DOI: 10.1002/ejoc.200701139

Maltose and Maltotriose Derivatives as Potential Inhibitors of the Maltose-Binding Protein

Heinz Malik,^[a] Winfried Boos,^[b] and Richard R. Schmidt^{*[a]}

Keywords: Carbohydrates / Maltose-binding protein / Maltose transport / Inhibition / Substrate modification / Glycosidation

Inhibition of substrate binding to maltose-binding protein (MBP) was investigated with structurally modified maltose and maltotriose derivatives that were designed based on the X-ray analysis of maltose and maltotriose bound to MBP. In maltose, positions 1a, 2a, 2b, 4b and 6b were modified (compounds 1–3, 18a, b, 28a–c, 39 and 44) of which only the trivalent maltose derivatives 39 and 44 exhibited high affinity to MBP. Maltotriose modifications were carried out at posi-

tion 6a and 6c (compounds **45–51**). Compound **50**, possessing a 6a-O-propyl group, and compound **51**, where the 6c-hydroxy group is replaced by bromide, showed higher affinity to MBP than the parent maltotriose. Hence, the structurally quite different compounds **39**, **50** and **51** are important lead compounds for further studies.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Maltose bound to MBP shows in the X-ray analysis^[4]

Glu¹¹¹ close to the 2a-hydroxy group, Asp⁶⁵ close to the 2b-

hydroxy group and Glu¹⁵³ close to the 4b-hydroxy group.

Therefore, it was decided to introduce at these positions

amino groups. Hence, compounds 1-3 (Scheme 1) were tar-

get molecules. It was also speculated that, because of struc-

tural similarity, aminoglycoside antibiotics like neamycine,

streptomycine, kanamycine, gentamycine and amikacine

may act as MBP inhibitors. Therefore, they were included

nor $4^{[9]}$ and glycosyl donor 5 were required. 5 was readily

obtained from 6-O-unportected 2-azido-2-deoxy-glucopyr-

anoside 9.[10,11] The 6-hydroxy group was replaced by the

azido group under Mitsunobu conditions^[12] affording 2,6-

diazido derivative 10. O-Desilylation with HF-pyridine

complex furnished 1-O-unprotected 11 that gave with tri-

chloroacetonitrile in the presence of DBU as base^[13]

the desired O-glucosyl trichloroacetimidate 5. As glycosyl

acceptors 4-O-unprotected glucopyranosides 6-8 were se-

triflic acid (0.05 equiv.) as catalyst at room temperature^[17]

afforded the desired α -linked disaccharide **12** in 69% yield. Hence, with the selected electron-withdrawing protecting group pattern in donor **4** and the selected reaction condi-

tions a-linkage in the disaccharide could be readily ob-

tained.^[13] Cleavage of the O-acetyl groups of 12 under

Zemplén conditions^[18] led to compound 13 that gave on

hydrogenolysis with Pearlman's catalyst^[19] target molecule

Glycosylation of acceptor 6 with donor 4 in ether and

lected, which have been previously prepared.^[14–16]

For the synthesis of compounds 1–3, known glycosyl do-

Results and Discussion

Modifications of Maltose

in this study.

Introduction

The active transport of substances through biological membranes is of great importance for the uptake, for instance, of nutrients and signalling molecules. The ATPbinding-cassette (ABC) transport proteins serve this role.^[1] The ABC transporter for maltose in Escherichia coli is supported by a maltose-binding protein (MBP) that is located in-between the (outer) cell wall and the (inner) plasma membrane. MBPs bind maltose (and also maltotriose and higher oligomers) that have passed the cell wall via maltoporin and provide it to the ABC maltose transport system in the plasma membrane.^[1-3] Hence, blocking of this transport system by inhibiting maltose and maltodextrin binding to MBP could perhaps lead to a new type of antibacterials. Therefore, we investigated variously modified maltose and maltotriose derivatives for their inhibition of maltose and maltotriose binding to MBP. The modifications are based on X-ray analyses of substrate binding to MBP.^[4,5] Oxidation and reduction products of the reducing end of maltose and higher analogs were already investigated as inhibitors of maltose binding to MBP, however they did not reach the affinity of maltose.^[6] Also maltotriose analogs with a spacer group for the middle glycosyl residue were prepared and investigated for this purpose^[7] and the α -glucosidase inhibitor acarbose, formally a maltotetraose analog, was shown to possess affinity to MBP as well.^[8]

[b] Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany

2084

 [[]a] Fachbereich Chemie, Universität Konstanz, Fach M 725, 78457 Konstanz, Germany Fax: + 49-7531-883135
E-mail: Richard.Schmidt@uni-konstanz.de

Scheme 1. Structure and synthesis of target molecules 1–3. *Reagents and conditions:* a) PPh₃, DEAD, HN₃, C₆H₆, THF; b) HF, Pyr; c) CCl₃CN, DBU, CH₂Cl₂; d) TfOH (0.05 equiv.), Et₂O, room temp.; e) NaOMe, MeOH; f) Pd(OH)₂/C, H₂, MeOH, HCl/Et₂O; g) TBDMSOTf (0.01 equiv.), Et₂O, room temp.; h) TBAF, HOAc, THF; i) TMSOTf (0.01 equiv.), Et₂O, room temp.

1; the structural assignment was confirmed by comparison with previously reported physical data.^[20] Glycosylation of acceptor 7 with 4 in ether with tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf) as catalyst at room temperature afforded an 8:1 α/β -mixture of which the desired α -anomer 14 could be readily separated. In order to obtain this result, variation of the catalyst and solvent had to be investigated, thus exhibiting the different influence of acceptors 6 and 7 on the glycosylation result. O-Deacetylation of 14 (\rightarrow 15), then cleavage of the 1-O-thexyl-dimethylsilyl (TDS) group with tetrabutylammonium fluoride (TBAF) in the presence of acetic acid in THF $(\rightarrow 16)$ afforded after hydrogenolysis target molecule 2 as a 3:2-mixture of anomers in high overall yield. Glycosylation of acceptor 8 with glycosyl donor 5 in ether with TMSOTf as catalyst at room temperature^[13] furnished the desired α linked disaccharide 17 in 80% yield; no β-anomer was

found. Hydrogenolysis under the above-described conditions led to target molecule **3**. The ¹H NMR spectrum con-

firmed the α -linkages ($J_{1a,2a} = J_{1b,2b} = 3.7$ Hz). Binding studies to MBP with compounds 1–3 showed very low affinity compared with maltose that binds in the low µmolar range (see below, Table 1). Similar results were obtained for the above-mentioned aminoglycoside antibiotics (not shown). Hence, strengthening ionic interactions to increase binding to MBP was not successful. Therefore, it was decided to replace the 4b-hydroxy group of maltose by aryl–O–CH₂CH₂–O residues. This way, glucosyl residues could be mimicked with binding affinities in the range of maltotriose that has a sub-µmolar K_d value (Table 1). This group could also strongly inhibit transportation by the ABC maltose transport system.

Table 1. Binding affinities of the target molecules to MBP compared to maltose and maltotriose.

Compound	IC50 [µм]	<i>K</i> _d [µм]	
Maltose	_	1–4	
1	1000	850	
2	> 1000	850	
3	> 500	> 450	
18a	> 750	> 450	
18b	> 750	> 450	
19	60	44	
20	500	366	
28a	260	160	
28b	450	275	
28c	125	76	
29	96	58	
39	1.5	0.91	
44	2.4	1.4	
Maltotriose	0.19	0.11	
45	1.5	0.91	
46	1.5	0.91	
47	31	18	
48	1.4	0.85	
49	0.70	0.42	
50	0.11	0.07	
51	0.07	0.04	

The synthesis of target molecules 18a,b (Scheme 2) was performed via methyl maltoside 19,^[21] its benzylidene derivative 20,^[22] and the benzylation product 21,^[23] which was transformed into the 4b-O-unprotected maltoside 22^[24] following literature procedures. Alkylation of 22 with 8-(triisopropylsilyloxy)-3,6-dioxa-octyl bromide (23) with sodium hydride as base in the presence of tetrabutylammonium iodide (TBAI) as promoter in DMF afforded compound 24. Cleavage of the silvl group with TBAF in THF (\rightarrow 25) and then replacement of the ω -hydroxy group by bromide with Appel's reagent^[25] led to intermediate **26**. Reaction of **26** with 3,5-dimethoxyphenol with NaH/TBAI in DMF gave aryl ether derivative 27a in good yield. Similarly, from 26 and 3,5-diisopropyloxyphenol analog 27b was generated. Hydrogenolytic O-debenzylation of 27a and 27b as described above led to target molecules 18a and 18b, respectively.

Scheme 2. Structure and synthesis of target molecules **18a,b**. *Reagents and conditions:* a) PhCH(OMe)₂, TsOH (ref.^[22]); b) BnBr, NaH, DMF (ref.^[23]); c) NaCNBH₃, Et₂O/HCl (ref.^[24]); d) NaH, TBAI, DMF, e) TBAF, THF; f) CBr₄, PPh₃, CH₂Cl₂; g) 3,5-dimethoxyphenol, NaH, TBAI, DMF; h) 3,5-diisopropoxyphenol, NaH, TBAI, DMF; i) Pd(OH)₂/C, H₂, dioxane.

The synthesis of 4b-O-modified target molecules 28a-c (Scheme 3), having an unprotected glucose residue at the reducing end and only one ethylene glycol residue, started from known 4b,6b-O-benzylidene-maltose (29).^[22,26] Following benzylation under standard conditions afforded fully protected maltoside 30; reductive cleavage of the benzylidene ring with sodium cyanoborohydride in hydrogen chloride containing ether^[24] afforded known 4b-O-unprotected compound 31.^[14,27] 4b-O-Alkylation with 3,5-dialkoxyphenyloxyethyl bromides 32a-c furnished 33a-c that on hydrogenolytic O-debenzylation provided target molecules 28a-c. Compounds 28a-c showed for the first time affinities to MBP in the umolar range whereas 18a, b had still very low affinities (Table 1). Surprisingly, all these affinities to MBP were easily reached or even surpassed by simple maltose derivatives 19, 20 and 29 (Table 1).

Based on these results the multivalency effect was investigated by ligating three maltose residues either via their 4bhydroxy groups or via their anomeric hydroxy groups formally to 1,3,5-tris-O-hydroxyethylphloroglucine, thus leading to target molecules **39** and **44**, respectively (Scheme 4 and Scheme 5). To this end, 4b-O-unprotected maltoside was alkylated with tris(isopropylsilyloxy)ethyl bromide **34** with NaH/TBAI in DMF providing compound **35**. Cleavage of the TIPS group with TBAF in THF (\rightarrow **36**), then

Scheme 3. Structure and synthesis of target molecules **28a–c**. *Reagents and conditions:* a) BnBr, NaH, DMF; b) NaCNBH₃, Et₂O/HCl; c) NaH, TBAI, DMF; d) Pd(OH)₂/C, H₂, dioxane.

transformation of **36** with Appel's reagent^[25] into 4b-*O*-bromoethylated derivative **37**, and then *O*-alkylation of phloroglucine with **37** and NaH/TBAI in DMF furnished trivalent

Scheme 4. Synthesis of maltose cluster **39**. *Reagents and conditions:* a) BrCH₂CH₂OTIPS, NaH, TBAI, DMF; b) TBAF, THF; c) CBr₄, PPh₃, CH₂Cl₂; d) phloroglucine, NaH, TBAI, DMF; e) Pd(OH)₂/ C, H₂, THF.

intermediate **38** in 52% yield. Hydrogenolytic *O*-debenzylation afforded target molecule **39**. Glycosylation of 1,3,5tris-(hydroxyethyloxy)benzene **42**,^[28] that is readily obtained from **41**,^[29] with *O*-acetyl-protected *O*-maltosyl trichloroacetimidate **40**^[13,30] as glycosyl donor and TMSOTf as catalyst in acetonitrile at room temperature^[13] led to the desired β -linked tris-*O*-maltosyloxyethyl phloroglucine ether **43**. *O*-Deacetylation under Zemplén conditions^[18] furnished target molecule **44**. To our delight, trivalent compounds **39** and **44** showed affinities to MBP in the range of maltose and maltotriose (Table 1).

Scheme 5. Synthesis of maltose cluster **44**. *Reagents and conditions:* a) LiAlH₄, THF; b) TMSOTf (0.025 equiv.), MeCN, room temp.; c) NaOMe, MeOH.

Modification of Maltotriose

The higher affinity of maltotriose to MBP compared with maltose was reason to prepare modifications that are essentially designed based on the X-ray analysis of maltotriose binding to MBP.^[5] It was speculated that substitution of water molecules in the active site by hydrophobic residues might lead to increased hydrophobic interactions and thus to increased overall binding.^[31] Therefore, following the X-ray analysis, modifications of the 6a- and/or 6c-hydroxy group were investigated. The target molecules **45–51** are compiled in Scheme 6.

For the construction of **45–51** an appropriately protected maltosyl donor and a 4-*O*-unprotected glucose acceptor were chosen. This time, for the generation of the α -glycosidic linkage, maltothioglycoside **53** was investigated that was readily obtained from 4b,6b-*O*-benzylidene derivative **52**.^[32] As acceptors glucopyranosides **56** and **57** were employed, which were obtained from known glucoside **54**.^[33] Chemoselective introduction of bromide at C-6 with Appel's reagent^[25] afforded **55**, which gave with sodium methoxide in the presence of TBAI and crown ether 15-crown-5 in DMF 6-*O*-methyl-glucoside **56**. Regioselective

Scheme 6. Structure and synthesis of target molecules **45–51**. *Reagents and conditions:* a) BnBr, NaH, DMF; b) CBr₄, PPh₃, CH₂Cl₂; c) NaOMe, TBAI, 15-crown-5, DMF; d) TDS-Cl, imidazole, CH₂Cl₂; e) NIS TfOH, Et₂O, room temp.; f) TBAF, THF; g) H₃B·THF, Bn₂BOTf, CH₂Cl₂; h) MeI, NaH, DMF; i) Pd(OH)₂/C, H₂, THF, H₂O, HOAc; j) PrI, NaH, DMF; k) TIPS-Cl, imidazole, CH₂Cl₂; l) PPh₃, DEAD, HN₃, C₆H₆, CH₂Cl₂.

silvlation of the 6-hydroxy group in 54 with TDS-Cl and imidazole in dichloromethane afforded 4-O-unportected glucoside 57. Glycosylation of 57 as acceptor with donor 53 and N-iodosuccinimide (NIS, 2 equiv.) and catalytic amounts of triflic acid (TfOH) as promoter^[34] afforded the desired α -linked maltotrioside **58** though in only 40% yield. 6a-O-Deacetylation with TBAF in THF furnished 59 that was used to introduce a 6a-O-propyl or a 6a-O-methyl group under standard conditions affording compounds 62 and 64, respectively. Reductive cleavage of the 4c,6c-Obenzylidene groups with the borohydride-THF complex in the presence of dibutylboron-trifluoromethanesulfonate^[10] afforded 6c-O-unprotected compounds 63 and 65. Hydrogenolytic cleavage of the O-benzyl groups gave target molecules 50 and 49, respectively. The same reductive cleavage applied to the 4c,6c-O-benzylidene group in 58 furnished 6c-O-unportected maltotriose 60 that gave on 6c-O-methylation maltotrioside 61; then desilylation and hydrogenolytic O-debenzylation afforded target molecule 45.

The intermediate 64, required for the synthesis of target molecules 48 and 49, could also be obtained by glycosylation of acceptor 56 with donor 53 under the above-de-

FULL PAPER

scribed conditions. Reductive cleavage of the 4c,6c-Obenzylidene group with the boronhydride–THF complex,^[10] as mentioned earlier, led to compound 65 that was then transformed with methyl iodide and NaH as base into 6c-O-methyl derivative 66. Hydrogenolytic O-debenzylation of 65 and 66 led to target molecules 49 and 48, respectively. Glycosylation of acceptor 6 with donor 53 under the standard conditions furnished the desired maltotrioside 67, though in only 56% yield. Reductive cleavage of the 4c,6c-O-benzylidene group afforded 6c-O-unprotected compound 68 that was silvlated with TIPS-Cl in the presence of imidazole furnishing fully protected maltotrioside 69 which gave on hydrogenolytic O-debenzylation target molecule 47. Target molecule 46 was readily obtained from 6c-O-unprotected compound 60. Application of the Mitsunobu procedure for azide introduction^[12] gave 6c-azido-6c-deoxymaltotrioside 70. Desilylation with TBAF in THF (\rightarrow 71) and then hydrogenolytic O-debenzylation led to 46. Target molecule 51 was obtained from 6c-O-unprotected compound 68 by transformation into bromide 72 with Appel's reagent and then hydrogenolytic O-debenzylation.

With the exception of 6c-O-triisopropylsilyl-protected maltotriose 47 all other target molecules exhibited excellent affinities to MBP (Table 1). It is particularly worth mentioning that compounds 50 and 51 having lipophilic groups in 6a- or 6c-position, respectively, show the highest binding affinities to MBP.

Biological Studies

The binding affinities to MBP were measured following known procedures.^[35] From these results, the IC₅₀ and the $K_{\rm d}$ values were obtained^[36] which are compiled in Table 1. As mentioned above, the replacement of maltose hydroxy groups by amino groups as in 1-3 led to a big decrease in binding to MBP. Also the introduction of aryl-O-(CH₂CH₂–O)₃ residues at the 4b-hydroxy group of maltose (compounds 18a, b) did not improve this result. Surprisingly, the corresponding compounds with a 4b-O-arylethylene glycol residue (compounds 28a-c) showed improved affinity to MBP, yet they did not reach the affinities of simple maltose derivatives as 19 and 29 or maltose. However, the trivalent maltose derivatives 39 and 44, which were derived from 28a-c, reached (compound 44) or even surpassed (compound 39) the affinity of maltose to MBP. As expected, compound 39 with a nonmodified reducing end showed the highest affinity in this series.

The approximately tenfold higher affinity of maltotriose to MBP than maltose indicates that the α -D-glucopyranosyl residue at the nonreducing end contributes to some extent to MBP binding. Yet, introduction of a 6c-O-methyl group or replacement of the 6c-hydroxy group by an amino group in maltotriose (compounds **45** and **46**) led to a slight decrease and introduction of a 6c-O-TIPS group (compound **47**) to a dramatic loss in binding. With compound **48** having a 6a- and 6c-O-methyl group the previous affinity was restored which could be improved by having only a 6a-O- methyl group (compound 49) and even further by a 6a-O-propyl group (compound 50), thus indicating that replacement of water molecules in the binding site leads to higher affinity to MBP than found for maltotriose. Even higher affinity was obtained by replacement of the 6c-hydroxy group by bromide (compound 51; $K_d = 40$ nmol) which compared to the 6c-O-methyl compound 45, led to a roughly 20-fold increase in binding affinity and compared to maltotriose to a threefold higher affinity.

A few preliminary studies on maltose transport inhibition of the ABC-transporter were carried out by measuring the ¹⁴C-maltose uptake by *E. coli*.^[35] It was observed that transport inhibition by compounds **18a,b**, **28a–c** and **29** followed the inhibitions found for maltose binding to MBP; hence, only compounds **28c** and **29** show significant transport inhibition.

Conclusions

Based on X-ray analyses of maltose and maltotriose binding to MBP structural modifications were carried out. This led to compounds **39** and **50**, **51** showing higher affinity to MBP than maltose or maltotriose, respectively. These structurally quite different lead compounds provide a good basis for further inhibition studies including detailed studies on maltose transport inhibition.

Experimental Section

General: Solvents were purified by standard procedures. NMR spectra were recorded at 22 °C on a Bruker AC 250 Cryospec or a Bruker DRX 600 spectrometer. Tetramethylsilane (TMS) or the resonance of the undeuterated solvent was used as internal standard; solvent CDCl₃, $\delta = 7.24$; D₂O, $\delta = 4.63$; [D₆]DMSO, $\delta =$ 2.49 ppm. MALDI mass spectra were recorded on a Kratos Kompact Maldi 2 spectrometer and 2,5-dihydroxybenzoic acid (DHB) was used as matrix. FAB MS spectra were obtained with a Finnigan MAT 312/AMD 5000 instrument; +6 kV for positive ions, -4 kV for negative ions. Thin-layer chromatography was performed on Merck 60 F254 silica gel plastic plates or Merck RP-18 glass plates; compounds were visualized by treatment with a solution of [(NH₄)₆Mo₇O₂₄·4H₂O] (20 g) and Ce(SO₄)₂ (0.4 g) in 10% sulfuric acid (400 mL) and then heating to 120 °C. Flash chromatography was performed on J. T. Baker silica gel 60 (40-63 µm) at a pressure of 0.3 bar. Preparative RP-18 HPLC was carried out on a Eurospher 100 C18 column (Fa. Knauer) with a Shimadzu LC-8A pump and a Rainin Dynamax UV-1 detector at a flow rate of 10 mL/ min. Optical rotations were measured at 20 °C with a Büchi Polar-Monitor using the light of the sodium D line.

Thexyldimethylsilyl 2,6-Diazido-3,4-*O*-benzyl-2,6-dideoxy-β-Dglucopyranoside (10): To a solution of 9^[10,11] (200 mg, 0.379 mmol, 1 equiv.) in dry THF (5.0 mL) was added diethyl azodicarboxylate (DEAD, 88.4 μL, 0.569 mmol, 1.5 equiv.) and triphenylphosphane (148 mg, 0.569 mmol, 1.5 µmol, 1.5 equiv.). At room temp. a solution of HN₃ (0.569 mmol, 1.5 equiv.) in benzene (225 μL) was added. After 30 min (TLC monitoring) the reaction mixture was diluted with NaHCO₃ solution (20 mL) and ethyl acetate (20 mL). The aqueous phase was extracted with ethyl acetate (3×20 mL) and the solvent of the combined organic phases was then removed

in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 20:1) furnishing **10** (189 mg, 0.341 mmol, 90%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 5:1): $R_{\rm f} = 0.68$. $[a]_{\rm D} = +10.3$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 0.21$ [2s, 6 H, Si(CH₃)₂], 0.90 [4s, 12 H, C(CH₃)], 1.66 [hept, ³J = 6.0 Hz, 1 H, CH(CH₃)₂], 3.25 (dd, ³J_{5,6} = 5.8, ²J_{6,6'} = 13.0 Hz, 1 H, 6-H), 3.33 (dd, ³J_{1,2} = 7.6, ³J_{3,2} = 10.0 Hz, 1 H, 2-H), 3.38–3.42 (m, 2 H, 3-H, 5-H), 3.46–3.50 (m, 2 H, 4-H, 6'-H), 4.51 (d, ³J_{2,1} = 7.6 Hz, 1 H, 1-H), 4.57 (d, ²J = 11.1 Hz, 1 H, PhC*H*H), 4.77–4.91 (m, 3 H, PhC*H*H), 7.23–7.36 (m, 10 H, Ph) ppm. MALDI MS: m/z = 554 [MH⁺], 575 [MNa⁺]. C₂₈H₄₀N₆O₄Si (552.75): calcd. C 60.84, H 7.29, N 15.20; found C 60.81, H 7.11, N 14.92.

2,6-Diazido-3,4-O-benzyl-2,6-dideoxy-α/β-D-glucopyranose (11): To a solution of 10 (726 mg, 1.31 mmol) and pyridine (5.0 mL) was added a solution of hydrogen fluoride in pyridine (1.10 mL, 65%HF) at room temp. The reaction mixture was stirred for 3 d at room temp. (TLC monitoring) and diluted with NaHCO3 solution (20 mL) and ethyl acetate (20 mL). The aqueous phase was extracted with ethyl acetate $(3 \times 20 \text{ mL})$. The solvent of the combined organic phases was then removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 6:1) furnishing 11 (503 mg, 1.23 mmol, 93%) as colourless amorphous solid. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.20$. ¹H NMR (250 MHz, CDCl₃): δ = 2.84 (br. s, 0.6 H, OH_a), 3.21–3.59 (m, 5.2 H, OH_β, 2-H, 3-H_β, 4-H, 5-H_β, 6-H, 6'-H), 3.94–4.11 (m, 1.2 H, 3- $H_{\alpha}, \ 5\text{-}H_{\alpha}), \ 4.53\text{-}4.66$ (m, 1.4 H, 1-H_{\beta}, PhCHH), 4.75\text{-}4.94 (m, 3 H, PhCHH), 5.31 (d, ${}^{3}J_{2,1} = 3.8$ Hz, 0.6 H, 1-H_a), 7.20–7.41 (m, 10 H, Ph) ppm. MALDI MS: m/z = 433 [MNa⁺], 449 [MK⁺]. C₂₀H₂₂N₆O₄ (410.43): calcd. C 58.53, H 5.40, N 20.48; found C 58.52, H 5.37, N 20.21.

O-(2,6-Diazido-3,4-O-benzyl-2,6-dideoxy-α-D-glucopyranosyl) Trichloroacetimidate (5): To a solution of 11 (150 mg, 0.365 mmol) in dry CH₂Cl₂ (10.0 mL) were added trichloroacetonitrile (500 µL, 3.46 mmol) and 2 drops DBU. After 3 h at room temp. the reaction mixture was concentrated in vacuo and purified by flash chromatography (ethyl acetate/Et2O/triethylamine, 10:1:0.1) furnishing 5 (174 mg, 0.314 mmol, 86%) as α -anomer (with traces of the β -anomer) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.59$. $[a]_{\rm D} = +79.4$ (c = 1, CHCl₃). ¹H NMR (250 MHz, CDCl₃): δ = 3.36 (dd, ${}^{3}J_{5.6}$ = 5.4, ${}^{2}J_{6.6'}$ = 13.4 Hz, 1 H, 6-H), 3.52 (dd, ${}^{3}J_{1,2} = 3.5$, ${}^{3}J_{3,2} = 12.5$ Hz, 1 H, 2-H), 3.62– 3.72 (m, 2 H, 4-H, 6'-H), 3.96–4.08 (m, 2 H, 3-H, 5-H), 4.62 (d, ²J = 11.9 Hz, 1 H, PhCHH), 4.85-4.93 (m, 3 H, PhCHH), 6.41 (d, ${}^{3}J_{2,1} = 3.5$ Hz, 1 H, 1-H), 7.21–7.41 (m, 10 H, Ph), 8.73 (s, 1 H, NH) ppm. C₂₂H₂₂Cl₃N₇O₄ (554.82): calcd. C 47.63, H 4.00, N 17.67; found C 47.70, H 4.08, N 17.37.

Benzyl *O*-(3,4,6-Tri-*O*-acetyl-2-azido-2-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-*O*-benzyl-α-D-glucopyranoside (12): To a solution of 6^[14] (260 mg, 0.481 mmol, 1.0 equiv.) and 4^[9] (300 mg, 0.631 mmol, 1.3 equiv.) in dry diethyl ether (6.0 mL) was added trifluoromethanesulfonic acid (2.1 µL, 0.024 mmol, 0.05 equiv.) at room temp. After 20 min, the reaction mixture was neutralised with triethylamine and the solvent removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnished 12 (241 mg, 0.33 mmol, 69%) as colourless syrup. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f}$ = 0.25. [*a*]_D = +100.5 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 2.00, 2.01, 2.08 (3s, 9 H, COCH₃), 3.23 (dd, ³J_{1,2} = 3.9, ³J_{3,2} = 10.6 Hz, 1 H, 2b-H), 3.55– 3.59 (m, 2 H, 2a-H, 6a-H), 3.72–3.77 (m, 2 H, 6a'-H), 3.90–3.97 (m, 3 H, 4a-H, 5a-H, 5b-H), 4.10 (dd, ³J_{5,6} = 3.6, ²J_{6,6'} = 12.5 Hz, 1 H, 6'b-H), 4.17 (dd, ³J_{2,3} = ³J_{4,3} = 9.0 Hz, 1 H, 3a-H), 4.48–4.61 (m, 5 H, PhC*H*H), 4.71 (d, ${}^{2}J$ = 12.3 Hz, 1 H, PhC*H*H), 4.79 (d, ${}^{2}J$ = 10.9 Hz, 1 H, PhC*H*H), 4.86 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 1 H, 1a-H), 4.97 (dd, ${}^{3}J_{3,4}$ = ${}^{3}J_{5,4}$ = 9.8 Hz, 1 H, 4b-H), 5.14 (d, ${}^{2}J$ = 10.9 Hz, 1 H, PhC*H*H), 5.39 (dd, ${}^{3}J_{2,3}$ = ${}^{3}J_{4,3}$ = 9.0 Hz, 1 H, 3b-H), 5.81 (d, ${}^{3}J_{2,1}$ = 3.9 Hz, 1 H, 1b-H), 7.20–7.45 (m, 20 H, Ph) ppm. C₄₆H₅₁N₃O₁₃ (853.34): calcd. C 64.70, H 6.02, N 4.92; found C 64.38, H 5.96, N 4.78.

Benzyl O-(2-Azido-2-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-Obenzyl-a-D-glucopyranoside (13): To a solution of 12 (270 mg, 0.316 mmol) in dry methanol (6.0 mL) at room temp. was added a solution of NaOMe in methanol (20 µL, 1.0 м). The reaction mixture was stirred overnight at room temp. and then neutralised with Amberlite IR 120 H⁺. After filtration and removal of the solvent in vacuo the crude product was purified by flash chromatography with silica gel (petroleum ether/ethyl acetate, 1:1) furnishing 13 (200 mg, 0.275 mmol, 87%) as colourless foam. TLC (petroleum ether/ethyl acetate, 1:1): $R_{\rm f} = 0.16$. $[a]_{\rm D} = +103.5$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 1.85 (br. s, 1 H, OH), 2.75–2.90 (2br.s, 2 H, OH), 3.01 (dd, ${}^{3}J_{1,2} = 3.8$, ${}^{3}J_{3,2} = 9.8$ Hz, 1 H, 2b-H), 3.47 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.8$ Hz, 1 H, 4b-H), 3.54–3.58 (m, 5 H, 2a-H, 6a-H, 6'a-H, 5b-H, 6b-H, 6'b-H), 3.70 (dd, ${}^{3}J_{5,6} = 3.7$, ${}^{2}J_{6,6'} =$ 11.4 Hz, 1 H, 6a-H), 3.83 (ddd, ${}^{3}J_{4,5} = 9.5$, ${}^{3}J_{6,5} = 3.7$, ${}^{2}J_{5,6'} =$ 1.8 Hz, 1 H, 5a-H), 3.88 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.8$ Hz, 1 H, 3b-H), 3.94 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.5$ Hz, 1 H, 4a-H), 4.16 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3}$ = 9.5 Hz, 1 H, 3a-H), 4.50–4.60 (m, 5 H, PhCHH), 4.71 (d, ${}^{2}J$ = 11.0 Hz, 1 H, PhCHH), 4.81-4.86 (m, 2 H, 1a-H, PhCHH), 5.12 (d, ${}^{2}J$ = 11.0 Hz, 1 H, PhC*H*H), 5.71 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 1 H, 1b-H), 7.24–7.41 (m, 20 H, Ph) ppm. C₄₀H₄₅N₃O₁₀ (727.81): calcd. C 66.01, H 6.23, N 5.77; found C 65.83, H 6.22, N 5.16.

O-(2-Amino-2-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)- α/β -D-glucopyranose Hydrochloride (1): To a solution of 13 (50.0 mg, 68.7 µmol) in methanol (5.0 mL) was added Pearlman catalyst^[19] (10.0 mg). Then the argon atmosphere was replaced completely by hydrogen. To ensure a complete hydrogenation the pH value had to be kept slightly acidic with HCl/Et₂O (ca. 1 equiv.). Hydrogenation was continued overnight at room temp. After TLC monitoring the catalyst was removed with celite, which was then washed with methanol $(3 \times 10 \text{ mL})$. The filtrate and the wash solution were combined and the solvent removed under reduced pressure. A concentrated solution in distilled water (2-3 drops) was produced of the crude product precipitated with ethanol. Desiccation furnished 1 (16 mg, 41.2 µmol, 60%) as pale yellow crystals. M.p. 173-181 °C (dec.). TLC (EtOH/H₂O/AcOH, 5:5:0.5): $R_f = 0.66$. ¹H NMR (600 MHz, CD₃OD): δ = 3.14–3.18 (m, 1.5 H, 2a-H₈, 2b-H), 3.37–3.43 (m, 2 H, 2a-H_α, 5a-H_β, 4b-H), 3.60–3.95 (m, 8.5 H, 3a-H, 4a-H, 5a-H_α, 6a-H, 6'a-H, 3b-H, 5b-H, 6b-H, 6'b-H), 4.47 (d, ${}^{3}J_{2,1} = 7.5$ Hz, 0.5 H, 1a-H_B), 5.10 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 0.5 H, 1a-H_a), 5.50 (2d, ${}^{3}J_{2,1}$ = 3.8 Hz, 1 H, 1b-H) ppm. FAB MS: *m*/*z* = 342 [MH⁺], 364 [MNa⁺]. C₁₂H₂₃NO₁₀·HCl (377.77). Other physical data have already been reported.^[20]

Thexyldimethylsilyl *O*-(3,4,6-Tri-*O*-acetyl-2-azido-2-deoxy-α-D-glucopyranosyl)-(1→4)-2-azido-3,6-di-*O*-benzyl-2-deoxy-β-D-glucopyranoside (14): To a solution of 7^[15] (200 mg, 0.38 mmol, 1.0 equiv.) in dry diethyl ether (2.0 mL) was added TBDMSOTf (1.0 µL, 3.8 µmol, 0.01 equiv.). Then a solution of 4^[9] (235 mg, 0.49 mmol, 1.3 equiv.) in dry diethyl ether (5.0 mL) was added within 5 min at room temp. After 30 min the reaction mixture was neutralised with triethylamine and then the solvent removed in vacuo. Purification by flash chromatography with silica gel (petroleum ether/ethyl acetate, 5:1) furnished an α/β-diastereomer mixture that was separated after further chromatography (toluene/acetone, 10:1) furnishing the α-diastereomer 14 (131 mg, 0.16 mmol, 41%) as colourless syrup.

TLC (petroleum ether/ethyl acetate, 3:2): $R_{\rm f} = 0.50$. $[a]_{\rm D} = +53.0$ $(c = 1.0, \text{CHCl}_3)$. ¹H NMR (600 MHz, CDCl₃): $\delta = 0.22$ [2s, 6 H, Si(CH₃)₂], 0.91 [4s, 12 H, C(CH₃)], 1.68 [hept, ${}^{3}J$ = 6.9 Hz, 1 H, $CH(CH_3)_2$], 2.00, 2.02, 2.08 (3s, 9 H, COCH₃), 3.24 (dd, ${}^{3}J_{1,2}$ = 3.8, ${}^{3}J_{3,2}$ = 10.6 Hz, 1 H, 2b-H), 3.39 (dd, ${}^{3}J_{1,2}$ = 7.6, ${}^{3}J_{3,2}$ = 9.4 Hz, 1 H, 2a-H), 3.43 (ddd, ${}^{3}J_{4,5} = 9.7$, ${}^{3}J_{6,5} = 4.1$, ${}^{3}J_{6',5} = 2.0$ Hz, 1 H, 5a-H), 3.51 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.4$ Hz, 1 H, 3a-H), 3.65 (dd, ${}^{3}J_{5,6}$ = 2.0, ${}^{2}J_{6,6'}$ = 11.9 Hz, 1 H, 6a-H), 3.73 (dd, ${}^{3}J_{5,6}$ = 2.4, ${}^{2}J_{6,6'}$ = 12.6 Hz, 1 H, 6b-H), 3.80 (dd, ${}^{3}J_{5,6} = 3.8$, ${}^{2}J_{6,6'} = 11.9$ Hz, 1 H, 6'a-H), 3.98 (m, 2 H, 4a-H, 5b-H), 4.16 (dd, ${}^{3}J_{5,6} = 3.5$, ${}^{2}J_{6,6'} =$ 12.6 Hz, 1 H, 6'b-H), 4.57 (m, 3 H, 1a-H, PhCHH), 4.74 (d, ${}^{2}J$ = 12.4 Hz, 1 H, PhCHH), 4.97 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.7$ Hz, 1 H, 4b-H), 5.06 (d, ${}^{2}J$ = 10.7 Hz, 1 H, PhCHH), 5.38 (dd, ${}^{3}J_{2,3}$ = ${}^{3}J_{4,3}$ = 10.6 Hz, 1 H, 3b-H), 5.78 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 1 H, 1b-H), 7.26–7.36 (m, 10 H, Ph) ppm. C₄₀H₅₆N₆O₁₂Si (840.99): calcd. C 57.12, H 6.72, N 9.99; found C 57.22, H 6.69, N 9.74.

Thexyldimethylsilyl O-(2-Azido-2-deoxy-α-D-glucopyranosyl)- $(1\rightarrow 4)$ -2-azido-3,6-di-O-benzyl-2-desoxy- β -D-glucopyranoside (15): To a solution of 14 (200 mg, 0.238 mmol) and dry methanol (5.0 mL) was added a solution of NaOMe in methanol (19 μ L, 1.0 M) at room temp. The reaction mixture was stirred overnight at room temp. and then neutralised with Amberlite IR 120 H⁺. After filtration and removal of the solvent in vacuo the crude product was purified by flash chromatography with silica gel (toluene/ethyl acetate, 3:2) furnishing 15 (146 mg, 0.205 mmol, 86%) as colourless, amorphous solid. TLC (toluene/ethyl acetate, 1:1): $R_f = 0.21$. $[a]_{D} = +51.4$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta =$ 0.21 [2s, 6 H, Si(CH₃)₂], 0.90 [4s, 12 H, C(CH₃)], 1.68 [hept, ${}^{3}J$ = 6.0 Hz, 1 H, CH(CH₃)₂],1.83 (br. s, 1 H, OH), 2.61, 2.63 (2br.s, 2 H, OH), 3.04 (dd, ${}^{3}J_{1,2} = 3.8$, ${}^{3}J_{3,2} = 9.9$ Hz, 1 H, 2b-H), 3.37 (dd, ${}^{3}J_{1,2} = 7.6, {}^{3}J_{3,2} = 9.4 \text{ Hz}, 1 \text{ H}, 2a-\text{H}), 3.43 \text{ (m, 1 H, 5a-H)}, 3.50-$ 3.53 (m, 2 H, 3a-H, 4b-H), 3.62–3.67 (m, 3 H, 5b-H, 6b-H, 6a-H), 3.78 (dd, ${}^{3}J_{5,6} = 3.8$, ${}^{2}J_{6,6'} = 11.7$ Hz, 1 H, 6a-H), 3.89 (dd, ${}^{3}J_{2,3} =$ ${}^{3}J_{4.3} = 9.9$ Hz, 1 H, 3b-H), 3.97 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.1$ Hz, 1 H, 4a-H),4.54–4.63 (m, 3 H, 1a-H, PhCHH), 4.78 (d, ${}^{2}J$ = 11.0 Hz, 1 H, PhCHH), 5.04 (d, ${}^{2}J$ = 11.0 Hz, 1 H, PhCHH), 5.66 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 1 H, 1b-H), 7.26-7.38 (m, 10 H, Ph) ppm. C₃₄H₅₀N₆O₉Si (714.34): calcd. C 57.12, H 7.05, N 11.76; found C 56.48, H 6.96, N 11.47.

O-(2-Azido-2-deoxy-α-D-glucopyranosyl)-(1→4)-2-azido-3,6-di-Obenzyl-2-desoxy-α/β-D-glucopyranose (16): To a solution of 15 (30 mg, 0.042 mmol) in THF (0.5 mL) was added catalytic amount of acetic acid (2.5 µL). Then TBAF solution (50 µL, 1.0 M in THF) was added portionwise to the reaction mixture and the silvl deprotection was tracked under TLC monitoring (0.5-5.0 h). For the purification the reaction mixture was diluted with ethyl acetate (10.0 mL) and the organic phase washed with concentrated NaCl solution $(3 \times 10 \text{ mL})$. The aqueous phase was concentrated in vacuo and reextracted with ethyl acetate $(3 \times 10 \text{ mL})$. The combined organic phase was dried with MgSO4 and then the solvent removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 1:3) furnished 16 (21 mg, 0.036 mmol 85%) as colourless foam. In CDCl₃ an anomeric mixture appears $(\alpha/\beta, 3:2)$. TLC (ethyl acetate 100%): $R_{\rm f} = 0.64$. ¹H NMR (600 MHz, CDCl₃): δ = 1.79 (br. s, 1 H, 6b-OH), 2.67 (m, 2.4 H, 2 OH, 1a-OH_β), 3.07 (m, 1.6 H, 2b-H, 1a-OH_α), 3.37-4.14 (m, 11 Н, 2а-Н, 3а-Н, 4а-Н, 5а-Н, 6а-Н, 6'а-Н, 3b-Н, 4b-Н, 5b-Н, 6b-H, 6'b-H), 4.53–4.69 (m, 2.4 H, 1a-H_{β}, 2 PhC*H*H), 4.82 (d, ²*J* = 11.0 Hz, 0.4 H, PhC*H*H_{β}), 4.88 (d, ²*J* = 11.0 Hz, 0.6 H, PhC*H*H_{α}), 4.99 (d, ${}^{2}J$ = 11.0 Hz, 0.6 H, PhCHH_a), 5.04 (d, ${}^{2}J$ = 11.0 Hz, 0.4 H, PhCHH_{β}), 5.37 (m, 0.6 H, 1a-H_{α}), 5.62 (d, ³J_{2,1} = 3.5 Hz, 1 H, 1b-H), 7.25–7.40 (m, 10 H, Ph) ppm. MALDI MS: m/z = 595.0

[MNa⁺]. C₂₆H₃₂N₆O₉·0.5H₂O (581.23): calcd. C 53.70, H 5.72, N 14.45; found C 53.71, H 5.87, N 13.94.

O-(2-Amino-2-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)-2-amino-2-deoxy- α/β -D-glucopyranose Dihydrochloride (2): To a solution of 16 (50.0 mg, 0.087 mmol) in methanol (4.0 mL) was added Pearlman catalyst^[19] (10.0 mg). Then the argon atmosphere was replaced completely by hydrogen. To ensure a complete hydrogenation the pH value had to be kept slightly acidic with HCl/Et₂O (ca. 2 equiv.). Hydrogenation was continued overnight at room temp. After TLC monitoring the catalyst was removed with celite, which was then washed with methanol $(3 \times 10 \text{ mL})$. The filtrate and the wash solution were combined and the solvent removed under reduced pressure. A concentrated solution in distilled water (2-3 drops) was produced of the crude product which was precipitated with ethanol. Desiccation furnished 2 (36 mg, 0.086 mmol, 96%) as pale yellow crystals. RP 18-TLC (EtOH/H₂O/AcOH, 5:5:0.5): R_f = 0.62. M.p. 162 °C (dec.). ¹H NMR (600 MHz, CD₃OD): δ = 2.86 (dd, ${}^{3}J_{2,1} = 8.2$, ${}^{3}J_{3,2} = 10.6$ Hz, 0.4 H, 2a-H_{β}), 3.15–3.23 (m, 1.6 H, 2a-H_a, 2b-H), 3.36 (m, 1 H, 4b-H), 3.51 (m, 0.4 H, 5a-H_{β}), 3.64-3.96 (m, 8 H, $3a-H_{\beta}$, 4a-H, $5a-H_{\alpha}$, 6a-H, 6'a-H, 3b-H, 5b-H, 6b-H, 6'b-H), 4.13 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.5$ Hz, 0.6 H, 2a-H_a), 4.75– 4.90 (m, 0.4 H, 1a-H_{β}), 5.33 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 0.6 H, 1a-H_{α}), 5.72 (d, ${}^{3}J_{2,1} = 3.8 \text{ Hz}, 1 \text{ H}, 1\text{b-H}$) ppm. FAB MS: $m/z = 341 \text{ [MH^+]},$ 363 [MNa⁺]. C₁₂H₂₄N₂O₉·2HCl (413.25).

Methyl O-(2,6-Diazido-3,4-O-benzyl-2,6-dideoxy-a-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranoside (17): To a solution of 8^[16] (115 mg, 0.248 mmol, 1.0 equiv.) and 5 (165 mg, 0.297 mmol, 1.2 equiv.) in dry diethyl ether (5.0 mL) was added TMSOTf (0.46 µL, 2.48 µmol, 0.01 equiv.) at room temp. After 20 min the reaction mixture was neutralised with triethylamine and the solvent removed in vacuo. Purification by flash chromatography (toluene/ethyl acetate, $100:1 \rightarrow 50:1$) furnished 17 (170 mg, 0.198 mmol, 80%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.43$. $[a]_{\rm D} = +40.3$ (c = 1.0, CHCl₃). ¹H NMR (250 MHz, CDCl₃): δ = 3.02–3.29 (m, 3 H, 2b-H, 6b-H, 6'b-H), 3.38 (s, 3 H, OCH₃), 3.42-3.93 (m, 8 H, 2a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 3b-H, 4b-H, 5b-H), 4.06 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 10.4$ Hz, 1 H, 3a-H), 4.48–4.90 (m, 10 H, 1a-H, PhCHH), 5.08 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhCHH), 5.67 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 1 H, 1b-H), 7.16– 7.39 (m, 25 H, Ph) ppm. C488H52N6O9·1.5H2O (883.40): calcd. C 65.22, H 6.27, N 9.51; found C 65.31, H 6.23, N 9.11.

Methyl O-(2,6-Diamino-2,6-dideoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)- α -**D-glucopyranoside Dihydrochloride (3):** To a solution of 17 (52.0 mg, 60.7 µmol) in methanol (5.0 mL) was added Pearlman catalyst^[19] (15.0 mg). Then the argon atmosphere was replaced completely by hydrogen. To ensure a complete hydrogenation the pH value had to be kept slightly acidic with HCl/Et₂O (ca. 2 equiv.). Hydrogenation was continued overnight at room temp. After TLC monitoring the catalyst was removed with celite, which was then washed with methanol $(3 \times 10 \text{ mL})$. The filtrate and the wash solution were then combined and the solvent removed under reduced pressure. A concentrated solution in distilled water (2-3 drops) was produced of the crude product which was precipitated with ethanol. Desiccation furnished 3 (19 mg, 44.9 μ mol, 74%) as pale yellow, hygroscopic solid. Therefore, it was difficult to obtain a correct elemental analysis and m.p. TLC (EtOH/H₂O/TFA, 5:5:0.5): $R_{\rm f} = 0.78$. $[a]_{\rm D} = +27.5$ (c = 0.33, H_2O). ¹H NMR (250 MHz, CD₃OD): δ = 2.99–3.54 (m, 8 H, 2a-H, 2b-H, 4b-H, 6b-H, 6b'-H, OCH₃), 3.55-4.01 (m, 7 H, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 3b-H, 5b-H), 4.71 (d, ${}^{3}J_{1,2} = 3.7$ Hz,1 H, 1a-H), 5.78 (d, ${}^{3}J_{1,2} = 3.7 \text{ Hz}, 1 \text{ H}, 1\text{b-H}) \text{ ppm. FAB MS: } m/z = 355 \text{ [MH⁺]}.$ $C_{13}H_{26}N_2O_9$ ·2HCl (427.28).

8-Bromo-1-(triisopropylsilyoxy)-3,6-dioxaoctane (23): Triethylene glycol (15.0 g, 99.89 mmol, 4.0 equiv.) was combined with tetrabromoethane (8.28 g, 24.97 mmol, 1 equiv.) and triphenylphosphane (6.56 g, 24.97 mmol, 1 equiv.) under ice cooling in dry dichloromethane (70.0 mL). After 20 min the ice bath was removed and the reaction mixture stirred for 2 h. Then the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 1:1). TLC (ethyl acetate 100%) $R_{\rm f} = 0.48$. A solution of triphenylphosphane oxide and the monobromo compound (7.0 g) was isolated and without further purification added TIPSCI (3.48 mL, 3.17 g, 16.43 mmol) and imidazole (1.68 g, 24.65 mmol) in dry dichloromethane (50.0 mL) at room temp. After stirring for 3 h the reaction mixture was concentrated and purified by flash chromatography (petroleum ether/ethyl acetate, 10:1) which furnished 23 (4.38 g, 11.86 mmol, 48%) as colourless oil. TLC (petroleum ether/ethyl acetate, 10:1): $R_{\rm f} = 0.49$. ¹H NMR $(250 \text{ MHz}, \text{CDCl}_3): \delta = 0.94 - 1.15 \text{ [m, 21 H, SiC}H(\text{CH})_3,$ SiCH(CH)₃], 3.42 (t, ³J = 5.3 Hz, 2 H, CH₂Br), 3.52–3.70 (m, 6 H, OCH₂), 3.72–3.88 (m, 4 H, OCH₂) ppm. C₁₅H₃₃BrO₃Si (369.42): calcd. C 48.77, H 9.00; found C 48.82, H 8.92.

Methyl O-[2,3,6-Tri-O-benzyl-4-O-(8-triisopropylsilyloxy-3,6-dioxaoctyl)-α-D-glucopyranosyl]-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (24): To a solution of 22^[24] (200 mg, 0.223 mmol, 1 equiv.), 23 (165 mg, 0.446 mmol, 2 equiv.) and TBAI (8.2 mg, 0.022 mmol, 0.1 equiv.) in DMF (10.0 mL) at room temp. was added portionswise NaH (9.0 mg, 0.375 mmol, 1.7 equiv.). After 4 h methanol (10.0 mL) was added and the reaction mixture concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 7:1) furnishing 24 (193 mg, 0.163 mmol, 73%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 5:1): $R_{\rm f} = 0.20$. $[a]_{\rm D} = +30.6$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 0.98-1.30$ [m, 21 H, SiCH(CH)₃, SiCH(CH)₃], 3.41-3.91 (m, 26 H, 2a-H, 3a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, OCH₂, OCH₃), 4.01 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 8.7$ Hz, 1 H, 4a-H), 4.32 (d, ${}^{3}J_{2,1}$ = 7.7 Hz, 1 H, 1a-H), 4.38 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.44– 4.61 (m, 6 H, PhCHH), 4.73–4.93 (m, 5 H, PhCHH), 5.58 (d, ³J_{2,1} = 3.6 Hz, 1 H, 1b-H), 7.10–7.29 (m, 30 H, Ph) ppm. $C_{70}H_{92}O_{14}Si$ (1184.63): calcd. C 70.92, H 7.82; found C 70.49, H 7.91.

Methyl O-[2,3,6-Tri-O-benzyl-4-O-(8-hydroxy-3,6-dioxaoctyl)-a-Dglucopyranosyl]- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (25): To a solution of 24 (50.0 mg, 42.2 µmol, 1.0 equiv.) in THF (3.0 mL) at room temp. was added portionwise a solution of TBAF in THF (42.2 µL, 1.0 м, 1.0 equiv.). After 30 min the reaction mixture was neutralised with acetic acid and concentrated in vacuo. The residue was purified with flash chromatography (petroleum ether/ethyl acetate, 1:1) furnishing 25 (43.0 mg, 41.8 µmol, 99%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 1:1): $R_f = 0.13$. $[a]_D = +17.0$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 2.29 (br. s, 1 H, OH), 3.42–3.95 (m, 26 H, 2a-H, 3a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, OCH₂, OCH₃), 4.03 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.0$ Hz, 1 H, 4a-H), 4.33 (d, ${}^{3}J_{2,1}$ = 7.7 Hz, 1 H, 1a-H), 4.38 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.45– 4.63 (m, 6 H, PhCHH), 4.75–4.95 (m, 5 H, PhCHH), 5.62 (d, ³J_{2,1} = 3.5 Hz, 1 H, 1b-H), 711-7.40 (m, 30 H, Ph) ppm. C₆₁H₇₂O₁₄ (1028.49): calcd. C 71.14, H 7.05; found C 70.78, H 7.27.

Methyl *O*-[2,3,6-Tri-*O*-benzyl-4-*O*-(8-bromo-3,6-dioxaoctyl)- α -D-glucopyranosyl]-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (26): To a solution of 24 (120.0 mg, 0.117 mmol, 1.0 equiv.) and tetrabromomethane (77.3 mg, 0.233 mmol, 2.0 equiv.) in dry dichloromethane (5.0 mL) was added triphenylphosphane (61.1 mg, 0.233 mmol, 2.0 equiv.) at room temp. After 1 h the solvent was

removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing **26** (121 mg, 0.111 mmol, 95%) as colourless highly viscous oil. TLC (petroleum ether/ ethyl acetate, 1:1): $R_{\rm f} = 0.88$. $[a]_{\rm D} = +26.8$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 3.33-3.85$ (m, 26 H, 2a-H, 3a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, OCH₂, OCH₃), 4.02 (dd, ³J_{3,4} = ³J_{5,4} = 9.1 Hz, 1 H, 4a-H), 4.34 (d, ³J_{2,1} = 7.6 Hz, 1 H, 1a-H), 4.39 (d, ²J = 12.1 Hz, 1 H, PhCHH), 4.47-4.63 (m, 6 H, PhCHH), 4.76-4.92 (m, 5 H, PhCHH), 5.62 (d, ³J_{2,1} = 3.8 Hz, 1 H, 1b-H), 7.06-7.37 (m, 30 H, Ph) ppm. C₆₁H₇₁BrO₁₃·H₂O (1110.15): calcd. C 66.00, H 6.63; found C 65.82, H 6.56.

Methyl O-{2,3,6-Tri-O-benzyl-4-O-[8-(3,5-dimethoxyphenoxy)-3,6dioxaoctyl]-α-D-glucopyranosyl}-(1→4)-2,3,6-tri-O-benzyl-β-Dglucopyranoside (27a): To a solution of 26 (200 mg, 0.183 mmol), 3,5-dimethoxyphenol (28.2 mg, 0.183 mmol) and TBAI (6.8 mg, 18.3 µmol) in dry DMF (7.0 mL)was added NaH (6.6 mg, 0.275 mmol) at room temp. After 5 h the reaction was quenched with methanol (2.0 mL) and neutralised with acetic acid. The volatile components were removed in vacuo. Purification by flash chromatography (toluene/ethyl acetate, 9:1) furnished 27a (173 mg, 0.148 mmol, 81%) as colourless oil. TLC (toluene/ethyl acetate, 3:2): $R_{\rm f} = 0.62$. $[a]_{\rm D} = +25.8$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 3.38–4.08 (m, 33 H, 2a-H, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, β-OCH₃, PhOCH₃, OCH2^{Spacer}), 4.31–4.40 (m, 2 H, 1a-H, PhCHH), 4.48–4.63 (m, 6 H, PhCHH), 4.75–4.97 (m, 5 H, PhCHH), 5.62 (d, ${}^{3}J_{2,1} = 3.6$ Hz, 1 H, 1b-H), 6.05-6.08 (m, 3 H, C₆H₃Phloro), 7.08-7.41 (m, 30 H, Ph) ppm. MALDI MS: $m/z = 1188 \text{ [MNa^+]}, 1204 \text{ [MK^+]}.$ C₆₉H₈₀O₁₆·0.75H₂O (1178.89): calcd. C 70.30, H 6.97; found C 70.26, H 7.18.

Methyl O-{2,3,6-Tri-O-benzyl-4-O-[8-(3,5-diisopropyloxyphenoxy)-3,6-dioxaoctyl]-α-D-glucopyranosyl}-(1→4)-2,3,6-tri-O-benzyl-β-Dglucopyranoside (27b): To a solution of 26 (294 mg, 0.269 mmol), 3,5-diisopropyloxyphenol (56.6 mg, 0.269 mmol) and TBAI (9.9 mg, 0.027 mmol) in dry DMF (10.0 mL) at room temp. was added NaH (9.7 mg, 0.404 mmol). After 5 h the reaction was quenched with methanol (3.0 mL) and neutralised with acetic acid. The volatile components were removed in vacuo. Purification by flash chromatography (toluene/ethyl acetate, 9:1) furnished 27b (166 mg, 0.136 mmol, 51%) as colourless oil. TLC (toluene/ethyl acetate, 5:1): $R_{\rm f} = 0.38$. $[a]_{\rm D} = +16.0$ (c = 1.0, CHCl₃). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.29$ (d, ${}^{3}J = 6.0$ Hz, 12 H, OCH(CH₃)₂), 3.40-4.08 (m, 27 H, 2a-H, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, β-OCH₃, OCH₂Spacer), 4.29-4.62 (m, 10 H, 1a-H, OCH(CH₃)₂, PhCHH), 4.72-4.98 (m, 5 H, PhC*H*H), 5.62 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 1 H, 1b-H), 6.02–6.05 (m, 3 H, C₆H₃^{Phloro}), 7.09–7.38 (m, 30 H, Ph) ppm. C₇₃H₈₈O₁₆·0.75H₂O (1221.49): calcd. C 71.78, H 7.26; found C 71.63, H 7.20.

Methyl *O*-{4-*O*-[8-(3,5-Dimethoxyphenoxy)-3,6-dioxaoctyl]- α -D-glucopyranosyl}-(1 \rightarrow 4)- β -D-glucopyranoside (18a): To a solution of 27a (125 mg, 107 µmol) in dioxane (10.0 mL) was added Pearlman catalyst^[19] (10.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After stirring for 2 h at room temp. the catalyst was separated with celite and the celite washed with methanol (3 × 10 mL). Filtrate and wash solution were combined and the solvent removed in vacuo. Purification by flash chromatography (ethyl acetate/EtOH, 4:1) and lyophilisation from dioxane furnished 18a (60 mg, 96.1 µmol, 90%) as colourless lyophilisate. TLC (ethyl acetate/EtOH, 4:1): $R_{\rm f} = 0.10$. $[a]_{\rm D} = +27.1$ (c = 1.0, CHCl₃). ¹H NMR (250 MHz, CD₃OD): $\delta = 3.11$ –3.23 (m, 2 H, 2a-H, 4b-H), 3.24–3.38 (m, 1 H, 5a-H), 3.36–4.10 (m, 30 H, 3a-H, 4a-H, 6a-H, 6'a-

FULL PAPER

H, 2b-H, 3b-H, 5b-H, 6b-H, 6'b-H, OCH₂^{Spacer}, β-OCH₃, PhOCH₃), 4.13 (d, ${}^{3}J_{2,1}$ = 8.0 Hz, 1 H, 1a-H), 5.10 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 1 H, 1b-H), 6.03–6.11 (m, 3 H, C₆H₃^{Phloro}) ppm. C₂₇H₄₄O₁₆·1.25H₂O (647.15): calcd. C 50.11, H 7.19; found C 50.07, H 7.06.

Methyl O-{4-O-[8-(3,5-Diisopropyloxyphenoxy)-3,6-dioxaoctyl]-a-D-glucopyranosyl}-(1 \rightarrow 4)- β -D-glucopyranoside (18b): To a solution of 27b (100 mg, 83.79 µmol) in dioxane (8.0 mL) was added Pearlman catalyst^[19] (10.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After stirring for 4 h at room temp. the catalyst was separated with celite and the celite washed with methanol $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. Purification by flash chromatography (ethyl acetate/EtOH, 4:1) and lyophilisation from dioxane furnished 18b (57 mg, 84 µmol, quant. yield, colourless lyophilisate. TLC (ethyl acetate/EtOH, 4:1): $R_f = 0.15$. $[a]_D = +20.5$ (c = 1.0, CHCl₃). ¹H NMR (250 MHz, CD₃OD): $\delta = 1.27$ (d, ³J = 6.0 Hz, 12 H, OCH(CH₃)₂), 3.15–3.23 (m, 2 H, 2a-H, 4b-H), 3.27–3.36 (m, 1 H, 5a-H), 3.40-3.88 (m, 21 H, 3a-H, 4a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 5b-H, 6b-H, 6'b-H, OCH₂^{Spacer}, β-OCH₃), 3.95 (m, 1 H, OCHH^{Spacer}), 4.05 (m, 2 H, OCH₂^{Spacer}), 4.16 (d, ${}^{3}J_{2.1} = 7.8$ Hz, 1 H, 1a-H), 4.50 (hept, ${}^{3}J$ = 6.0 Hz, 2 H, OCH(CH₃)₂), 5.13 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 1 H, 1b-H), 6.03 (t, ${}^{4}J_{\text{meta}}$ = 1.8 Hz, 1 H, C₆H₂ H^{Phloro}), $6.06 (d, {}^{4}J_{meta} = 1.8 Hz, 2 H, C_{6}H_{2}H^{Phloro}) ppm.$ C31H52O16.0.75H2O (694.25): calcd. C 53.63, H 7.77; found C 53.61, H 7.84.

1-Bromo-2-(3,5-dimethoxyphenoxy)-1-ethane (32a): To a solution of 3,5-dimethoxyphenol (4.0 g, 25.95 mmol) in DMF (40.0 mL) and 1,2-dibromoethane (40.0 mL) was slowly (1 h) added NaH (5.00 g, 208.4 mmol) at 10 °C. After 2 h at room temp. the reaction was quenched with the slow addition of methanol (20.0 mL), and, if necessary, neutralised with acetic acid. The solvent was then removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 9:1) furnished **32a** (4.23 g, 16.20 mmol, 62%) as colourless oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.61$. ¹H NMR (250 MHz, CDCl₃): $\delta = 3.61$ (t, ³J = 5.9 Hz, 2 H, CH₂Br), 3.75 (s, 6 H, OCH₃), 4.23 (t, ³J = 5.9 Hz, 2 H, OCH₂CH₂Br), 6.05–6.12 (m, 3 H, C₆H₃^{Phloro}) ppm. C₁₀H₁₃BrO₃ (261.12): calcd. C 46.00, H 5.02; found C 45.93, H 4.94.

1-Bromo-2-(3,5-diisopropyloxyphenoxy)-1-ethane (32b): To a solution of 3,5-diisopropyloxyphenol (1.0 g, 4.76 mmol) in DMF (20.0 mL) and 1,2-dibromoethane (15.0 mL) was slowly (1 h) added NaH (1.0 g, 41.67 mol) at room temp. After 2 h at room temp. the reaction was quenched with the slow addition of methanol (20.0 mL) and, if necessary, neutralised with acetic acid. The solvent was then removed in vacuo. Purification by flash chromatog-raphy (petroleum ether/ethyl acetate, 11:1) furnished **32b** (927 mg, 2.90 mmol, 61%) as colourless oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.76$. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.28$ (d, ³J = 6.5 Hz, 12 H, CH(CH)₃)₂), 3.58 (t, ³J = 6.2 Hz, 2 H, CH₂Br), 4.19 (t, ³J = 6.2 Hz, 2 H, OCH₂CH₂Br), 4.46 (hept, ³J = 6.5 Hz, 2 H, CH(CH)₃)₂), 5.98–6.08 (m, 3 H, C₆H₃^{Phloro}) ppm. C₁₄H₂₁BrO₃ (317.22): calcd. C 53.01, H 6.67; found C 53.23, H 6.69.

2-(3,5-Dibenzyloxyphenoxy)-1-bromoethane (32c): To a solution of 3,5-dibenzyloxyphenol (370 mg, 1.21 mmol) in DMF (5.0 mL) and 1,2-dibromoethane (5.0 mL) was slowly (1 h) added NaH (200 mg, 8.70 mmol) at room temp. After 2 h the reaction was quenched with the slow addition of methanol (5.0 mL) and, if necessary, neutralised with acetic acid. The solvent was then removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 10:1) furnished **32c** (295 mg, 0.713 mmol, 59%) as colourless oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.71$. ¹H NMR

(250 MHz, CDCl₃): δ = 3.95 (t, ${}^{3}J$ = 6.4 Hz, 2 H, CH₂Br), 4.21 (t, ${}^{3}J$ = 6.4 Hz, 2 H, OCH₂CH₂Br), 4.99 (s, 4 H, PhCH₂), 6.18 (d, ${}^{4}J_{\text{meta}}$ = 1.8 Hz, 2 H, C₆H₂H^{Phloro}), 6.27 (t, ${}^{4}J_{\text{meta}}$ = 1.8 Hz, 1 H, C₆H₂H^{Phloro}), 7.26–7.43 (m, 10 H, Ph) ppm. C₂₂H₂₁BrO₃ (413.31): calcd. C 63.93, H 5.12; found C 63.93, H 4.87.

Benzyl O-{2,3,6-Tri-O-benzyl-4-O-[2-(3,5-dimethoxyphenoxy)ethyl]- α -D-glucopyranosyl}-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (33a): To a solution of 31 (200 mg, 0.206 mmol, 1.0 equiv.), 32a (215 mg, 0.824 mmol, 4.0 equiv.) and TBAI (7.6 mg, 20.6 µmol, 0.1 equiv.) in dry DMF (10.0 mL) at 0 °C was slowly added NaH (16.3 mg, 0.824 mmol, 4.0 equiv.). After 8 h the reaction was quenched with methanol (5.0 mL) and, if necessary, neutralised with acetic acid. The volatile components were removed in vacuo. Purification by flash chromatography (toluene/ethyl acetate, 20:1) furnished 33a (181 mg, 0.157 mmol, 76%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.28$. $[a]_{\rm D}$ = +12.4 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 3.33– 3.56 (m, 6 H, 2a-H, 5a-H, 2b-H, 4b-H, 6b-H, 6'b-H), 3.57-3.85 (m, 14 H, 3a-H, 6a-H, 6'a-H, 3b-H, 5b-H, CH₂O^{Spacer}, CHHO^{Spacer}, OCH₃), 3.92–4.02 (m, 2 H, 4a-H, CHHO^{Spacer}), 4.26 $(d, {}^{2}J = 12.1 \text{ Hz}, 1 \text{ H}, \text{PhC}H\text{H}), 4.41-4.56 (m, 7 \text{ H}, 1a-\text{H}, \text{PhC}H\text{H}),$ 4.61 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.69 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.70–4.90 (m, 5 H, PhCHH), 5.57 (d, ${}^{3}J_{2.1} = 3.5$ Hz, 1 H, 1b-H), 5.93 (d, ${}^{4}J_{\text{meta}} = 1.9$ Hz, 2 H, C₆ H_2 H^{Phloro}), 5.99 (t, ${}^{4}J_{\text{meta}}$ = 1.9 Hz, 1 H, $C_6H_2H^{Phloro}$), 7.01–7.39 (m, 35 H, Ph) ppm. C71H76O14 (1153.38). Calcd. C 73.94, H 6.64; found C 73.89, H 6.70.

Benzyl O-{2,3,6-Tri-O-benzyl-4-O-[2-(3,5-diisopropyloxyphenoxy)ethyl]- α -D-glucopyranosyl}-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (33b): To a solution of 31 (150 mg, 0.154 mmol, 1.0 equiv.), 32b (244 mg, 0.77 mmol, 5.0 equiv.) and TBAI (5.7 mg, 15.4 µmol, 0.1 equiv.) in dry DMF (10.0 mL) at room temp. was slowly added NaH (18.5 mg, 0.77 mmol, 5.0 equiv.). After 4 h the reaction was quenched with methanol (5.0 mL) and, if necessary, neutralised with acetic acid. The volatile components were removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 5:1) furnished 33b (155 mg, 0.128 mmol, 83%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f}$ = 0.43. $[a]_{D} = +12.2$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 1.27$ (d, ${}^{3}J = 6.0$ Hz, 12 H, CH(CH₃)₂), 3.43–3.64 (m, 6 H, 2a-H, 5a-H, 2b-H, 4b-H, 6b-H, 6'b-H), 3.70-3.88 (m, 8 H, 3a-H, 6a-H, 6'a-H, 3b-H, 5b-H, CH₂O^{Spacer}, CHHO^{Spacer}), 3.99-4.08 (m, 2 H, 4a-H, CHHO^{Spacer}), 4.35 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.34 (hept, ${}^{3}J = 6.0$ Hz, 2 H, CH(CH₃)₂), 4.44–4.61 (m, 7 H, 1a-H, PhC*H*H), 4.62 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhC*H*H), 4.76 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.80-4.84 (m, 2 H, PhCHH), 4.85-4.99 (m, 3 H, PhCHH), 5.64 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 1 H, 1b-H), 5.97 (d, ${}^{4}J_{\text{meta}}$ = 2.0 Hz, 2 H, $C_6H_2H^{Phloro}$), 6.04 (t, ${}^4J_{meta}$ = 2.0 Hz, 1 H, $\rm C_6H_2\mathit{H}^{\rm Phloro}),\ 7.09{-}7.39$ (m, 35 H, Ph) ppm. $\rm C_{75}H_{84}O_{14}$ (1209.48): calcd. C 74.48, H 7.00; found C 74.55, H 7.14.

Benzyl *O*-{2,3,6-Tri-*O*-benzyl-4-*O*-[2-(3,5-dibenzyloxyphenoxy)ethyl]-α-D-glucopyranosyl}-(1→4)-2,3,6-tri-*O*-benzyl-β-D-glucopyranoside (33c): To a solution of 31 (150 mg, 0.154 mmol, 1.0 equiv.), 32c (446 mg, 1.079 mmol, 7.0 equiv.) and TBAI (5.7 mg, 15.4 µmol, 0.1 equiv.) in dry DMF (7.0 mL) at room temp. was added NaH (25 mg, 1.079 mmol, 7.0 equiv.). After 5 h the reaction was quenched with methanol (3.0 mL) and neutralised with acetic acid. The volatile components were removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 6:1) furnished 33c (137 mg, 0.105 mmol, 68%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.47$. $[a]_{\rm D}$ = +11.1 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 3.32$ - 3.56 (m, 6 H, 2a-H, 5a-H, 2b-H, 4b-H, 6b-H, 6'b-H), 3.60–3.83 (m, 8 H, 3a-H, 6a-H, 6'a-H, 3b-H, 5b-H, CH_2O , CHHO), 3.92–4.05 (m, 2 H, 4a-H, CHHO), 4.25 (d, 2J = 11.9 Hz, 1 H, PhCHH), 4.42–4.94 (m, 18 H, 1a-H, PhCHH), 5.57 (d, ${}^3J_{2,1}$ = 3.6 Hz, 1 H, 1b-H), 6.02 (d, ${}^4J_{meta}$ = 1.8 Hz, 2 H, $C_6H_2H^{Phloro}$), 6.16 (t, ${}^4J_{meta}$ = 1.8 Hz, 1 H, $C_6H_2H^{Phloro}$), 7.02–7.30 (m, 45 H, Ph) ppm. $C_{83}H_{84}O_{14}$ ·1.5H₂O (1332.59): calcd. C 74.81, H 6.58; found C 74.53, H 6.74.

 $O-\{4-O-[2-(3,5-Dimethoxyphenoxy)ethyl]-\alpha-D-glucopyranosyl\} (1\rightarrow 4)-\alpha/\beta$ -D-glucopyranose (28a): To a solution of 33a (130 mg, 0.113 mmol) and dioxane (10.0 mL) was added Pearlman catalyst^[19] (20.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After stirring for 3 h at room temp. the catalyst was separated with celite and the celite washed with methanol (3 \times 10 mL). Filtrate and wash solution were combined and the solvent removed in vacuo. Purification by flash chromatography with silica gel (ethyl acetate/EtOH, 3:1) and lyophilisation from dioxane furnished 28a (59 mg, 0.113 mmol, quant.) als colourless lyophilisate. TLC (ethyl acetate/EtOH, 2:1): $R_f = 0.11$. ¹H NMR (250 MHz, CD₃OD): δ = 3.11–4.19 (m, 22 H, 2a-H, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, OCH₂^{Spacer}, OCH₃), 4.47 (d, ${}^{3}J_{2,1}$ = 7.9 Hz, 0.5 H, 1a-H_β), 5.09 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 0.5 H, 1b-H_a), 5.14 (2 d, ${}^{3}J_{2,1(\alpha)} = {}^{3}J_{2,1(\beta)} = 3.6$ Hz, 1 H, 1b-H), 6.06– 6.12 (m, 3 H, C₆H₃^{Phloro}) ppm. C₂₂H₃₄O₁₄·1H₂O (540.52): calcd. C 48.89, H 6.71; found C 48.85, H 6.79.

O-{4-O-[2-(3,5-Diisopropyloxyphenoxy)ethyl]-α-D-glucopyranosyl}- $(1\rightarrow 4)-\alpha/\beta$ -D-glucopyranose (28b): To a solution of 33b (140 mg, 0.116 mmol) and dioxane (8.0 mL) was added Pearlman catalyst^[19] (14.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After stirring for 5 h at room temp. the catalyst was separated with celite and the celite washed with methanol $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. Purification by flash chromatography with silica gel (ethyl acetate/EtOH, 3:1) and lyophilisation from dioxane furnished 28b (67 mg, 0.116 mmol, quant. as colourless lyophilisate. TLC (ethyl acetate/EtOH, 4:1): $R_{\rm f}$ = 0.09. ¹H NMR (600 MHz, CD₃OD): δ = 1.27 (d, ${}^{3}J = 6.0 \text{ Hz}$, 12 H, CH(CH₃)₂), 3.16 (dd, ${}^{3}J_{1,2} \approx {}^{3}J_{3,2} =$ 8.5 Hz, 0.5 H, 2a-H_{\beta}), 3.21–3.52 (m, 4 H, 2a-H_{\alpha}, 4a-H, 5a-H_{\beta}, 2b-H, 4b-H), 3.59 (dd, ${}^{3}J_{2,3} \approx {}^{3}J_{4,3} = 8.5$ Hz, 0.5 H, 3a-H_{β}), 3.66–4.08 (m, 10 H, $3a-H_{\alpha}$, $5a-H_{\alpha}$, 6a-H, 6'a-H, 3b-H, 5b-H, 6b-H, 6'b-H, OCH2 Spacer, CHHOSpacer), 4.11-4.17 (m, 1 H, CHHOSpacer), 4.45-4.56 (m, 2.5 H, 1a-H_{β}, CH(CH₃)₂), 5.08 (d, ³J_{2,1} = 3.6 Hz, 0.5 H, 1a-H_a), 5.14, 5.15 (2d, ${}^{3}J_{2,1(\alpha)} = {}^{3}J_{2,1(\beta)} = 3.6$ Hz, 1 H, 1b-H), 6.02– 6.08 (m, 3 H, C₆H₃^{Phloro}). C₂₆H₄₂O₁₄ (578.26): calcd. C 53.95, H 7.32; found C 53.55, H 7.58.

O-{4-O-[2-(3,5-Dihydroxyphenoxy)ethyl]-α-D-glucopyranosyl}- $(1\rightarrow 4)-\alpha/\beta$ -D-glucopyranose (28c): To a solution of 33c (230 mg, 0.176 mmol) in dioxane (10.0 mL) was added Pearlman catalyst^[19] (20.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After stirring for 4 h at room temp. the catalyst was separated with celite and the celite washed with methanol $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. Purification by flash chromatography with silica gel (ethyl acetate/EtOH, 2:1) then with RP18-Kieselgel (CH₃CN/H₂O, 1:10) and lyophilisation from dioxane furnished 28c (74 mg, 0.150 mmol, 85%) as wine red lyophilisate. TLC (ethyl acetate/EtOH, 2:1): $R_{\rm f}$ = 0.10. ¹H NMR (250 MHz, CD₃OD): δ = 3.12–4.19 (m, 16 H, 2a-Н, За-Н, 4а-Н, 5а-Н, 6а-Н, 6'а-Н, 2b-Н, 3b-Н, 4b-Н, 5b-Н, 6b-H, 6'b-H, OCH₂^{Spacer}), 4.49 (d, ${}^{3}J_{2,1}$ = 7.7 Hz, 0.5 H, 1a-H_{β}), 5.09 (d, ${}^{3}J_{2,1} = 3.6 \text{ Hz}, 0.5 \text{ H}, 1\text{b-H}_{\alpha}$), 5.14 (d, ${}^{3}J_{2,1} = 3.6 \text{ Hz}, 1 \text{ H}, 1\text{b-}$ H), 5.86–5.93 (m, 3 H, $C_6H_3^{Phloro}$). $C_{20}H_{30}O_{14}\cdot 1.25H_2O$ (516.96): calcd. C 46.47, H 6.34; found C 46.51, H 6.35.

2-Bromo-1-(triisopropylsilyloxy)ethane (34): To a solution of 2-bromoethanol (1.69 mL, 3.00 g, 24.01 mmol, 1.0 equiv.) and TIPSCI (5.09 g, 26.41 mmol, 1.1 equiv.) in dry CH₂Cl₂ (40.0 mL) at room temp. was added imidazole (2.45, 36.02 mmol, 1.5 equiv.). After 4 h the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 10:1) furnishing 34 (4.26 g, 15.13 mmol, 63%) as colourless oil. TLC (petroleum ether/ethyl acetate, 9:1): $R_{\rm f} = 0.85$. ¹H NMR (250 MHz, CDCl₃): $\delta = 0.98-1.15$ (m, 21 H, SiCH(CH₃)₂), 3.40 (t, ³J = 6.4 Hz, 2 H, CH₂Br), 3.93 (t, ³J = 6.4 Hz, 2 H, CH₂O). C₁₁H₂₅BrOSi (281.31): calcd. C 46.97, H 8.96; found C 46.79, H 8.94.

Benzyl O-{2,3,6-Tri-O-benzyl-4-O-[2-(triisopropylsilyloxy)ethyl]-a-D-glucopyranosyl}-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (35): To a solution of 31^[14,27] (200 mg, 0.206 mmol, 1.0 equiv.), 34 (289 mg, 1.028 mmol, 5.0 equiv.) and TBAI (7.6 mg, 20.6 µmol, 0.1 equiv.) in dry DMF (15.0 mL) at room temp. was slowly added NaH (24.7 mg, 1.028 mmol, 5.0 equiv.). After 4 h the reaction was quenched with methanol (5.0 mL) and, if necessary, neutralised with acetic acid. The solvent was removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, $20:1 \rightarrow 10:1$) furnished 35 (200 mg, 0.187 mmol, 91%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_{\rm f} = 0.57$. $[a]_{\rm D}$ = +23.5 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 0.95– 1.15 (m, 21 H, SiCH(CH₃)₂), 3.41–3.89 (m, 15 H, 2a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, CH_2O^{Spacer} , 4.07 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.1$ Hz, 1 H, 3a-H), 4.39 (d, ${}^{2}J$ = 12.3 Hz, 1 H, PhC*H*H), 4.48–4.89 (m, 11 H, 1a-H, 10 PhCHH), 4.90–4.98 (m, 3 H, PhCHH), 5.65 (d, ${}^{3}J_{2,1} = 3.6$ Hz, 1 H, 1b-H), 7.11–7.38 (m, 35 H, Ph). C₇₂H₈₈O₁₂Si (1173.57): calcd. C 73.69, H 7.56; found C 73.38, H 7.57.

Benzyl O-[2,3,6-Tri-O-benzyl-4-O-(2-hydroxyethyl)-α-D-glucopyranosyl]- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (36): To a solution of 35 (320 mg, 0.273 mmol) in THF (4.0 mL) at room temp. was added portionwise a solution of TBAF in THF (273 µL, 1.0 M). After 30 min the reaction mixture was neutralised with acetic acid and then concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 2:1) furnishing 36 (275 mg, 0.270 mmol, 99%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 2:1): $R_{\rm f} = 0.33$. $[a]_{\rm D} =$ +29.8 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 2.59$ (br. s, 1 H, OH), 3.41-3.72 (m, 11 H, 2a-H, 5a-H, 2b-H, 4b-H, 5b-H, 6b-H, 6'b-H, CH₂O^{Spacer}, CH₂OH^{Spacer}), 3.77-3.83 (m, 4 H, 4a-H, 6a-H, 6'a-H, 3b-H), 4.08 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.2$ Hz, 1 H, 3a-H), 4.35 (d, ${}^{2}J$ = 12.1 Hz, 1 H, PhCHH), 4.45–4.63 (m, 7 H, 1a-H, 10 PhCHH), 4.64-4.75 (m, 3 H, PhCHH), 4.85-4.99 (m, 4 H, PhC*H*H), 5.66 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 1 H, 1b-H), 7.05–7.48 (m, 35 H, Ph). C₆₃H₆₈O₁₂ (1017.23): calcd. C 74.39, H 6.74; found C 74.35, H 6.74.

Benzyl *O*-[2,3,6-Tri-*O*-benzyl-4-*O*-(2-bromoethyl)-α-D-glucopyranosyl]-(1→4)-2,3,6-tri-*O*-benzyl-β-D-glucopyranoside (37): To a solution of 36 (200 mg, 0.197 mmol, 1.0 equiv.) and tetrabromomethane (326 mg, 0.983 mmol, 5.0 equiv.) in dry CH₂Cl₂ (30.0 mL) at room temp. was added triphenylphosphane (258 mg, 0.983 mmol, 5 equiv.). After 45 min the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 5:1) furnishing 37 (187 mg, 0.173 mmol, 88%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 4:1): $R_f =$ 0.49. $[a]_D = +23.7$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 3.17-3.29$ (m, 2 H, CH₂Br), 3.38–3.50 (m, 3 H, 2b-H, 4b-H, 6b-H), 3.51–3.87 (m, 9 H, 2a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 3b-H, 5b-H, 6'b-H, CHHO^{Spacer}), 3.99 (m, 1 H, CHHO^{Spacer}), 4.08 (dd, ³J_{2,3} = ³J_{4,3} = 9.2 Hz, 1 H, 3a-H), 4.36 (d, ²J = 12.0 Hz, 1 H,

FULL PAPER

PhC*H*H), 4.48–5.01 (m, 14 H, 1a-H, PhC*H*H), 5.05 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1b-H), 7.08–7.45 (m, 35 H, Ph). C₆₃H₆₇BrO₁₁ (1080.12): calcd. C 70.06, H 6.25; found C 70.03, H 6.25.

1,3,5-Tris{2-[benzyl O-(2,3,6-Tri-O-benzyl-4-yl-a-D-glucopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside]ethyloxy}benzene (38): To a solution of 37 (176 mg, 163 µmol), water-free phloroglucine (7.0 mg, 55.5 µmol) and TBAI (6.0 mg, 16.3 µmol) in dry DMF (6.0 mL) at room temp. was added NaH (20.0 mg, 833 µmol) over 3 d. Then the reaction was quenched with methanol (5.0 mL) and, if necessary, neutralised with acetic acid. The solvent was removed in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnished 38 (90 mg, 28.8 µmol, 52%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 2:1): $R_{\rm f} = 0.67$. $[a]_{\rm D} = +11.1$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 3.43–3.51 (m, 9 H, 2b-H, 2b'-H, 2b''-H, 4b-H, 4b'-H, 4b''-H, 6b-H, 6b'-H, 6b''-H), 3.52-3.67 (m, 9 H, 2a-Н, 2а'-Н, 2а''-Н, 5а-Н, 5а'-Н, 5а''-Н, 6'b-Н, 6'b'-Н, 6'b''-Н), 3.68-3.95 (m, 24 H, 3a-H, 3a'-H, 3a''-H, 6a-H, 6a'-H, 6a''-H, 6'a-Н, 6'а'-Н, 6'а''-Н, 3b-Н, 3b'-Н, 3b''-Н, 5b-Н, 5b'-Н, 5b''-Н, 3CH₂O^{Spacer}, 3CHHO^{Spacer}), 3.97-4.11 (m, 6 H, 4a-H, 4a'-H, 4a''-H, 3CHHO), 4.31 (d, ${}^{2}J$ = 12.1 Hz, 3 H, PhCHH), 4.48–4.60 (m, 18 H, 1a-H, 1a'-H, 1a''-H, PhCHH), 4.61 (d, ${}^{2}J$ = 12.0 Hz, 3 H, PhC*H*H), 4.67 (d, ${}^{2}J$ = 12.1 Hz, 3 H, PhC*H*H), 4.70–4.85 (m, 9 H, PhCHH), 4.86–4.99 (m, 9 H, PhCHH), 5.64 (d, ${}^{3}J_{2,1} = 3.4$ Hz, 3 H, 1b-H, 1b'-H, 1b''-H), 5.90 (s, 3 H, C₆H₃Phloro), 7.09-7.39 (m, 105 H, Ph). MALDI MS: m/z = 3140 [MNa⁺]. FAB MS: m/z =3146 [MNa⁺], 3297 [(MNaI)Na⁺]; (abs. mass 3121.41). C₁₉₅H₂₀₄O₃₆ (3123.74): calcd. C 74.98, H 6.58; found C 74.58, H 6.78.

1,3,5-Tris-{2-[O-(4-yl- α -D-glucopyranosyl)-(1 \rightarrow 4)- α / β -D-glucopyranoside]ethyloxy}benzene (39): To a solution of 38 (55.0 mg, 17.61 µmol) in THF (7.0 mL) was added Pearlman catalyst^[19] (10.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After 2 d at hydrogen overpressure of 0.1 bar the catalyst was separated with celite in order to quench the reaction. The celite was washed with methanol (3×10 mL). Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified with RP-18-silica gel (CH₃CN/H₂O, 1:4) by flash chromatography and lyophilised from D₂O furnishing 39 (22 mg, 17.61 µmol, quant. as colourless lyophilisate in D₂O (anomeric ratio α/β , 2:3). *RP-18* DC (CH₃CN/H₂O, 1:4): $R_f = 0.63$. ¹H NMR (600 MHz, D₂O): δ = 3.17 (dd, ${}^{3}J_{1,2}$ = 7.9 Hz, ${}^{3}J_{3,2}$ = 9.0 Hz, 1.8 H, 2a-H_{β}, 2a'-H_{β}, 2a''-H_{β}), 3.30 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.5$ Hz, 3 H, 4b-H, 4b'-H, 4b''-H), 3.43–3.57 (m, 9 H, 2a-H_a, 2a'-H_a, 2a''-H_a, 4a-H, 4a'-H, 4a''-H, 5a-H_B, 5a'-H_B, 5a''-H_B, 2b-H, 2b'-H, 2b''-H), 3.61–3.90 (m, 22.2 H, 3a-H_α, 3a'-H_α, 3a''-H_α, 3a-H_β, 3a'-H_β, 3a''-H_β, 5a-H_α, 5a'-H_α, 5a''-H_α, 6a-H, 6a'-H, 6a''-H, 6'a-H, 6'a'-Н, 6'а''-Н, 3b-Н, 3b'-Н, 3b''-Н, 5b-Н, 5b'-Н, 5b''-Н, 6b-Н, 6b'-H, 6b''-H, 6'b-H, 6'b'-H, 6'b''-H), 3.91-3.96 (m, 3 H, CHHO^{Spacer}), 4.04–4.14 (m, 9 H, CHHO^{Spacer}), 4.54 (d, ${}^{3}J_{2,1}$ = 7.9 Hz, 1.8 H, 1a-H_{β}, 1a'-H_{β}, 1a''-H_{β}), 5.12 (d, ³J_{2,1} = 3.6 Hz, 1.2 H, $1a-H_{\alpha}$, $1a'-H_{\alpha}$, $1a''-H_{\alpha}$), 5.30 (d, ${}^{3}J_{2,1} = 3.4$ Hz, 3 H, 1b-H, 1b'-H, 1b''-H), 6.22 (s, 3 H, $C_6H_3^{Phloro}$). FAB MS: $m/z = 1231 \text{ [MH^+]}$, 1253 [MNa⁺]; (abs. mass 1230.43). C₄₈H₇₈O₃₆·5H₂O (1321.20): calcd. C 43.64, H 6.71; found C 43.79, H 6.86.

1,3,5-Tris-{2-[O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-acetyl- β -D-glucopyranosyloxy]-ethyloxy}benzene (43): To a solution of 42^[28] (20.0 mg, 77.44 µmol, 1.0 equiv.) in dry acetonitrile (4.0 mL) was added TMSOTf (0.35 µL, 1.94 µmol, 0.025 equiv.) and then slowly at room temp. a solution of 40^[13,30] (200 mg, 255.6 µmol, 3.3 equiv.) in dry acetonitrile (3.0 mL). After 1 h the reaction mixture was neutralised with triethylamine and then concentrated in vacuo. Purification by flash chromatography (petroleum ether/ethyl acetate, 1:3) furnished 43 (106 mg, 50.34 µmol, 65%) as colourless foam. TLC (petroleum ether/ethyl acetate, 1:3): $R_{\rm f} = 0.23$. $[a]_{\rm D} = +35.4$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 1.85–2.23 (m, 63 H, CH₃CO), 3.68 (m, 3 H, 5a-H, 5a'-H, 5a''-H), 3.84-4.11 (m, 21 H, 4a-H, 4a'-H, 4a''-H, 5b-H, 5b'-H, 5b''-H, 6b-H, 6b'-H, 6b''-H, 6 CH₂O^{Spacer}), 4.12-4.26 (m, 6 H, 6'b-H, 6'b'-H, 6'b''-H, 6a-H, 6a'-H, 6a''-H), 4.46 (dd, ${}^{3}J_{5,6} = 1.9$, ${}^{2}J_{6,6'} = 10.0$ Hz, 3 H, 6'a-H, 6'a'-H, 6'a''-H), 4.64 (d, ${}^{3}J_{2,1}$ = 7.8 Hz, 3 H, 1a-H, 1a'-H, 1a''-H), 4.78–4.86 (m, 6 H, 2a-H, 2a'-H, 2a''-H, 2b-H, 2b'-H, 2b''-H), 5.03 (dd, ${}^{3}J_{3,4} = 1.9$, ${}^{2}J_{5,4} = 9.8$ Hz, 3 H, 4b-H, 4b'-H, 4b''-H), 5.24 (dd, ${}^{3}J_{2,3} = {}^{2}J_{4,3} =$ 9.1 Hz, 3 H, 3a-H, 3a'-H, 3a''-H), 5.33 (dd, ${}^{3}J_{2,3} = {}^{2}J_{4,3} = 10.0$ Hz, 3 H, 3b-H, 3b'-H, 3b''-H), 5.38 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 3 H, 1b-H, 1b'-H, 1b''-H), 6.02 (s, 3 H, $C_6H_3^{Phloro}$). MALDI MS: m/z = 2154 $[MK^+]$. FAB MS: $m/z = 2137 [MNa^+]$, 2287 $[(MNaI)Na^+]$; (abs. mass 2112.65). C₉₀H₁₂₀O₅₇·H₂O (2131.91): calcd. C 50.70, H 5.77; found C 50.73, H 5.87.

1,3,5-Tris-{2-[O-(α -D-glucopyranosyl)-(1 \rightarrow 4)- β -D-glucopyranosyloxy]ethyloxy}benzene (44): To a solution of 43 (50.0 mg, 23.65 µmol) in dry methanol (15.0 mL) was added sodium methylate in methanol (10.0 μ L, 1.0 M). After stirring for 2 d at room temp. the reaction mixture was neutralised with Amberlite IR 120 H⁺ and then the solvent removed in vacuo. Purification by flash chromatography (CH₃CN/H₂O, 1:8, RP-18) furnished 44 (25 mg, 20.34 µmol, 86%) as colourless lyophilisate (D₂O). RP-18 TLC (CH₃CN/H₂O, 1:8): $R_{\rm f} = 0.29$. $[a]_{\rm D} = +36.6$ (c = 1.0, H₂O). ¹H NMR (600 MHz, D₂O): δ = 3.21 (dd, ${}^{3}J_{1,2}$ = 8.0, ${}^{3}J_{3,2}$ = 9.0 Hz, 3 H, 2a-H, 2a'-H, 2a''-H), 3.29 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 8.7$ Hz, 3 H, 4b-H, 4b'-H, 4b''-H), 3.42-3.48 (m, 6 H, 5a-H, 5a'-H, 5a''-H, 2b-H, 2b'-H, 2b''-H), 3.49-3.69 (m, 18 H, 3a-H, 3a'-H, 3a''-H, 4a-H, 4a'-H, 4a''-H, 6a-H, 6a'-H, 6a''-H, 3b-H, 3b'-H, 3b''-H, 5b-H, 5b'-H, 5b''-H, 6b-H, 6b'-H, 6b''-H), 3.70-3.78 (m, 6 H, 6'a-H, 6'a'-H, 6'a''-H, 6'b-H, 6'b'-H, 6'b''-H), 3.88-3.95 (m, 3 H, CHHO^{Spacer}), 4.06–4.15 (m, 9 H, CHHO^{Spacer}), 4.43 (d, ${}^{3}J_{2,1}$ = 8.0 Hz, 3 H, 1a-H, 1a'-H, 1a''-H), 5.27 (d, ${}^{3}J_{2,1} = 3.7$ Hz, 3 H, 1b-H, 1b'-H, 1b''-H), 6.20 (s, 3 H, $C_6H_3^{Phloro}$). FAB MS: m/z = 1231[MH⁺], 1253 [MNa⁺], 1269 [MK⁺]; (abs. mass 1230.43). C₄₈H₇₈O₃₆·4H₂O (1303.18): calcd. C 44.24, H 6.65; found C 44.23, H 6.57.

Ethyl O-(2,3-Di-O-Benzyl-4,6-O-benzylidene-a-D-glucopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl-1-thio- β -D-glucopyranoside (53): To a solution of 52^[32] (7.9 g, 16.65 mmol, 1.0 equiv.) in dry DMF (150.0 mL) was added benzyl bromide (10.88 mL, 15.66 g, 91.58 mmol, 5.5 equiv.). Then NaH (2.20 g, 91.58 mmol, 5.5 equiv.) was added portionwise over 2 h at room temp. After 20 h slow addition of methanol (20 mL) destroyed excess NaH and the reaction mixture was neutralised with acetic acid. The solvent was then removed in vacuo and the residue dissolved in distilled water (50 mL) and ethyl acetate (250 mL). The aqueous phase was washed with ethyl acetate $(3 \times 100 \text{ mL})$ and the combined organic phases dried with MgSO₄. Purification by flash chromatography (petroleum ether/ethyl acetate, 5:1) furnished 53 (10.5 g, 11.32 mmol, 68%) as highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f}$ = 0.56. $[a]_D = +2.0$ (c = 1.0, CHCl₃). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.31$ (t, 3 H, ${}^{3}J = 7.4$ Hz, SCH₂*CH*₃), 2.65–2.86 (m, 2 H, SCH₂CH₃), 3.44–4.20 (m, 12 H, 2a-H, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H), 4.42-4.96 (m, 1a-H, 10 PhC*H*H), 5.52 (s, 1 H, PhC*H*), 5.67 (d, 1 H, ${}^{3}J_{1,2} = 3.9$ Hz, 1b-H), 7.08–7.51 (m, 30 H, Ph). C₅₆H₆₀O₁₀S (925.15): calcd. C 72.70, H 6.54; found C 73.06, H 6.54.

Benzyl *O***-2,3-Di**-*O***-benzyl-6-bromo-6-deoxy-α-D-glucopyranoside** (55): To a solution of 54 (200 mg, 0.444 mmol, 1.0 equiv.) and tetra-

bromomethane (177 mg, 0.533 mmol, 1.2 equiv.) in dry CH₂Cl₂ (20.0 mL) was added triphenylphosphane (140 mg, 0.533 mmol, 1.2 equiv.) at room temp. After 4 h the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 8:1) furnishing **55** (140 mg, 0.273 mmol, 61%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 2:1): $R_{\rm f} = 0.78$. $[a]_{\rm D} = +61.1$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 2.25$ (s, 1 H, OH), 3.44–3.56 (m, 3 H, 2-H, 4-H, 6-H), 3.63 (dd, ³J_{5,6'} = 1.9, ³J_{6,6'} = 11.0 Hz, 1 H, 6'-H), 3.77–3.89 (m, 2 H, 3-H, 5-H), 4.54 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.76 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.88 (d, ³J_{2,1} = 3.5 Hz, 1 H, 1-H), 5.05 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.88 (d, ³J_{2,1} = 3.5 Hz, 1 H, 1-H), 5.05 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.76 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.76 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.76 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.76 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.75 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.75 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.75 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.75 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.75 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 4.75 (d, ²J = 11.5 Hz, 1 H, PhC*H*], 4.75 (d,

Benzyl 2,3-Di-O-Benzyl-6-O-methyl-a-D-glucopyranoside (56): To a solution of 55 (120 mg, 0.234 mmol, 1.0 equiv.), TBAI (8.64 mg, 0.023 mmol, 0.1 equiv.) and crown ether 15-crown-5 (103 mg, 0.468 mmol, 2.0 equiv.) in dry DMF (10.0 mL) was added portionwise sodium methoxide (126 mg, 2.34 mmol, 10.0 equiv.) at room temp. After 3 d at room temp. the reaction mixture was neutralised with acetic acid and after aqueous workup purified by flash chromatography (toluene/ethyl acetate, 5:1) furnishing 56 (52 mg, 0.112 mmol, 48%) as colourless, highly viscous oil. TLC (toluene/ ethyl acetate, 5:1): $R_{\rm f} = 0.26$. $[a]_{\rm D} = +56.6$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 2.33 (br. s, 1 H, OH), 3.38 (s, 3 H, OCH₃), 3.50-3.62 (m, 4 H, 2-H, 4-H, 6-H, 6'-H), 3.74 (m, 1 H, 5-H), 3.85 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.2$ Hz, 1 H, 3-H), 4.51–4.58 (m, 2 H, PhC*H*H), 4.63 (d, ${}^{2}J$ = 11.9 Hz, 1 H, PhC*H*H), 4.70–4.76 (m, 2 H, PhC*H*H), 4.85 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 1 H, 1-H), 5.03 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhCHH), 7.25–7.44 (m, 15 H, Ph). C₂₈H₃₂O₆ (464.22): calcd. C 71.39, H 6.94; found C 71.48, H 6.93.

Benzyl O-2,3-Di-O-benzyl-6-O-thexyldimethylsilyl-a-D-glucopyranoside (57): To a solution of 54 (3.30 g, 7.325 mmol, 1.0 equiv.) in dry CH₂Cl₂ (40.0 mL) was added thexyldimethylsilyl chloride (1.58 mL, 1.44 g, 8.06 mmol, 1.1 equiv.) and imidazole (0.748 g, 10.99 mmol, 1.5 equiv.) at room temp. After 5 h (TLC monitoring) the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 10:1) furnishing 57 (4.34 g, 7.325 mmol, quant. as colourless oil. TLC (petroleum ether/ethyl acetate, 8:1): $R_{\rm f} = 0.42$. $[a]_{\rm D} = +48.2$ (c = 1.0, CHCl₃). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.08, 0.09$ [2s, 6 H, Si(CH₃)₂], 0.78–0.89 [m, 12 H, 2 C(CH₃)₂], 1.59 [hept, ${}^{3}J$ = 6.6 Hz, 1 H, CH(CH₃)₂], 2.58 (br. s, 1 H, OH), 3.41-3.55 (m, 2 H, 2-H, 4-H), 3.59–3.76 (m, 3 H, 5-H, 6-H, 6'-H), 3.84 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 8.5$ Hz, 1 H, 3-H), 4.48–4.83 (m, 6 H, 1-H, 5 PhC*H*H), 4.97 (d, ${}^{2}J$ = 11.2 Hz, 1 H, PhCHH), 7.19-7.44 (m, 15 H, Ph). C₃₅H₄₈O₆Si (592.85): calcd. C 70.91, H 8.16; found C 71.04, H 8.14.

Benzyl *O*-(2,3-Di-*O*-benzyl-4,6-*O*-benzylidene- α -D-glucopyranosyl)-(1 \rightarrow 4)-*O*-(2,3,6-tri-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3-di-*O*-benzyl-6-*O*-thexyldimethylsilyl- α -D-glucopyranoside (58): To a solution of 57 (2.14 g, 3.61 mmol, 1.0 equiv.) and 53 (5.00 g, 5.40 mmol, 1.5 equiv.) in dry diethyl ether (200 mL) was added *N*-iodosuccinimide (1.21 g, 5.40 mmol, 1.5 equiv.) at room temp. The reaction was then initiated with catalytic amounts of trifluoromethane sulfonic acid (1.6 μ L, 0.005 equiv.). After 30 min the reaction mixture was washed with NaHCO₃ solution (50.0 mL) and Na₂SO₃ solution (3 × 50 mL) and dried with MgSO₄. The reaction mixture was then concentrated in vacuo and the residue purified by flash chromatography (toluene/ethyl acetate, 75:1) furnishing 58 (2.10 g, 0.319 mmol, 40%) as colourless, highly viscous oil. TLC (toluene/ ethyl acetate, 50:1): $R_{\rm f} = 0.37$. [a]_D = +47.9 (c = 1.0, CHCl₃). ¹H

NMR (600 MHz, CDCl₃): $\delta = 0.08$, 0.10 [2s, 6 H, Si(CH₃)₂], 0.83–0.88 [m, 12 H, 2 C(CH₃)₂], 1.53–1.64 [m, 1 H, CH(CH₃)₂], 3.46–3.57 (m, 3 H, 2a-H, 2b-H, 2c-H), 3.58–3.69 (m, 3 H, 4c-H, 6b-H, 6c-H), 3.77–3.92 (m, 6 H, 4a-H, 5a-H, 6a-H, 6'a-H, 6'b-H, 5c-H), 3.94–3.97 (m, 1 H, 5b-H), 3.98–4.09 (m, 2 H, 3b-H, 3c-H), 4.10–4.19 (m, 3 H, 3a-H, 4b-H, 6'c-H), 4.43–4.62 (m, 7 H, PhCHH), 4.63–4.71 (m, 2 H, PhCHH), 4.72–4.78 (m, 3 H, PhCHH), 4.80 (d, ³J_{2,1} = 3.4 Hz, 1 H, 1a-H), 4.84–4.96 (m, 3 H, PhCHH), 5.03 (d, ²J = 11.5 Hz, 1 H, PhCHH), 5.53 (s, 1 H, PhCH), 5.62 (d, ³J_{2,1} = 3.4 Hz, 1 H, 1b-H), 5.70 (d, ³J_{2,1} = 3.7 Hz, 1 H, 1c-H), 7.02–7.56 (m, 45 H, Ph). C₈₉H₁₀₂O₁₆Si (1455.87): calcd. C 73.43, H 7.06; found C 73.45, H 7.10.

Benzyl O-(2,3-Di-O-benzyl-4,6-O-benzylidene-a-D-glucopyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$ -2,3-di-Obenzyl-α-D-glucopyranoside (59): To a solution of 58 (400 mg, 0.275 mmol) in THF (12.0 mL) was added at room temp. portionwise a solution of TBAF in THF (275 µL, 1.0 м). After 20 h the reaction mixture was neutralised with acetic acid and then the mixture concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing 59 (294 mg, 0.224 mmol, 81%) as colourless, highly viscous oil. TKC (petroleum ether/ethyl acetate, 3:1): $R_f = 0.19$. $[a]_D = +39.0$ (c =1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 3.00 (m, 1 H, OH), 3.46 (dd, ${}^{3}J_{1,2} = 3.7$, ${}^{3}J_{3,2} = 9.8$ Hz, 1 H, 2c-H), 3.51 (dd, ${}^{3}J_{1,2} =$ 3.8, ³J_{3,2} = 9.8 Hz, 1 H, 2b-H), 3.55–3.67 (m, 4 H, 2a-H, 6b-H, 4c-H, 6c-H), 3.68-3.79 (m, 4 H, 5a-H, 6a-H, 6'b-H, 5c-H), 3.82 (dd, ${}^{3}J_{3,4} = {}^{2}J_{5,4} = 9.2$ Hz, 1 H, 4a-H), 3.88 (dd, ${}^{3}J_{2,3} = {}^{2}J_{4,3} = 9.5$ Hz, 1 H, 3c-H), 3.92–4.01 (m, 3 H, 5a-H, 3b-H, 6'a-H), 4.08 (dd, ${}^{3}J_{3,4}$ $= {}^{2}J_{5,4} = 9.8$ Hz, 1 H, 4b-H), 4.11–4.17 (m, 2 H, 3a-H, 6'c-H), 4.37-4.63 (m, 8 H, PhCHH), 4.64-4.80 (m, 5 H, PhCHH), 4.82-4.88 (m, 3 H, 1a-H, PhCHH), 5.08 (d, ${}^{2}J$ = 11.9 Hz, 1 H, PhCHH), 5.54 (s, 1 H, PhCH), 5.59 (d, ${}^{3}J_{2,1} = 3.7$ Hz, 1 H, 1b-H), 5.72 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 1 H, 1c-H), 6.99–7.55 (m, 45 H, Ph). C₈₁H₈₄O₁₆ (1313.55): calcd. C 74.07, H 6.44; found C 73.86, H 6.33.

Benzyl O-(2,3,4-Tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-O-(2,3,6tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-2,3-di-O-benzyl-6-O-thexyldimethylsilyl-a-D-glucopyranoside (60): To a solution of 58 (100 mg, 68.7 µmol, 1.0 equiv.) in dry CH₂Cl₂ (5.0 mL) was added a solution of borane in THF (0.687 mL, 1.0 M) and then a solution of Bu₂BOTf in CH₂Cl₂ (10 µL, 1.0 м). After 24 h excess borane complex was destroyed with methanol (20 mL) and the reaction mixture neutralised with triethylamine. The reaction mixture was concentrated in vacuo and purified by flash chromatography (petroleum ether/ethyl acetate, 4:1) furnishing 60 (90 mg, 61.8 µmol, 90%) as colourless highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.45$. $[a]_{\rm D} = +61.8$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 0.09, 0.11 [2s, 6 H, Si(CH₃)₂], 0.83–0.88 [m, 12 H, 2C(CH₃)₂], 1.56–1.68 [m, 1 H, CH(CH₃)₂], 3.39 (dd, ³J_{1,2} = 3.4, ${}^{3}J_{3,2}$ = 10.6 Hz, 1 H, 2c-H), 3.46–3.56 (m, 4 H, 2a-H, 2b-H, 4c-H, 6c-H), 3.57-3.65 (m, 2 H, 6b-H, 6'c-H), 3.69 (m, 1 H, 5b-H), 3.78-3.96 (m, 7 H, 4a-H, 5a-H, 6a-H, 6'a-H, 5b-H, 6'b-H, 3c-H), 3.99–4.08 (m, 2 H, 3b-H, 4b-H), 4.15 (dd, ${}^{3}J_{23} = {}^{3}J_{43} = 8.9$ Hz, 1 H, 3a-H), 4.44-4.65 (m, 10 H, PhCHH), 4.72-4.79 (m, 3 H, PhCHH), 4.80 (d, ${}^{3}J_{2,1}$ = 3.3 Hz, 1 H, 1a-H), 4.82–4.94 (m, 4 H, PhC*H*H), 5.03 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhC*H*H), 5.58 (d, ${}^{3}J_{2,1}$ = 3.3 Hz, 1 H, 1c-H), 5.63 (d, ${}^{3}J_{2,1}$ = 3.3 Hz, 1 H, 1b-H), 7.04–7.48 (m, 45 H, Ph). C₈₉H₁₀₄O₁₆Si (1457.88): calcd. C 73.32, H 7.19; found C 73.09, H 7.24.

Benzyl O-(2,3,4-Tri-O-benzyl-6-O-methyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-thexyldimethylsilyl- α -D-glucopyranoside (61): To a solution of 60 (150 mg, 0.103 mmol, 1.0 equiv.) in dry DMF (6.5 mL)

was added methyl iodide (19.3 µL 43.9 mg, 0.309 mmol, 3.0 equiv.) at room temp. and then NaH (7.4 mg, 0.309 mmol, 3.0 equiv.). After 28 h methanol (10.0 mL) was added to quench the reaction and then triethylamine (0.5 mL). The reaction mixture was neutralised with acetic acid, the solvent removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 5:1) furnishing 61 (132 mg, 89.61 µmol, 87%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.68$. $[a]_{\rm D}$ = +61.0 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 0.08, 0.10 [2s, 6 H, Si(CH₃)₂], 0.82–0.89 [m, 12 H, 2C(CH₃)₂], 1.61 [hept, ${}^{3}J = 6.8$ Hz, 1 H, CH(CH₃)₂], 3.20 (s, 3 H, OCH₃), 3.31 (dd, ${}^{3}J_{5,6}$ = 2.0, ${}^{3}J_{6.6'}$ = 9.7 Hz, 1 H, 6c-H), 3.42 (dd, ${}^{3}J_{5.6}$ = 2.4, ${}^{3}J_{6.6'}$ = 9.5 Hz, 1 H, 6'c-H), 3.45 (dd, ${}^{3}J_{1,2} = 3.4$, ${}^{3}J_{3,2} = 10.4$ Hz, 1 H, 2c-H), 3.48-3.55 (m, 2 H, 2a-H, 2b-H), 3.59-3.62 (m, 2 H, 6a-H, 4c-H), 3.64-3.73 (m, 1 H, 5c-H), 3.77-3.95 (m, 7 H, 4a-H, 5a-H, 6'a-H, 5b-H, 6b-H, 6'b-H, 3c-H), 3.99-4.06 (m, 2 H, 3b-H, 4b-H), 4.14 $(dd, {}^{3}J_{2,3} = {}^{3}J_{4,3} = 8.9 \text{ Hz}, 1 \text{ H}, 3a-\text{H}), 4.42-4.59 \text{ (m, 10 H},$ PhCHH), 4.73-4.80 (m, 4 H, 1a-H, PhCHH), 4.81-4.87 (m, 3 H, PhCHH), 4.89 (d, ²J = 11.4 Hz, 1 H, PhCHH), 5.00 (d, ²J = 11.5 Hz, 1 H, PhC*H*H), 5.61 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1b-H), 5.67 (d, ${}^{3}J_{2.1}$ = 3.4 Hz, 1 H, 1c-H), 7.05–7.49 (m, 45 H, Ph). C₉₀H₁₀₆O₁₆Si (1471.91): calcd. C 73.44, H 7.26; found C 73.39, H 7.40.

O-(6-*O*-Methyl-α-D-glucopyranosyl)-(1→4)-*O*-(α-D-glucopyranosyl)- $(1\rightarrow 4)$ - α/β -D-glucopyranose (45): To a solution of 61 (120 mg, 81.53 µmol, 1.0 equiv.) in THF (10.0 mL) at room temp. was added portionwise a solution of TBAF in THF (244.6 µL, 1.0 м, 3.0 equiv.). After 24 h the reaction mixture was neutralised with acetic acid and then concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 2:1). The intermediate (90 mg) was then dissolved in THF/H₂O/AcOH, 300:50:1 (7.0 mL) and Pearlman catalyst^[19] (15.0 mg) added. Then the argon atmosphere was completely replaced by hydrogen. After 72 h at room temp. the catalyst was separated with celite and the celite washed with methanol/water (3×10 mL). Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (H₂O 100%; RP-18) and lyophilised from D₂O furnishing 45 (32 mg, 61.72 µmol, 76%) as colourless lyophilisate (α/β , 2:3; D₂O). TLC *RP-18* (H₂O 100%): $R_{\rm f} = 0.58$. ¹H NMR (250 MHz, D₂O): $\delta = 3.10$ (dd, ³ $J_{1,2} = {}^{3}J_{3,2} =$ 8.2 Hz, 0.6 H, 2a-H_B), 3.17–3.32 (m, 4 H, 4c-H, OCH₃), 3.33–3.83 (m, 16.4 H, 2a-H_a, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 5c-H, 6c-H, 6'c-H), 4.46 (d, ${}^{3}J_{2,1} = 8.0$ Hz, 0.6 H, 1a-H_β), 5.04 (d, ${}^{3}J_{2,1} = 3.7$ Hz, 0.4 H, 1a-H_α), 5.17–5.25 (m, 2 H, 1b-H, 1c-H). C₁₉H₃₄O₁₆·1.75H₂O (550.00): calcd. C 41.49, H 6.87; found C 41.33, H 6.62.

Benzyl O-(2,3-Di-O-benzyl-4,6-O-benzylidene-a-D-glucopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-a-D-glucopyranosyl)-(1→4)-2,3-di-Obenzyl-6-O-n-propyl-D-glucopyranoside (62): To a solution of 59 (150 mg, 0.114 mmol, 1.0 equiv.) in dry DMF (10.0 mL) was added *n*-propyl iodide (111 µL, 194 mg, 1.142 mmol, 10.0 equiv.) at room temp. and then NaH (27.4 mg, 1.142 mmol, 10.0 equiv.). After 72 h methanol (10.0 mL) was added to quench the reaction. Then the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 4:1) furnishing 62 (111 mg, 81.85 µmol, 72%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.48$. $[a]_{\rm D} = +47.1$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 0.83 (t, ³J = 7.4 Hz, 3 H, OCH₂CH₂CH₃), 1.48-1.55 (m, 2 H, OCH₂CH₂CH₃), 3.31-3.34 (m, 2 H, OCH₂CH₂CH₃), 3.46–3.54 (m, 3 H, 6a-H, 2b-H, 2c-H), 3.55-3.65 (m, 4 H, 2a-H, 6b-H, 4c-H, 6c-H), 3.75-3.92 (m, 5 H, 5a-H, 6'a-H, 6'b-H, 5c-H), 3.93-4.09 (m, 3 H, 4a-H, 3b-H, 3c-H), 4.10-4.23 (m, 3 H, 3a-H, 4b-H, 6c-H), 4.42-4.61 (m, 7 H, PhCHH), 4.62-4.75 (m, 5 H, PhCHH), 4.77-4.94 (m, 4 H, 1a-H,

PhC*H*H), 5.02 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhC*H*H), 5.52–5.56 (m, 2 H, 1b-H, PhC*H*H), 5.72 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 1 H, 1c-H), 7.03–7.52 (m, 45 H, Ph). C₈₄H₉₀O₁₆ (1355.63): calcd. C 74.42, H 6.69; found C 74.26, H 6.75.

Benzyl O-(2,3,4-Tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-O-(2,3,6tri-O-benzyl-a-D-glucopyranosyl)-(1→4)-2,3-di-O-benzyl-6-O-pro**pyl-α-D-glucopyranoside (63):** To a solution of **62** (110 mg, 81.14 µmol) in dry CH2Cl2 (5.0 mL) was added a solution of borane in THF (0.81 mL, 1.0 $\mbox{m})$ and then a solution of Bu_2BOTf in CH₂Cl₂ (20 µL, 1.0 м). After 72 h the excess borane complex was destroyed with methanol (10 mL) and the reaction mixture neutralised with triethylamine. The mixture was concentrated in vacuo and then purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing 63 (76 mg, 55.99 µmol, 69%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f}$ = 0.30. $[a]_D$ = +48.0 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 0.77$ (t, ${}^{3}J = 7.4$ Hz, 3 H, OCH₂CH₂CH₃), 1.44–1.53 (m, 2 H, OCH₂CH₂CH₃), 1.63 (br. s, 1 H, OH), 3.22–3.37 (m, 3 H, 2c-H, OCH₂CH₂CH₃), 3.39–3.49 (m, 4 H, 6a-H, 2b-H, 4c-H, 6c-H), 3.50-3.58 (m, 3 H, 2a-H, 6b-H, 6'c-H), 3.59-3.63 (m, 1 H, 5c-H), 3.70 (dd, ${}^{3}J_{5,6} = 3.4$, ${}^{2}J_{6,6'} = 11.2$ Hz, 1 H, 6'a-H), 3.74–3.82 (m, 3 H, 5a-H, 5b-H, 6'b-H), 3.83 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 8.9$ Hz, 1 H, 3c-H), 3.90–4.01 (m, 3 H, 4a-H, 3b-H, 4b-H), 4.04 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} =$ 8.4 Hz, 1 H, 3a-H), 4.35-4.57 (m, 10 H, PhCHH), 4.63-4.70 (m, 3 H, PhCHH), 4.73–4.81 (m, 4 H, 1a-H, PhCHH), 4.84 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhC*H*H), 4.97 (d, ²*J* = 11.5 Hz, 1 H, PhC*H*H), 5.48– 5.52 (m, 2 H, 1b-H, 1c-H), 7.02–7.46 (m, 45 H, Ph). C₈₄H₉₂O₁₆ (1356.64): calcd. C 74.31, H 6.83; found C 73.89, H 7.15.

O-(α -D-Glucopyranosyl)-(1 \rightarrow 4)-O-(α -D-glucopyranosyl)-(1 \rightarrow 4)-6-O**propyl-α-D-glucopyranoside (50):** To a solution of **63** (55 mg, 40.5 µmol) in THF/H₂O, 5:1 (6.0 mL) was added Pearlman catalyst^[19] (15 mg) and catalytic amounts of acetic acid (10 μ L). Then the argon atmosphere was completely replaced by hydrogen. After 72 h at room temp. the catalyst was separated with celite and the celite washed with methanol/water $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (CH₃CN/H₂O, 1:50; *RP-18*) and then lyophilised from D_2O furnishing 50 (22 mg, 40.5 μ mol, quant. as colourless lyophilisate (α/β , 2:3; D₂O). TLC *RP-18* (CH₃CN/H₂O, 1:50): $R_f = 0.45$. ¹H NMR (250 MHz, D₂O): $\delta = 0.75$ (t, ${}^{3}J = 7.4$ Hz, 3 H, OCH₂CH₂CH₃), 1.42 (qt, ${}^{3}J = {}^{3}J' =$ 7.4 Hz, 2 H, OCH₂CH₂CH₃), 3.10 (dd, ${}^{3}J_{1,2} = {}^{3}J_{3,2} = 8.5$ Hz, 0.6 H, 2a-H_{β}), 3.20–3.91 (m, 19.4 H, 1a-H_{α}, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 4c-H, 5c-H, 6c-H, 6'c-H, OC H_2 CH $_2$ CH $_3$), 4.47 (d, ${}^3J_{2,1}$ = 8.0 Hz, 0.6 H, 2a-H_{β}), 5.04 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 0.4 H, 1a-H_{α}), 5.21 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 1 H, 1c-H), 5.22–5.27 (m, 1 H, 1b-H). MALDI MS: m/z = 569 [MNa⁺], 585 [MK⁺]. C₂₁H₃₈O₁₆ (546.52).

Benzyl *O*-(2,3-Di-*O*-benzyl-4,6-*O*-benzylidene- α -D-glucopyranosyl)-(1 \rightarrow 4)-*O*-(2,3,6-tri-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3-di-*O*-benzyl-6-*O*-methyl- α -D-glucopyranoside (64): To a solution of 56 (200 mg, 0.431 mmol, 1.0 equiv.) and 53 (598 mg, 0.646 mmol, 1.5 equiv.) in dry diethyl ether (15.0 mL) at room temp. was added *N*-iodosuccinimide (145 mg, 0.646 mmol, 1.5 equiv.). Then the reaction was started with catalytic amounts of trifluoromethanesulfonic acid (0.38 µL, 0.65 mg, 4.31 µmol, 0.01 equiv.). After 30 min the reaction mixture was washed with NaHCO₃ solution (5.0 mL) and Na₂SO₃ solution (3 × 10 mL) and dried with MgSO₄. The residue was concentrated in vacuo and purified by flash chromatography (toluene/ethyl acetate, 10:1) furnishing 64 (423 mg, 0.319 mmol, 74%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_f = 0.47$. [a]_D = +56.7 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 3.24 (s, 6 H, OCH₃), 3.36 (dd, ³*J*_{5,6} = 2.0, ²*J*_{6,6'} = 9.3 Hz, 1 H, 6a-H), 3.49 (dd, ³*J*_{1,2} = 3.6, ³*J*_{3,2} = 9.4 Hz, 1 H, 2c-H), 3.54 (dd, ³*J*_{1,2} = 3.4, ³*J*_{3,2} = 9.7 Hz, 1 H, 2b-H), 3.56–3.70 (m, 4 H, 2a-H, 6b-H, 4c-H, 6c-H), 3.74 (dd, ³*J*_{5,6} = 2.0, ²*J*_{6,6'} = 9.6 Hz, 1 H, 6'a-H), 3.77–3.81 (m, 1 H, 5b-H), 3.82–3.89 (m, 3 H, 5a-H, 6'b-H, 5c-H), 3.94 (dd, ³*J*_{2,3} = ³*J*_{4,3} = 9.6 Hz, 1 H, 3c-H), 3.98–4.06 (m, 2 H, 4a-H, 3b-H), 4.11–4.19 (m, 3 H, 3a-H, 4b-H, 6c-H), 4.41–4.60 (m, 7 H, PhC*H*H), 4.61–4.76 (m, 5 H, PhC*H*H), 4.79 (d, ²*J* = 11.6 Hz, 1 H, PhC*H*H), 4.81–4.88 (m, 2 H, 1a-H, PhC*H*H), 4.94 (d, ²*J* = 11.6 Hz, 1 H, PhC*H*H), 5.08 (d, ²*J* = 11.6 Hz, 1 H, PhC*H*H), 5.55 (s, 1 H, PhC*H*), 5.65 (d, ³*J*_{2,1} = 3.3 Hz, 1 H, 1b-H), 5.72 (d, ³*J*_{2,1} = 3.7 Hz, 1 H, 1c-H), 7.01–7.53 (m, 45 H, Ph). C₈₂H₈₆O₁₆ (1326.59): calcd. C 74.19, H 6.53; found C 73.71, H 6.27.

Benzyl O-(2,3,4-Tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-O-(2,3,6tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-2,3-di-O-benzyl-6-Omethyl-a-D-glucopyranoside (65): To a solution of 64 (400 mg, 0.301 mmol) in dry CH₂Cl₂ (15.0 mL) was added a solution of borane in THF (3.01 mL, 1.0 M) and then a solution of Bu₂BOTf in CH_2Cl_2 (100 µL, 1.0 M). After 72 h the excess borane complex was destroyed with methanol (20 mL) and the reaction mixture neutralised with triethylamine. The mixture was concentrated in vacuo and then purified by flash chromatography (petroleum ether/ethyl acetate, 2:1) furnishing 65 (338 mg, 0.254 mmol, 84%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f}$ = 0.10. δ = +74.2 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 1.63 (br. s, 1 H, OH), 3.26 (s, 3 H, OCH₃), 3.33-3.40 (m, 2 H, 6a-H, 2c-H), 3.43-3.56 (m, 3 H, 2b-H, 4c-H, 6c-H), 3.57-3.70 (m, 4 H, 2a-H, 6b-H, 5c-H, 6'c-H), 3.71-3.77 (m, 2 H, 6'a-H, 5b-H), 3.84-3.90 (m, 3 H, 5a-H, 6'b-H, 3c-H), 3.95-4.09 (m, 3 H, 3b-H, 4b-H, 4a-H), 4.13 (dd, ${}^{3}J_{2,3} = {}^{2}J_{4,3} = 8.8$ Hz, 1 H, 3a-H), 4.41–4.63 (m, 10 H, PhCHH), 4.65–4.88 (m, 7 H, 1a-H, PhCHH), 4.91 (d, ²J = 11.5 Hz, 1 H, PhCHH), 5.07 (d, ${}^{2}J$ = 11.6 Hz, 1 H, PhCHH), 5.55 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1c-H), 5.65 (d, ${}^{3}J_{2,1}$ = 3.3 Hz, 1 H, 1b-H), 7.07-7.47 (m, 45 H, Ph). C₈₂H₈₈O₁₆ (1329.59): calcd. C 74.08, H 6.67; found C 73.96, H 6.66.

O-(α -D-Glucopyranosyl)-(1 \rightarrow 4)-O-(α -D-glucopyranosyl)-(1 \rightarrow 4)-6-Omethyl-α/β-D-glucopyranose (49): To a solution of 65 (150 mg, 0.113 mmol) in THF (10.0 mL) was added Pearlman catalyst^[19] (20.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After 72 h at room temp. the catalyst was separated with celite and the celite washed with methanol $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (CH₃CN/ H₂O, 1:100; RP-18) and then lyophilised from D₂O furnishing 49 (59 mg, 0.113 mmol, quant. as colourless lyophilisate (α/β , 2:3; D₂O). TLC *RP-18* (CH₃CN/H₂O, 1:100): $R_f = 0.84$. ¹H NMR (250 MHz, D₂O): δ = 3.10 (dd, ${}^{3}J_{1,2}$ = ${}^{3}J_{3,2}$ = 8.3 Hz, 0.6 H, 2a-H_B), 3.16-3.31 (m, 4 H, 4c-H, OCH₃), 3.32-3.91 (m, 16.4 H, 1a-H_a, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 5c-H, 6c-H, 6'c-H), 4.48 (d, ${}^{3}J_{2,1} = 8.0$ Hz, 0.6 H, 1a-H_β), 5.04 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 0.4 H, 1a-H_α), 5.21 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 1 H, 1c-H), 5.28 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 1 H, 1b-H). C₁₉H₃₄O₁₆·1.5H₂O (545.49): calcd. C 41.84, H 6.84; found C 41.65, H 6.57.

Benzyl *O*-(2,3,4-Tri-*O*-benzyl-6-*O*-methyl-α-D-glucopyranosyl)-(1 \rightarrow 4)-*O*-(2,3,6-tri-*O*-benzyl-α-D-glucopyranosyl)-(1 \rightarrow 4)-2,3-di-*O*benzyl-6-*O*-methyl-α-D-glucopyranoside (66): To a solution of 65 (150 mg, 0.113 mmol, 1.0 equiv.) in dry DMF (6.0 mL) at room temp. was added methyl iodide (21.2 µL, 48.1 mg, 0.339 mmol, 3.0 equiv.) and then NaH (8.1 mg, 0.339 mmol, 3.0 equiv.). After 24 h the reaction was quenched with methanol (10.0 mL) and tri-

ethylamine (0.5 mL) and the reaction mixture neutralised with acetic acid. The solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing 66 (134 mg, 99.44 µmol, 88%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.35$. $[a]_{\rm D} =$ +64.9 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 3.21$ (br. s, 3 H, 6c-OCH₃), 3.28 (br. s, 3 H, 6a-OCH₃), 3.35 (dd, ${}^{3}J_{5.6} = 2.0$, ${}^{2}J_{6,6'}$ = 10.2 Hz, 1 H, 6c-H), 3.38 (dd, ${}^{3}J_{5,6}$ = 2.0, ${}^{2}J_{6,6'}$ = 9.5 Hz, 1 H, 6a-H), 3.41–3.50 (m, 2 H, 6'c-H, 2b-H), 3.53 (dd, ${}^{3}J_{1,2} = 3.3$, ${}^{2}J_{3,2} = 8.8$ Hz, 1 H, 2b-H), 3.56–3.67 (m, 3 H, 2a-H, 6b-H, 4c-H), 3.69-3.80 (m, 3 H, 6'a-H, 5b-H, 5c-H), 3.82-3.92 (m, 3 H, 5a-H, 6'b-H, 3c-H), 3.96-4.06 (m, 2 H, 3b-H, 4a-H), 4.07-4.18 (m, 2 H, 3a-H, 4b-H), 4.42-4.60 (m, 10 H, PhCHH), 4.67-4.87 (m, 7 H, 1a-H, PhCHH), 4.91 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhCHH), 5.06 (d, ${}^{2}J$ = 11.6 Hz, 1 H, PhCHH), 5.63 (d, ${}^{3}J_{2,1}$ = 3.2 Hz, 1 H, 1b-H), 5.67 (d, ${}^{3}J_{2,1}$ = 3.3 Hz, 1 H, 1c-H), 7.08–7.48 (m, 45 H, Ph). C₈₃H₉₀O₁₆ (1343.62): calcd. C 74.20, H 6.75; found C 73.87, H 6.76.

O-(6-O-Methyl-α-D-glucopyranosyl)-(1→4)-O-(α-D-glucopyranosyl)-(1 \rightarrow 4)-6-*O*-methyl- α/β -D-glucopyranose (48): To a solution of 66 (150 mg, 0.112 mmol) in THF (10.0 mL) was added Pearlman catalyst^[19] (20.0 mg). Then the argon atmosphere was completely replaced by hydrogen. After 72 h at room temp. the catalyst was separated with celite and the celite washed with methanol $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (CH₃CN/H₂O, 1:50; RP-18) and then lyophilised from D₂O furnishing 48 (53 mg, 0.101 mmol, 90%) as colourless lyophilisate (α/β , 2:3; D₂O). TLC *RP-18* (CH₃CN/H₂O, 1:50): $R_{\rm f}$ = 0.45. ¹HNMR (250 MHz, D₂O): δ = 3.05 (dd, ³J_{1,2} = 8.0, ³J_{3,2} = 8.9 Hz, 0.6 H, 2a-H_B), 3.12–3.28 (m, 7 H, 4c-H, 6a-OCH₃, 6c-OCH₃), 3.29–3.88 (m, 16.4 H, 2a-H_α, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 5c-H, 6c-H, 6'c-H), 4.42 (d, ${}^{3}J_{2,1} = 8.0$ Hz, 0.6 H, 1a-H_B), 4.99 (d, ${}^{3}J_{2,1} =$ 3.7 Hz, 0.4 H, 1a-H_a), 5.18 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 1 H, 1c-H), 5.22 (d, ${}^{3}J_{2,1} = 3.4$ Hz, 1 H, 1b-H). C₂₀H₃₆O₁₆·2.5H₂O (577.53): calcd. C 41.59, H 7.16; found C 41.60, H 6.86.

Benzyl O-(2,3-Di-O-benzyl-4,6-O-benzylidene-a-D-glucopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranoside (67): To a solution of 6 (77.9 mg, 0.144 mmol, 1.0 equiv.) and 53 (200 mg, 0.216 mmol, 1.0 equiv.) in dry diethyl ether (10 mL) at room temp. was added N-iodosuccinimide (48.6 mg, 0.216 mmol, 1.5 equiv.). The reaction was started with catalytic amounts of trifluoromethanesulfonic acid $(0.2 \,\mu\text{L},$ 0.01 equiv.). After 30 min the reaction mixture was washed with NaHCO₃ solution (10.0 mL) and Na₂SO₃ solution (3×15 mL) and dried with MgSO₄. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (a. toluene/ethyl acetate, 50:1; b. toluene/ethyl acetate, 20:1) furnishing 67 (113 mg, 80.64 µmol, 56%) as colourless foam. TLC (toluene/ethyl acetate, 20:1): $R_f = 0.39$. $[a]_D = +52.0$ (c = 1.0, CHCl₃). ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3)$: $\delta = 3.48-3.68 \text{ (m, 8 H, 2a-H, 6a-H, 6'a-H, 2b-}$ H, 6b-H, 2c-H, 4c-H, 6c-H), 3.75-3.92 (m, 4 H, 5a-H, 5b-H, 6'b-H, 5c-H), 3.97 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.6$ Hz, 1 H, 3c-H), 4.00–4.17 (m, 5 H, 3a-H, 4a-H, 3b-H, 4b-H, 6c-H), 4.38-4.59 (m, 10 H, PhCHH), 4.60-4.75 (m, 4 H, PhCHH), 4.77-4.87 (m, 3 H, 1a-H, PhCHH), 4.92 (d, ${}^{2}J$ = 11.6 Hz, 1 H, PhCHH), 5.06 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhCHH), 5.53 (s, 1 H, PhCH), 5.60 (d, ${}^{3}J_{2,1} = 3.2$ Hz, 1 H, 1b-H), 5.71 (d, ${}^{3}J_{2,1}$ = 3.7 Hz, 1 H, 1c-H), 7.04–7.51 (m, 50 H, Ph). C₈₈H₉₀O₁₆ (1403.67): calcd. C 75.30, H 6.46; found C 74.89, H 6.47.

Benzyl O-(2,3,4-Tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranosyl- α -A-glucopyranosyl- α -A-glucopyranosyl- α -D-glucopyranosyl- α -D-glucopyranosyl-

H. Malik, W. Boos, R. R. Schmidt

glucopyranoside (68): To a solution of 67 (160 mg, 0.114 mmol) in dry CH₂Cl₂ (20.0 mL) was added a solution of borane in THF (1.14 mL, 1.0 M) and then a solution of Bu₂BOTf in CH₂Cl₂ $(25 \,\mu\text{L}, 1.0 \,\text{m})$. After 72 h the excess borane complex was destroyed with methanol (10 mL) and the reaction mixture neutralised with triethylamine. The deposit was concentrated in vacuo and purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing 68 (136 mg, 96.9 µmol, 85%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.27$. $[a]_{\rm D} =$ +63.0 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 1.61$ (br. s, 1 H, OH), 3.37 (dd, ${}^{3}J_{1,2} = 3.5$, ${}^{3}J_{3,2} = 9.5$ Hz, 1 H, 2c-H), 3.43– 3.52 (m, 4 H, 2b-H, 6b-H, 4c-H, 6c-H), 3.53-3.65 (m, 4 H, 2a-H, 6a-H, 5c-H, 6'c-H), 3.68 (dd, ${}^{3}J_{5,6} = 2.2$, ${}^{3}J_{6,6'} = 10.9$ Hz, 1 H, 6'b-H), 3.81-3.93 (m, 4 H, 5a-H, 6'a-H, 5b-H, 3c-H), 3.99-4.10 (m, 3 H, 4a-H, 3b-H, 4b-H), 4.14 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.5$ Hz, 1 H, 3a-H), 4.36-4.62 (m, 12 H, PhCHH), 4.66-4.72 (m, 2 H, PhCHH), 4.73-4.86 (m, 5 H, 1a-H, PhCHH), 4.91 (d, ${}^{2}J$ = 11.6 Hz, 1 H, PhCHH), 5.06 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhC*H*H), 5.56 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1c-H), 5.62 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1b-H), 7.04–7.49 (m, 50 H, Ph). C₈₈H₉₂O₁₆ (1405.69): calcd. C 75.19, H 6.60; found C 74.78, H 6.97.

Benzyl O-(2,3,4-Tri-O-benzyl-6-O-triisopropylsilyl-a-D-glucopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-a-D-glucopyranoside (69): To a solution of 68 (300 mg, 0.213 mmol, 1.0 equiv.) in dry CH₂Cl₂ (10.0 mL) at room temp. was added triisopropylsilyl chloride (100.68 µL, 90.62 mg, 0.47 mmol, 2.2 equiv.) and imidazole (44 mg, 0.640 mmol, 3.0 equiv.). After 50 h (TLC monitoring) the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing 69 (304 mg, 0.195 mmol, 92%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.67$. $[a]_{\rm D} = +55.0$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 0.95–1.04 (m, 21 H, SiCH(CH₃)₂), 3.42 (dd, ${}^{3}J_{1,2} = 3.5$, ${}^{3}J_{3,2} = 9.1$ Hz, 1 H, 2c-H), 3.53–3.57 (m, 3 H, 2b-H, 6b-H, 6a-H), 3.58-3.64 (m, 2 H, 2a-H, 5c-H), 3.67-3.75 (m, 3 H, 6'a-H, 4c-H, 6c-H), 3.80 (dd, ${}^{3}J_{5,6} = 2.5$, ${}^{3}J_{6,6'} = 10.7$ Hz, 1 H, 6'c-H), 3.84 (dd, ${}^{3}J_{5,6} = 2.5$, ${}^{3}J_{6,6'} = 10.8$ Hz, 1 H, 6'b-H), 3.87-3.94 (m, 3 H, 5a-H, 5b-H, 3c-H), 4.01-4.20 (m, 4 H, 3a-H, 4a-H, 3b-H, 4b-H), 4.39-4.63 (m, 11 H, PhCHH), 4.68-4.91 (m, 1a-H, PhC*H*H), 4.93 (d, ${}^{2}J$ = 11.7 Hz, 1 H, PhC*H*H), 5.06 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhC*H*H), 5.63 (d, ${}^{3}J_{2,1}$ = 3.2 Hz, 1 H, 1b-H), 5.66 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1c-H), 7.10–7.48 (m, 50 H, Ph). C₉₇H₁₁₂O₁₆Si (1562.03): calcd. C 74.59, H 7.23; found C 74.49, H 7.27.

O-(6-O-Triisopropylsilyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-O-(α -D-glucopyranosyl)-(1 \rightarrow 4)- α / β -D-glucopyranose (47): To a solution of 69 (200 mg, 0.128 mmol) in dioxane (8.0 mL) was added Pearlman catalyst^[19] (20 mg). Then the argon atmosphere was completely replaced by hydrogen. After 5 h at room temp. the catalyst was separated with celite and the celite washed with methanol/water $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (CH₃CN/H₂O, 1:1; RP-18) and then lyophilised from D₂O furnishing 47 (85 mg, 0.128 mmol, quant. as colourless lyophilisate (α/β , 2:3; D₂O). TLC *RP-18* (CH₃CN/H₂O, 1:1): $R_{\rm f}$ = 0.50. ¹H NMR (250 MHz, D_2O): $\delta = 0.80-1.18$ (m, 21 H, SiCH(CH₃)₂), 3.05–3.23 (m, 1.6 H, 2a-H_β, 4c-H), 3.33–3.97 (m, 16.4 H, 2a-H_α, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 4c-H, 5c-H, 6c-H, 6'c-H), 4.48 (d, ${}^{3}J_{2,1} = 8.0$ Hz, 0.6 H, 1a-H₈), 5.06 (d, ${}^{3}J_{2,1} = 3.5$ Hz, 0.4 H, 1a- H_{α}), 5.16–5.28 (m, 2 H, 1b-H, 1c-H). MALDI MS: m/z = 683[MNa⁺], 699 [MK⁺]. C₂₇H₅₂O₁₆Si·2H₂O (696.81): calcd. C 46.54, H 8.10; found C 46.35, H 7.72.

Benzyl O-(6-Azido-2,3,4-tri-O-benzyl-6-deoxy-a-D-glucopyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$ -2,3-di-Obenzyl-6-O-thexyldimethylsilyl-α-D-glucopyranoside (70): 60 (150 mg, 0.103 mmol, 1.0 equiv.) was dissolved with diisopropyl azodicarboxylate (DIAD) (29.8 µL, 31.1 mg, 0.155 mmol, 1.5 equiv.) and triphenylphosphane (41 mg, 0.155 mmol, 1.5 equiv.) in dry CH₂Cl₂ (8.0 mL). At room temp. a solution of HN₃ (6.7 mg, 0.155 mmol, 1.5 equiv.) in benzene (50 µL). After 3 h (TLC monitoring) the reaction mixture was diluted with NaHCO₃ solution (10 mL) and ethyl acetate (10 mL). The aqueous phase was extracted with ethyl acetate $(3 \times 20 \text{ mL})$. The solvent was removed from the combined organic phases in vacuo, then the residue purified by flash chromatography (toluene/ethyl acetate, 50:1) furnishing 70 (104 mg, 70.04 µmol, 68%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_f = 0.73$. $[a]_D = +75.5$ $(c = 1.0, \text{CHCl}_3)$. ¹H NMR (600 MHz, CDCl₃): $\delta = 0.10, 0.12$ (2s, 6 H, Si(CH₃)₂), 0.84–0.89 (m, 12 H, 2C(CH₃)₂), 1.62 (hept, ${}^{3}J$ = 6.8 Hz, 1 H, $CH(CH_3)_2$), 3.13 (dd, ${}^{3}J_{5,6} = 3.3$, ${}^{3}J_{6,6'} = 12.5$ Hz, 1 H, 6c-H), 3.29 (dd, ${}^{3}J_{5,6'} = 2.5$, ${}^{3}J_{6,6'} = 12.5$ Hz, 1 H, 6'c-H), 3.45 (dd, ${}^{3}J_{1,2} = 3.5$, ${}^{3}J_{3,2} = 9.4$ Hz, 1 H, 2c-H), 3.46–3.58 (m, 3 H, 2a-H, 2b-H, 4c-H), 3.66 (dd, ${}^{3}J_{5,6} = 2.0$, ${}^{3}J_{6,6'} = 10.9$ Hz, 1 H, 6b-H), 3.78-3.95 (m, 8 H, 4a-H, 5a-H, 6a-H, 6'a-H, 5b-H, 6'b-H, 3c-H, 5c-H), 4.03 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.2$ Hz, 1 H, 3b-H), 4.09 (dd, ${}^{3}J_{3,4}$ = ${}^{3}J_{5,4}$ = 9.3 Hz, 1 H, 4b-H), 4.16 (dd, ${}^{3}J_{2,3}$ = ${}^{3}J_{4,3}$ = 9.2 Hz, 1 H, 3a-H), 4.43-4.61 (m, 10 H, PhCHH), 4.70-4.78 (m, 3 H, PhCHH), 4.81 (d, ${}^{3}J_{2,1}$ = 3.3 Hz, 1 H, 1a-H), 4.82–4.95 (m, 4 H, PhCHH), 5.04 (d, ${}^{2}J$ = 11.5 Hz, 1 H, PhCHH), 5.62–5.67 (m, 2 H, 1b-H, 1c-H), 7.05-7.49 (m, 45 H, Ph). C₈₉H₁₀₃N₃O₁₅Si (1482.90): calcd. C 72.09, H 7.00, N 2.83; found C 71.88, H 7.07, N 2.45.

Benzyl O-(6-Azido-2,3,4-tri-O-benzyl-6-deoxy-a-D-glucopyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$ -2,3-di-Obenzyl-α-D-glucopyranoside (71): To a solution of 70 (70 mg, 47.21 µmol, 1.0 equiv.) in THF (5.0 mL) at room temp. was added portionwise a solution of TBAF in THF (94.4 µL, 1 м, 2.0 equiv.). After 40 h the reaction mixture was neutralised with acetic acid and the deposit concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 3:1) furnishing 71 (58 mg, 43.26 µmol, 92%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.18$. $[a]_{\rm D} = +76.0$ $(c = 1.0, \text{CHCl}_3)$. ¹H NMR (600 MHz, CDCl₃): $\delta = 3.00$ (br. s, 1 H, OH), 3.16 (dd, ${}^{3}J_{5,6} = 3.4$, ${}^{3}J_{6,6'} = 12.6$ Hz, 1 H, 6c-H), 3.26 (dd, ${}^{3}J_{5,6'} = 2.5$, ${}^{3}J_{6,6'} = 12.6$ Hz, 1 H, 6'c-H), 3.36–3.44 (m, 2 H, 2c-H, 4c-H), 3.55 (dd, ${}^{3}J_{1,2} = 3.6$, ${}^{3}J_{3,2} = 8.8$ Hz, 1 H, 2b-H), 3.58– 3.65 (m, 3 H, 2a-H, 6b-H, 5c-H), 3.66-3.75 (m, 2 H, 6a-H, 6'b-H), 3.76-3.83 (m, 3 H, 5a-H, 4b-H, 3c-H), 3.93-4.01 (m, 3 H, 6'a-H, 3b-H, 5b-H), 4.07 (dd, ${}^{3}J_{3,4} = {}^{3}J_{5,4} = 9.5$ Hz, 1 H, 4a-H), 4.17 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.7$ Hz, 1 H, 3a-H), 4.41–4.63 (m, 10 H, PhCHH), 4.67 (d, ²J = 11.4 Hz, 1 H, PhCHH), 4.69–4.76 (m, 3 H, PhCHH), 4.77–4.88 (m, 4 H, 1a-H, PhCHH), 5.08 (d, ${}^{2}J$ = 11.8 Hz, 1 H, PhC*H*H), 5.47 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 1 H, 1c-H), 5.71 (d, ${}^{3}J_{2,1}$ = 3.8 Hz, 1 H, 1b-H), 7.01–7.48 (m, 45 H, Ph). $C_{81}H_{85}N_3O_{15}\,(1339.60)$: calcd. C 72.57, H 6.39, N 3.13; found C 72.11, H 6.36, N 2.75.

O-(6-Amino-6-deoxy-α-D-glucopyranosyl)-(1→4)-*O*-(α-D-glucopyranosyl)-(1→4)-α/β-D-glucopyranoside (46): To a solution of 71 (175 mg, 0.132 mmol) in THF/H₂O, 7:1 (17.0 mL) was added Pearlman catalyst^[19] (15 mg) and catalytic amounts of acetic acid (20 μL). Then the argon atmosphere was completely replaced by hydrogen. After 72 h at room temp. the catalyst was separated with celite and the celite washed with methanol/water (3 × 10 mL). Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (EtOH/H₂O/HCl, 10:1000:1; *RP-18*) and then lyophilised as hydrochloride from D₂O furnishing **46** (35 mg, 66 μmol, 50%) as colourless lyo-

philisate (α/β , 2:3; D₂O). TLC *RP-18* (H₂O/AcOH, 100:1): $R_f = 0.81$. ¹H NMR (250 MHz, D₂O): $\delta = 2.93-4.92$ (m, 18 H, 2a-H, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 4c-H, 5c-H, 6c-H, 6'c-H), 4.48 (d, ${}^{3}J_{2,1} = 7.9$ Hz, 0.6 H, 1a-H_{β}), 5.05 (d, ${}^{3}J_{2,1} = 3.4$ Hz, 0.4 H, 1a-H_{α}), 5.26–5.32 (m, 1 H, 1b-H), 5.45 (d, ${}^{3}J_{2,1} = 3.7$ Hz, 1 H, 1c-H). MALDI MS: m/z = 526 [MNa⁺], 542 [MK⁺]. C₁₈H₃₃NO₁₅·HCl (539.92). The physical data are in accordance with the literature.^[37]

Benzyl O-(2,3,4-Tri-O-benzyl-6-bromo-6-deoxy-α-D-glucopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-2,3,6tri-O-benzyl-α-D-glucopyranoside (72): To a solution of 68 (110 mg, 78.25 µmol, 1.0 equiv.) and tetrabromomethane (39 mg, 0.117 mmol, 1.5 equiv.) in dry CH₂Cl₂ (10.0 mL) at room temp. was added triphenyl phosphane (31 mg, 0.117 mmol, 1.5 equiv.). After 6 h the solvent was removed in vacuo and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 4:1) furnishing 72 (101 mg, 68.9 µmol, 88%) as colourless, highly viscous oil. TLC (petroleum ether/ethyl acetate, 3:1): $R_{\rm f} = 0.59$. $[a]_{\rm D} = +57.0$ $(c = 1.0, \text{ CHCl}_3)$. ¹H NMR (600 MHz, CDCl₃): $\delta = 3.37$ (dd, ³ $J_{5,6}$ = 2.0, ${}^{3}J_{6,6'}$ = 11.0 Hz, 1 H, 6c-H), 3.43–3.50 (m, 2 H, 2c-H, 6'c-H), 3.52-3.69 (m, 5 H, 2a-H, 6a-H, 2b-H, 6b-H, 4c-H), 3.74 (dd, ${}^{3}J_{5,6} = 2.5, {}^{3}J_{6,6'} = 10.9 \text{ Hz}, 1 \text{ H}, 6' \text{a-H}), 3.77-3.83 \text{ (m, 1 H, 5c-H)},$ 3.85-3.99 (m, 4 H, 5a-H, 5b-H, 6'b-H, 3c-H), 4.02-4.12 (m, 3 H, 4a-H, 3b-H, 4b-H), 4.17 (dd, ${}^{3}J_{2,3} = {}^{3}J_{4,3} = 9.8$ Hz, 1 H, 3a-H), 4.43-4.64 (m, 11 H, PhCHH), 4.67-4.79 (m, 4 H, PhCHH), 4.81-4.90 (m, 3 H, 1a-H, PhCHH), 4.91-4.96 (m, 2 H, PhCHH), 5.09 (d, ${}^{2}J$ = 11.6 Hz, 1 H, PhCHH), 5.64 (d, ${}^{3}J_{2,1}$ = 3.4 Hz, 1 H, 1b-H), 5.67 (d, ${}^{3}J_{2,1}$ = 3.5 Hz, 1 H, 1c-H), 7.03–7.50 (m, 50 H, Ph). C88H91BrO15 (1468.59): calcd. C 71.97, H 6.25; found C 71.77, H 6.34.

O-(6-Bromo-6-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)-O-(α -D-glucopyranosyl)- $(1\rightarrow 4)$ - α/β -D-glucopyranose (51): To a solution of 72 (244 mg, 0.166 mmol) in dioxane (15.0 mL) was added Pearlman catalyst^[19] (20 mg). Then the argon atmosphere was completely replaced by hydrogen. After 8 h at room temp. the catalyst was separated with celite and the celite washed with methanol/water $(3 \times 10 \text{ mL})$. Filtrate and wash solution were combined and the solvent removed in vacuo. The residue was purified by flash chromatography (CH₃CN/H₂O, 1:100; RP-18) and then lyophilised from D₂O furnishing 51 (71 mg, 0.125 mmol, 75%) as colourless lyophilisate (α/β, 2:3; D₂O). TLC RP-18 (CH₃CN/H₂O, 1:100): R_f = 0.52. ¹H NMR (250 MHz, D₂O): δ = 3.10 (dd, ³J_{1,2} = ³J_{3,2} = 8.2 Hz, 0.6 H, 2a-H_β), 3.24–3.89 (m, 17.4 H, 2a-H_α, 3a-H, 4a-H, 5a-H, 6a-H, 6'a-H, 2b-H, 3b-H, 4b-H, 5b-H, 6b-H, 6'b-H, 2c-H, 3c-H, 4c-H, 5c-H, 6c-H, 6'c-H), 4.49 (d, ${}^{3}J_{2,1} = 8.0$ Hz, 0.6 H, 1a- H_{β}), 5.10 (d, ${}^{3}J_{2,1}$ = 3.6 Hz, 0.4 H, 1a- H_{α}), 5.19–5.30 (m, 2 H, 1b-H, 1c-H). MALDI MS: m/z = 589, 591 [MNa⁺], 605, 507 [MK⁺]. C₁₈H₃₁BrO₁₅ (567.34).

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

- a) E. Schneider, *Chem. Unserer Zeit* 2000, 34, 90–98; b) A. L. Davidsen, P. C. Maloney, *Trends Microbiol.* 2007, 15, 448–455.
- [2] W. Boos, H. Shuman, *Microbiol. Mol. Biol. Rev.* **1998**, 62, 204–229.
- [3] A. J. Scharff, L. E. Rodseth, S. Smeleman, M. Hofnung, F. A. Quiocho, J. Mol. Biol. 1995, 246, 8–13.

- [4] J. C. Spurlino, G. Y. Lu, F. A. Quiocho, J. Biol. Chem. 1991, 266, 5205–5219.
- [5] F. A. Quiocho, J. C. Spurlino, L. E. Rodseth, Structure 1997, 5, 997–1015.
- [6] T. Ferenci, M. Muir, K.-S. Lee, D. Maris, *Biochim. Biophys.* Acta 1986, 860, 44–50.
- [7] J. Lehmann, L. Ziser, Carbohydr. Res. 1990, 205, 93-103.
- [8] C. Brunkhorst, C. Anderson, E. Schneider, J. Bacteriol. 1999, 181, 2612–2619.
- [9] G. Grundler, R. R. Schmidt, *Liebigs Ann. Chem.* 1984, 1826– 1847.
- [10] L. Jang, T. H. Chan, Tetrahedron Lett. 1998, 39, 355-358.
- [11] M. Reiner, Dissertation, University of Konstanz, Germany, 2001.
- [12] O. Mitsunobu, Synthesis 1981, 1-28.
- [13] R. R. Schmidt, W. Kinzy, Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–123.
- [14] P. J. Garegg, H. Hultberg, S. Wallin, Carbohydr. Res. 1982, 108, 97–101.
- [15] A. Toepfer, W. Kinzy, R. R. Schmidt, *Liebigs Ann. Chem.* 1994, 449–464.
- [16] T. Eisele, H. Ishida, G. Hummel, R. R. Schmidt, *Liebigs Ann.* 1995, 2113–2121.
- [17] B. Kratzer, T. G. Mayer, R. R. Schmidt, Eur. J. Org. Chem. 1998, 291–298.
- [18] G. Zemplén, Ber. Dtsch. Chem. Ges. 1927, 60, 1555-1564.
- [19] Fieser & Fieser, Reagents for Organic Synthesis, Wiley & Sons, New York, 1967, vol. 1, p. 782.
- [20] M. L. Wolfrom, J. R. Vercelotti, D. Horton, J. Org. Chem. 1964, 29, 540–550.
- [21] F. H. Newth, S. D. Nicholas, F. Smith, L. F. Wiggins, J. Chem. Soc. 1949, 2550–2553.
- [22] T. K. Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH, Weinheim, 2000, pp. 61–62.
- [23] G. O. Aspinall, T. N. Krishnamurthy, W. Mitura, *Can. J. Chem.* 1975, 53, 2182–2188.
- [24] K. Bock, H. Pedersen, Acta Chem. Scand., B 1987, 41, 617–628.
- [25] R. Appel, Angew. Chem. 1975, 87, 863–874; Angew. Chem. Int. Ed. Engl. 1975, 14, 801–820.
- [26] N. S. Mani, Indian J. Chem. Sect., B 1989, 28, 602-603.
- [27] M. Hirooka, S. Koto, Bull. Chem. Soc. Jpn. 1998, 71, 2893– 2902.
- [28] K. E. Krakowiak, J. Heterocycl. Chem. 1998, 35, 519-524.
- [29] A. K. Kulyassa, P. Herczegh, F. J. Sztaricskai, J. Antibiot. 2000, 53, 1207–1211.
- [30] J. Michel, Dissertation, University of Konstanz, Germany, 1983.
- [31] H. J. Böhm, G. Klebe, H. Kubinyi, *Wirkstoffdesign*, Spektrum Verlag, Heidelberg, Berlin, Oxford, **1996**, pp. 95–111.
- [32] J. Westman, M. Nilsson, J. Carbohydr. Chem. 1995, 14, 949– 960.
- [33] L. Lubineau, A. Thieffry, A. Veyrierès, Carbohydr. Res. 1976, 46, 143–148.
- [34] G. H. Veeneman, S. H. V. Leeuwen, J. H. Van Boom, *Tetrahedron Lett.* **1990**, *31*, 1331–1334.
- [35] M. G. L. Elferink, S. V. Albers, W. N. Konings, A. J. N. Driesseu, *Mol. Microbiol.* 2001, *39*, 1494–1503.
- [36] M. D. Hollenberg, P. Cuatrecasas in *The Receptors* (Ed.: R. D. O'Brien), Plenum Press, New York, **1979**, vol. 1, pp. 193–214.
- [37] a) R. Ushida, A. Naus, S. Tokutake, K. Kasai, K. Tobe, N. Yamaji, *Carbohydr. Res.* **1998**, 307, 69–76; b) J. Lehmann, M. Schmidt-Schuchardt, J. Steck, *Carbohydr. Res.* **1992**, 237, 177– 183.

Received: November 30, 2007 Published Online: February 28, 2008