
### Synthesis of 1,1-Dialkylindolium-2-thiolates via Base-Induced Transformation of 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole in the Presence of Secondary Amines

Dmitry A. Androsov<sup>†</sup>

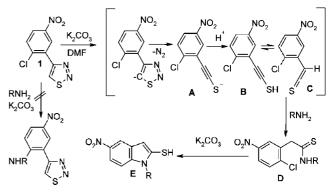
Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403

daa@dartmouth.edu

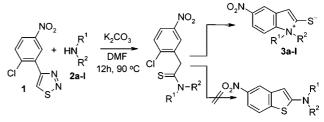
Received August 11, 2008



4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole undergoes ringopening to produce a thioketene intermediate that reacts with secondary amines forming 2-(2-chloro-5-nitrophenyl)-N,N-dialkylthioacetamides. Intramolecular cyclization of these thioamides via nucleophilic substitution of the halogen on the aromatic ring affords nonaromatic 1,1dialkylindolium-2-thiolates instead of the expected aromatic N,N-dialkylaminobenzo[b]thiophenes.


The indole nucleus is ubiquitous among natural products, and its synthesis has often attracted organic chemists.<sup>1,2</sup> There are several procedures that have been documented for the introduction of sulfur-containing substituents at the C2-position of the indole ring: coupling of protected tryptophan derivatives with sulfenyl chloride<sup>3</sup> or dialkyl disulfides in the presence of the silver salt of trifluoromethanesulfonic acid,<sup>4</sup> thiol-mediated radical cyclization of 2-alkenylphenyl isocyanides,<sup>5</sup> treatment of 2-oxyindole with Lawesson's reagent<sup>6</sup> or phosphorus pentasulfide,<sup>7</sup> and isomerization of 5-chloro-3-phenylthio-1*H*-indole into the corresponding 5-chloro-2-phenylthio-1*H*-indole in the polyphosphoric acid.<sup>8</sup> However, the substituents that can be incorporated are few, and/or the stability of the substrates can

(3) Anderson, M. O.; Shelat, A. A.; Guy, R. K. J. Org. Chem. 2005, 70, 4578–4584.


(7) Olgen, S.; Akaho, E.; Nebioglu, D. Farmaco 2005, 60, 497-506.

(8) Hary, U.; Roettig, U.; Paal, M. *Tetrahedron Lett.* **2001**, *42*, 5187–5189.

#### SCHEME 1. Reaction of 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole with Primary Amines



SCHEME 2. Reaction of 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole with Secondary Amines



be an issue. Furthermore, the only general method for the synthesis of indole-2-thiols having no substituents at the C3-position is the thionation of 2-oxyindoles.<sup>6,7</sup>

Recently, we have reported a simple and convenient approach to a variety of *N*-substituted indole-2-thiols based on a one-pot transformation of 4-(2-chloro-5-nitrophenyl)-1,2,3-thiadiazole in the presence of primary amines. The mechanism of this reaction was investigated.<sup>9</sup> Base-induced deprotonation of the thiadiazole ring causes anionic ring-opening, accompanied by a loss of nitrogen to yield acetylene thiolate **A**. Protonation of thiolate **A** produces a tautomeric mixture of acetylene thiol **B** and thioketene **C**. Primary amine traps the highly reactive thioketene **C** to form corresponding thioamide **D**. Finally, intramolecular cyclization of thioamide **D** affords *N*-substituted indole-2-thiol **E** (Scheme 1).

In an attempt to expand the scope of this reaction we were surprised to find the base-induced reaction of 4-(2-chloro-5nitrophenyl)-1,2,3-thiadiazole with secondary amines selectively afforded nonaromatic 1,1-dialkylindolium-2-thiolates instead of the expected *N*,*N*-dialkylaminobenzo[*b*]thiophenes (Scheme 2).<sup>10</sup> The results of our study are summarized in Table 1.

Compound 3g was obtained in low yield (7%) due to the relatively high nucleophilicity of pyrrolidine which displaces the chlorine atom on the benzene ring faster than cyclization occurs, resulting in thioamide 4 (62%) as a major product (Scheme 3).

 $<sup>^{\</sup>dagger}$  Present address: Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755-3564.

<sup>(1)</sup> Sundberg, R. J. Indoles; Academic Press: London, UK, 1996.

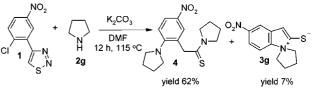
<sup>(2)</sup> Saxton, J. E. Indoles; Wiley-Interscience: New York, 1983.

<sup>(4)</sup> Haramura, M.; Tsuzuki, K.; Okamachi, A.; Yogo, K.; Ikuta, I.; Kozono, T.; Takanashi, H.; Murayama, E. *Bioorg. Med. Chem.* **2002**, *10*, 1805–1811.

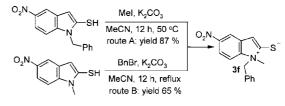
<sup>(5)</sup> Tokuyama, H.; Watanabe, M.; Hayashi, Y.; Kurokawa, T.; Peng, G.; Fukuyama, T. *Synlett* **2001**, *9*, 1403–1406.

<sup>(6)</sup> Wenkerst, E.; Hanna, J. M.; Leftin, M. H.; Michelotti, E. L.; Potts, K. T.; Usifer, D. J. Org. Chem. **1985**, 50, 1125–1126.

<sup>(9)</sup> Androsov, D. A.; Neckers, D. C. J. Org. Chem. 2007, 72, 5368–5373.
(10) Solovyev, A. Y.; Androsov, D. A.; Neckers, D. C. J. Org. Chem. 2007, 72, 3122–3124.







The formation of 1,1-dialkylindolium-2-thiolates 3a-l was unambiguously supported by counter-synthesis of compound 3f from two different precursors. Surprisingly, quaternization of the endocyclic *N*-atom and loss of aromaticity is preferable to alkylation of the exocyclic *S*-atom, when aromaticity remains intact (Scheme 4).

It is worthy of note that the best result for the synthesis of compound **3a** was achieved by using the combination  $NH_4OAc/K_2CO_3/DMF$  that made it possible to generate dimethylamine in situ (Scheme 5).

SCHEME 3. Reaction of 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole with Pyrrolidine



# SCHEME 4. Counter-Synthesis of 1-Benzyl-1-methyl-5-nitro-1*H*-indoliumthiolate



# SCHEME 5. Convenient in Situ Generation of Dimethylamine

 $\begin{array}{rcl} \mathsf{NH}_4\mathsf{OAc} + \mathsf{K}_2\mathsf{CO}_3 & \longrightarrow & \mathsf{KOAc} + & \mathsf{NH}_4\mathsf{HCO}_3 \\ \\ \mathsf{NH}_4\mathsf{HCO}_3 & & & \mathsf{NH}_3 + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2 \\ \\ \mathsf{NH}_3 + \mathsf{CH}(\mathsf{O})\mathsf{N}(\mathsf{CH}_3)_2 & \longrightarrow & \mathsf{HN}(\mathsf{CH}_3)_2 + \mathsf{CH}(\mathsf{O})\mathsf{NH}_2 \end{array}$ 

In summary, we have found and developed a convenient onepot synthesis of 1,1-dialkylindolium-2-thiolates, accomplished with easily accessible starting materials. This procedure provides a simple and practical approach to the construction of novel polyfunctional indoles. Further studies of this reaction (reaction conditions optimization, scope, and application) are underway.

#### **Experimental Section**

General Procedure for the Synthesis of 1,1-Dialkylindolium-2thiolates (3a-l). 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole 1 (0.5 g; 2.07 mmol), K<sub>2</sub>CO<sub>3</sub> (3-7 equiv), the corresponding amine 2a-l(3-5 equiv), and 10 mL of DMF (in that order; for molar ratios see Table 1) were charged into a 50-mL round-bottomed flask. The mixture was stirred for 12 h at 90 °C. DMF was removed under reduced pressure and the residue was purified via column chromatography (SiO<sub>2</sub>, CHCl<sub>3</sub>/hexane (1:3), (1:2), (1:1) (2:1), or CHCl<sub>3</sub>/ MeOH (40:1), (100:1)) affording the corresponding 1,1-dialkylindolium-2-thiolate 3a-l (yields 7-75%, see Table 1).

**1,1-Dimethyl-5-nitro-***IH*-indolium-2-thiolate (3a). 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole **1** (0.5 g; 2.07 mmol), K<sub>2</sub>CO<sub>3</sub> (2 g; 14.49 mmol; 7 equiv), ammonium acetate **2a** (0.8 g; 10.35 mmol; 5 equiv), and 10 mL of DMF were charged into a 50-mL round-bottomed flask. The mixture was stirred for 12 h at 90 °C. DMF was removed under reduced pressure and the residue was purified via column chromatography (SiO<sub>2</sub>, CHCl<sub>3</sub>/hexane (1:2)) to afford red crystalline solid, 0.35 g (75%), mp 133–134 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.04 (s, 6H), 5.97 (s, 1H), 7.59 (d, 1H), 7.82 (dd, 1H), 8.20 (d, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  42.2, 95.5, 114.4, 114.7, 121.5, 138.3, 141.8, 145.9, 159.9; *m*/*z* (EI, 70 eV) 222 (M<sup>+</sup>, 100%), 207 (3), 192 (6), 176 (60), 146 (27); HRMS (EI, 70 eV) calcd for C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>S M<sup>+</sup> 222.0463, found 222.0464.

**1,1-Diethyl-5-nitro-1***H***-indolium-2-thiolate (3b).** 4-(2-Chloro-5-nitrophenyl)-1,2,3-thiadiazole 1 (0.5 g; 2.07 mmol), K<sub>2</sub>CO<sub>3</sub> (0.86 g; 6.21 mmol; 3 equiv), diethylamine **2b** (0.76 g; 10.35 mmol; 5 equiv), and 10 mL of DMF were charged into a 50-mL round-bottomed flask. The mixture was stirred for 12 h at 90 °C. DMF was removed under reduced pressure and the residue was purified via column chromatography (SiO<sub>2</sub>, CHCl<sub>3</sub>/hexane (1:3), (1:2), (1: 1)) to afford red crystalline solid, 0.29 g (55%), mp 41–42 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.26 (t, 6H), 3.40 (q, 4H), 5.97 (s,

### JOC Note

1H), 7.58 (d, 1H), 7.81 (dd, 1H), 8.18 (d, 1H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  12.4, 47.0, 94.2, 114.08, 114.13, 121.3, 137.7, 142.1, 145.9, 157.9; *m*/*z* (EI, 70 eV) 250 (M<sup>+</sup>, 66%), 235 (100), 207 (25), 189 (23), 161 (20). Anal. Calcd for C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>S: C 57.58; H 5.64; N 11.19. Found: C 57.74; H 5.60; N 11.25.

**Acknowledgment.** I acknowledge the Office of Naval Research (Grant No. N00014-05-1-0372) for partial support of this work. I also thank Professor Douglas C. Neckers for his helpful comments.

Supporting Information Available: General information, characterization data for compounds 3c-l and 4 along with copies of <sup>1</sup>H and <sup>13</sup>C NMR and mass spectra of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO801801Y