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Abstract Myosin II is an interesting target for therapeutic intervention, as it is involved in a 

large number of motility-based diseases. (S)-Blebbistatin is a known micromolar inhibitor of 

this protein. A new series of (S)-blebbistatin derivatives with a modified A-ring were 

synthesized and their myosin II inhibitory properties were evaluated in vitro. In this way, we 

gained insight into the influence of structural modifications in this part of the scaffold on 

myosin II inhibitory potency. Our results indicate there are few possibilities for potency 

enhancement via ring A modification of the blebbistatin scaffold. 
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(S)-Blebbistatin (S)-1 (Figure 1) is a well-known and widely used micromolar inhibitor of 

myosin II.1 Given the multiple roles of this protein in a diverse range of motility-based 

diseases,2−7 it is a promising target for therapeutic intervention. We have previously reported 

on the feasibility of improving (S)-blebbistatin’s myosin II inhibitory potency and 

physicochemical properties.8 We have also generated and analyzed SAR data on D-ring 

modified analogs.9 These studies have shown that D-ring modification enables fine-tuning of 

(S)-blebbistatin’s physicochemical properties, but potency enhancement cannot be pursued in 

this manner.8−12  

 

Figure 1. State-of-the-art on SAR-information of the (S)-blebbistatin scaffold and present 

work.8−14 

In the present report, our search for improved activity focused on the impact of structural 

changes in ring A. Analysis of the co-crystal structure of (S)-blebbistatin (S)-1 bound to the 

metastable state of Dictyostelium discoideum myosin II (PDB: 1YV3)15 shows that the 

residues in closest proximity to rings AB are Tyr261, Thr474, Tyr634, Gln637 and Leu641 

(Figure 2). Extending the (aromatic) ring system in this part of the molecule therefore has 

potential to improve binding affinity through additional hydrophobic interactions and π-π 

stacking with Tyr261. Lucas-Lopez et al. previously reported that small-sized substituents are 
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of little influence at the C5, C6 and C7 positions, but are undesired at the C8 position.13,14 In 

this study, we incorporated larger cyclic substituents fused at positions C6 and C7. Analog 

(S)-2 was envisioned to accommodate π-π stacking with Tyr261. To overcome potential 

solubility issues associated with the latter compound, a more polar analog (S)-3 was also 

prepared. Indoline (S)-4 and N-allyl protected synthetic intermediate (S)-5 were included as 

aliphatic counterparts. 

 

Figure 2. Co-crystal structure of (S)-blebbistatin (S)-1 bound to the metastable state of 

Dictyostelium discoideum myosin II (PDB: 1YV3)15 indicates possible additional π-π stacking 

interactions with Tyr261 by extending the aromatic system in ring A of the scaffold. 

(S)-Benzo[h]blebbistatin (S)-2 was prepared via a route that was optimized previously by 

us.8,9 The synthesis started from commercially available 3-amino-2-naphthoic acid (6) 

(Scheme 1), which was converted to methyl ester 7 upon treatment with sulfuric acid in 

MeOH (step (a), 96%). Reaction of pyrrolidinone 8 with POCl3 and amine 7 resulted in a 75% 

conversion to amidine 9 and isolated yield of 65% (step (b)). Intramolecular ring closure of 

the latter compound was induced after deprotonation by LiHMDS (step (c)). Asymmetric α-

hydroxylation of intermediate 10 using Davis’ oxaziridine methodology yielded analog (S)-2 

(step (d), 76%, ee 72%). A single recrystallization from CH3CN afforded enantiopure (S)-

benzo[h]blebbistatin (S)-2 (ee >99%).  

The synthesis of (S)-(N-allyl-2,3-dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-5,  (S)-(2,3-

dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-4 and (S)-(1H)-pyrrolo[3,2-h]blebbistatin (S)-3 

required the preparation of precursor 16, which was synthesized in an analogous way as 

described by Showalter et al. (Scheme 2).16 In short, nitration of methyl 3-methyl-4-

nitrobenzoate (12) resulted in a 85:15 mixture of methyl 5-methyl-2,4-dinitrobenzoate (13) 
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and its isomer methyl 3-methyl-2,4-dinitrobenzoate. Isolation of compound 13 out of this 

mixture of isomers proved difficult. Efforts to purify it via normal phase and reversed phase 

automated flash chromatography both failed and initial recrystallization attempts in 2-

propanol were not successful either. Recrystallization parameters (solvent volume, timing) 

appeared to be crucial and eventually we were able to isolate methyl 5-methyl-2,4-

dinitrobenzoate (13) in 55% yield (step (a)). Condensation with reagent 14 gave enamine 15 

(step (b)), which was reductively cyclized to precursor 16 (step (c), 81%) without 

intermediate isolation. Subsequent protection with allyl bromide yielded a crude mixture of 

unreacted starting material and mono- and diallylated regioisomers, out of which indole 17 

was purified via reversed phase automated flash chromatography (step (d), 71%). Reduction 

with NaCNBH3 in glacial acetic acid yielded indoline 18 (step (e), 92%). The synthesis of 

amidine 19 proved difficult due to the rather low nucleophilic propensity of aniline 18 (step 

(f), 48%). One-pot intramolecular cyclization (step (g)) and enantioselective hydroxylation 

(step (h), 73%, ee 92%) afforded highly optically enriched (S)-(N-allyl-2,3-dihydro-1H)-

pyrrolo[3,2-h]blebbistatin (S)-5 upon recrystallization from CH3CN (ee 96%). (S)-(2,3-

Dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-4 was obtained after successful allyl deprotection 

(step (i), 95%, ee 98%). Finally, oxidation with MnO2 yielded (S)-(1H)-pyrrolo[3,2-

h]blebbistatin (S)-3 (step (j), 96%). 

Scheme 1. Synthesis of (S)-benzo[h]blebbistatin (S)-2. Reagents and conditions: (a) H2SO4, 

MeOH, reflux, 48 h; (b) (1) 8, POCl3, CH2Cl2, rt, 24 h, (2) 7, CH2Cl2, 35 °C, 48 h; (c) 

LiHMDS, THF, 0 °C, 1.5 h; (d) 11, THF, −15 °C, 16 h. a The reaction mixture initially 
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consisted of 25 mol% of 8 and 75 mol% of 9. b Determination of ee via chiral HPLC analysis. 
c After recrystallization from CH3CN. 

Scheme 2. Synthesis of (S)-(N-allyl-2,3-dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-5, (S)-

(2,3-dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-4 and (S)-(1H)-pyrrolo[3,2-h]blebbistatin (S)-

3. Reagents and conditions: (a) HNO3, H2SO4, −20 °C, 20 h; (b) 14, 1,4-dioxane, reflux, 20 h; 

(c) Pd/C, H2 (1 bar), 1,4-dioxane/MeOH (5:2), rt, 16 h; (d) (1) NaH, DMF, 0 °C, 30 min, (2) 

allyl bromide, DMF, 0 °C, 30 min; (e) NaCNBH3, glacial acetic acid, rt, 4h; (f) (1) 8, POCl3, 

CH2Cl2, rt, 24 h, (2) 18, CH2Cl2, 35 °C, 3 days; (g) LiHMDS, THF, 0 °C, 1.5 h; (h) 11, THF, 

−15 °C, 16 h; (i) N,N’-dimethylbarbituric acid, Pd(PPh3)4, CH2Cl2, reflux, 6 h; (j) MnO2, 

DMF, rt, 25 min. a The reaction mixture initially consisted of 44 mol% of 8 and 56 mol% of 

19. b Determination of ee via chiral HPLC analysis by comparison of (R)-enantiomer enriched 

fractions. c After recrystallization from CH3CN. 

(S)-Blebbistatin derivatives (S)-2–5 were evaluated for their myosin II inhibitory properties in 

a steady-state ATPase assay using rabbit skeletal muscle myosin II and (S)-blebbistatin (S)-1 

was used as a benchmark. Dose-response curves are presented in Figure 3 and half-maximum 
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inhibitory concentrations (IC50) are summarized in Table 1. Extending the aromatic system of 

ring A of the blebbistatin scaffold ((S)-2 and (S)-3) did not result in improved binding affinity. 

The aliphatic ring systems in analogs (S)-4 and (S)-5 too had a negative impact on myosin II 

inhibitory activity. Moreover, Table 1 shows there is no correlation between compound 

solubility and potency. Our data indicate there is little tolerance toward linear extension of the 

blebbistatin scaffold at the side of ring A. In addition, Lucas-Lopez et al. observed that 

moving the small methyl group to C8 resulted in a reduced potency and in silico analysis 

shows no room for fused substituents at C5 and C6.14 Thus, other modifications of ring A are 

also unlikely to result in improved potency. This SAR-investigation, focused on ring A, 

complements earlier data on ring D.8−12 Taken together, little room for potency enhancement 

remains except for ring C. 

 

Figure 3. Overview of the myosin II inhibitory properties of compounds (S)-2–5, evaluated in 

a steady-state ATPase assay with rabbit skeletal muscle myosin II. Examples of dose-response 

curves and 4-parameter logistic curve fitting obtained for (A) (S)-benzo[h]blebbistatin (S)-2 

and (S)-(1H)-pyrrolo[3,2-h]blebbistatin (S)-3 and (B) (S)-(2,3-dihydro-1H)-pyrrolo[3,2-

h]blebbistatin (S)-4 and (S)-(N-allyl-2,3-dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-5. Data 

points represent mean ± s.d. of at least three samples (N = 1). (S)-blebbistatin (S)-1 is shown 
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as a benchmark. Concentrations exceeding 10 µM, 40 µM and 20 µM caused compounds (S)-

2, (S)-4 and (S)-5, respectively, to precipitate in the assay buffer. As an approximation, the 

relative ATPase activity obtained for (S)-blebbistatin (S)-1 at a concentration of 32.5 µM was 

used to set the lower asymptote of the fitted curve for these compounds. 

Table 1. Evaluation of the myosin II inhibitory properties of compounds (S)-1–5: half-

maximum inhibitory concentrations (IC50) for the steady-state ATPase activity of rabbit 

skeletal muscle myosin II and solubility in the latter assay.  

Compound IC50
a
 (µM) Solubility in ATPase assay (µM)

b
 

(S)-1 1.02 ± 0.05 <100 

(S)-2 7.97 ± 0.02 <15 

(S)-3 >20c <40 

(S)-4 14.5 ± 2.2 <50 

(S)-5 8.46 ± 1.22 <40 

a Data represent mean ± s.d. of two independent experiments. b Concentrations resulting in 

compound precipitation. c Highest compound concentration used was 20 µM, as 

concentrations exceeding 20 µM resulted in compound precipitation in the assay buffer. 

In conclusion, a new series of (S)-blebbistatin derivatives with a modified A-ring was 

developed in this study. The myosin II inhibitory properties of (S)-benzo[h]blebbistatin (S)-2, 

(S)-(1H)-pyrrolo[3,2-h]blebbistatin (S)-3, (S)-(2,3-dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-

4 and (S)-(N-allyl-2,3-dihydro-1H)-pyrrolo[3,2-h]blebbistatin (S)-5 were evaluated in a 

steady-state ATPase assay with rabbit skeletal muscle myosin II and proved less potent than 

the parent compound. Therefore, potency enhancement via modification of ring A of the 

blebbistatin scaffold seems unattainable. Future attempts to improve (S)-blebbistatin’s 

potency will focus on ring C. 
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