrolyzed products 6a and 6b respectively, in quantitative yield (Scheme 4). The 

same product was obtained when the hydrolysis was carried out with a saturated solution of Na2CO3. No 
glycosylation products such us 5 were observed. 

In view of these results we next turned our attention to the use of the silyl-protected product 4c. The idea 

was to generate a charged intermediate such as 7 which could attack at the C-1 after anomeric group had been 
activated by the silver salt (Scheme 5). The formation of a neutral 13-anhydronucleoside would prevent the 
problem of hydrolysis, since it is well known that this kind of product reacts selectively at the 2-position of the 
base under hydrolytic conditions. 

By treating 4c with AgOTf under the usual conditions (4/~ molecular sieves, anhydrous CH3CN, -20°C, 

and then NaOH 1N, 0*C) the furanose 6c (R=Me, R'=CH2CH2SiMe3) was obtained. We also tried to remove 
the silyl protecting group at the same time activating the anomeric position with AgF. In this case, only the 
starting material was recovered and no reaction ocurred. We also used other reagents such as KF/crown ether or 
F2HK used in conjunction with AgOTf and these too gave negative results. The problem was ultimately solved 
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by treating 4c with Bu4NF in anhydrous CH3CN at r.t. and then adding AgOTf. Thus, the corresponding 3'- 
deoxy-2,5'-anhydro-thymidine 813,14 was obtained in 68% yield. Minor quantities of hydrolyzed product 6 
were also recovered. Finally, basic hydrolysis of 8 led to 1-(2,3-dideoxy-f~-D-glycero-pentofuranosyl)thyrrfme 

915 in quantitative yield. 

Scheme 5 
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In conclusion, 3'-deoxythymidine was synthesized from a phenyl 1-seleno-glycoside via intramolecular 
glycosylation. The key step is the deprotection of the silyl group at the 4-position of the pyrimidine ring using 
Bu4NF prior to activation of the selenoglycoside, and the subsequent formation of a neutral fi- 
anhydronucleoside. 
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