

## Asymmetric Synthesis of Bicyclo[4.3.1]decadienes and Bicyclo[3.3.2]decadienes via [6 + 3] Trimethylenemethane Cycloaddition with Tropones

Barry M. Trost,\* Patrick J. McDougall, Olaf Hartmann, and Peter T. Wathen

Department of Chemistry, Stanford University, Stanford, California 94305-5080

Received September 3, 2008; E-mail: bmtrost@stanford.edu

The development of new reaction methodologies requiring only a *catalytic* amount of promoter are fundamentally important to the advancement of organic synthesis.<sup>1</sup> Coupled with a mode for enantioinduction, these strategies become indispensable tools for the generation of optically pure molecules in a reasonably atomeconomical and environmentally conscious manner. Cycloaddition reactions constitute a special class since such multiple bond-forming processes create much greater molecular complexity than single bond-forming reactions.

The palladium-catalyzed [3 + 2] cycloaddition of trimethylenemethane (Pd-TMM) to electron deficient  $\pi$ -systems was introduced almost thirty years ago by our laboratory and constitutes a highly efficient synthesis of substituted cyclopentanes, tetrahydrofurans, and pyrrolidines.<sup>2</sup> Following the initial reports, direct access to bicyclo[4.3.1]decadienes via [6 + 3] TMM cycloaddition to cycloheptatrienones (tropones) was demonstrated to be a highly efficient process.<sup>3</sup> Recently, a new class of chiral phosphoramidite ligands provided a major stimulus to the Pd-TMM reaction by rendering several [3 + 2] cycloadditions enantioselective (Scheme 1).<sup>4</sup> Herein we report the first asymmetric Pd-TMM [6 + 3]cycloaddition of cyanosubstituted TMM substrate **2** with tropones to provide bicyclo[4.3.1]decadienes in high enantiomeric purity.<sup>5</sup> Furthermore, we report their facile thermal rearrangement to yield asymmetric bicyclo[3.3.2]decadienes.

Our studies began with the examination of the Pd-TMM [6 + 3] cycloaddition of donor  $2^{4b,6}$  to 4-carboethoxy-2,4,6-cyclohepatrien-1-one<sup>7</sup> (**3a**; Scheme 1). Using conditions optimized for the [3 + 2] cycloaddition<sup>4,8</sup> we quickly realized high levels of conversion, with bicyclo[4.3.1]decadiene product **4a** as the major constituent. The regiochemistry and relative configuration as depicted were determined by two-dimensional NMR studies and comparison with known [6 + 3] adducts.<sup>3</sup>

Initial efforts to render the reaction enantioselective relied on the commercially available ligand L1<sup>9</sup> (Figure 1). Unfortunately, although giving high conversion to product, the enantioselection was rather poor (37% ee). Likewise, phosphoramidite ligand  $L2^9$ possessing no chirality in the amine component was largely ineffective for promoting enantioselection. In contrast to these standard phosphoramidites, the cyclic pyrrolidine phosphoramidite ligands  $L3-5^4$  all gave excellent levels of enantioinduction. Various aryl substituents were examined with bis-(4-biphenyl)phosphoramidite ligand L5 attaining near perfect enantioselection in 75% isolated yield (see Table 1, entry 1). The excellent behavior of L5 is somewhat contradictory to previous observations in [3 + 2]cycloadditions demonstrating the efficacy of L4.4c It is noteworthy that although competing modes of cycloaddition, such as [3 + 2]or [4 + 3], could be envisioned only the [6 + 3] cycloaddition product was obtained. Most remarkably, only one [6 + 3]regioisomer was detectable and is generated as a single diastereomer.

On the basis of these promising results, an examination of other tropone systems was undertaken (Table 1). To explore the effect



**Figure 1.** Phosphoramidite ligand screen. Reactions performed at 0.1 M in toluene with 5 mol % Pd(dba)<sub>2</sub>, 10 mol % ligand, 1.0 equiv **3a**, 1.6 equiv **2**, 0–4 °C for 15 h; ee determined by chiral HPLC.

Scheme 1. Pd-TMM [3 + 2] and [6 + 3] Cycloadditions



of the position of the ester functionality, both the 3-carboethoxy and 2-carboethoxy tropones<sup>7</sup> (**3b**, **3c**) were synthesized. Gratifyingly, both tropones gave comparable reaction yields and excellent diastereo- and enantioselectivity (entries 2 and 3). In both cases, only one [6 + 3] regioisomer was obtained and followed what was predicted from electronic considerations.<sup>10</sup> We also examined less electron deficient tropones, such as tropone (**3d**) itself. Although a higher temperature was required to obtain good conversion, the cycloaddition reaction proceeded to give the desired product **4d** in good yield, diastereomeric ratio, and enantioselectivity (entry 4).

A series of 2-substituted tropones, readily available from tropolone,<sup>11</sup> were also prepared and examined. The reaction of 2-chlorotropone (**3e**) proceeded very well to give the bicycle **4e** in 94% yield and 94% ee (entry 5). X-ray crystallographic analysis on the 2-chloro TMM adduct **4e** unambiguously established both the absolute and relative configuration as depicted. Interestingly, 2-bromotropone failed to give any desired cycloaddition. While 2-methoxytropone also displayed no reactivity, 2-acetoxytropone (**3f**) delivered cycloadduct **4f**, again with excellent yield and enantioinduction (entry 6). Likewise, while 2-dimethylamino tropone was unreactive, 2-phthalimido tropone (**3g**) was well suited to the reaction conditions, although a slightly diminished ee of 86% was observed (entry 7). These results suggest the need for an electron deficient heteroatom to enhance tropone reactivity. In addition, 2-phenyltropone (**3h**) provided cycloadduct **4h** (entry 8)

*Table 1.* Scope of [6 + 3] Pd-TMM Cycloadditions<sup>a</sup>



<sup>*a*</sup> All reactions performed at 0.2–0.25 M in toluene with 5 mol % Pd(dba)<sub>2</sub>, 10 mol % ligand **L5**, 1.6 equiv donor **2**, 0–4 °C for 15 h. <sup>*b*</sup> See Supporting Information for tropone syntheses. <sup>*c*</sup> Reaction at room temp. <sup>*d*</sup> Reaction at 45 °C. <sup>*c*</sup> Isolated yield of major diastereomer. <sup>*f*</sup> Isolated yield of both diastereomers. <sup>*s*</sup> Determined by NMR analysis of the crude reaction mixture. <sup>*h*</sup> Determined by chiral HPLC. <sup>*i*</sup> Of major diastereomer.

in good yield and stereoselectivity. It is interesting to note that regardless of the electronic nature of the 2-substituted tropones, exclusive regioselectivity for the products bearing the cyano group opposite to the substituent is observed. This regiochemical independence may be supportive of a concerted mechanism, an aspect of these cycloadditions that remains debatable.<sup>2,12</sup>

To examine the directing effects of multiple substituents, 2-amino-4-carboethoxy tropone was prepared. Not surprisingly, use of the phthalimido protecting group at C2 led to a mixture of regioisomers. However, upon changing to isophthalimido tropone **3i** excellent regioselectivity was attained. Unlike previous examples, the diastereomeric ratio was lower, but high ee was still observed for the major diastereomer **4i** (entry 9).

An examination of the 3-dimensional structure of the TMM adducts revealed the proximity of the exocyclic olefin to the endocyclic diene. Thus, it was anticipated that a [3,3] sigmatropic (Cope) rearrangement may be induced to convert the bicyclo[4.3.1]decadiene to a bicyclo-[3.3.2]decadiene in a stereodefined manner. Such a process would then provide a facile, two-step asymmetric synthesis of a rather unique functionalized bicyclic motif. In the event, simply heating the TMM adducts (**4a**, **4d**, and **4f**) in toluene under microwave conditions gave good yields of the rearrangement products (**5a**, **5d**, and **5f**; Table 2).<sup>13</sup> To verify chirality transfer during the reaction, TMM adduct **4d** of 99% enantiomeric excess was converted to the [3.3.2]bicycle **5d** while maintaining an ee of 98%. Presumably, rearrangement products **5a** and **5f** retained full stereochemistry as well.

In conclusion, an enantioselective palladium-catalyzed trimethylenemethane cycloaddition reaction with tropones has been developed, Table 2. Cope Rearrangements



<sup>*a*</sup> Isolated yield, yield in parenthesis is based on recovered starting material. <sup>*b*</sup> ee determined by chiral HPLC; n.d. = not determined.

providing access to asymmetric substituted bicyclo[4.3.1]decadienes in a single operation. In almost all cases where cycloaddition proceeded, extremely high regio-, diastero-, and enantiocontrol was observed. The complete preference for [6 + 3] cycloaddition, especially in cases where [3 + 2] cycloaddition could be anticipated (tropones **3a**, **3b**, and **3c**) is an intriguing aspect. Additionally, the facile thermal rearrangement of the TMM adducts greatly expands the utility of this methodology by allowing access to bicyclo[3.3.2]decadienes in a straightforward manner.

Acknowledgment. We thank the NSF and the NIH (Grant GM 33049) for their generous support of our programs. P.J.M. thanks the American Cancer Society for a postdoctoral fellowship. P.T.W. thanks AstraZeneca for a travel grant. We thank Dr. Allen Oliver at the University of California, Santa Cruz, for the X-ray crystal structure and Johnson Matthey for generous gifts of palladium salts. Steven Silverman is acknowledged for donation of phosphoramidite ligands.

**Supporting Information Available:** Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- (1) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259.
- (2) (a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1. (b) Trost, B. M. Pure Appl. Chem. 1988, 60, 1615. (c) Chan, D. M. T. Recent Advances in Palladium-Catalyzed Cycloadditions Involving Trimethylenemethane and its Analogs. In Cycloaddition Reactions in Organic Synthesis, 1st ed.; Kobayashi, S., Jorgensen, K. A. Eds.; Wiley-VCH: Weinheim, Germany, 2002; 57–83.
- (3) Trost, B. M.; Seoane, P. R. J. Am. Chem. Soc. 1987, 109, 615.
- (4) (a) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schwörer, U. J. Am. Chem. Soc. 2006, 128, 13328. (b) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396. (c) Trost, B. M.; Silverman, S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398.
- (5) An intramolecular asymmetric [6 + 4] cycloaddition to a tropone (40% ee) has been reported: Rigby, J. H.; Fleming, M. *Tetrahedron Lett.* 2002, 43, 8643.
- (6) Use of donor 1 led to an intractable mixture of cycloaddition products. Work in this area is ongoing.
- (7) (a) See Supporting Information for tropone syntheses. (b) Isakovic, L.; Ashenhurst, J. A.; Gleason, J. L. Org. Lett. 2001, 3, 4189, and references therein.
- (8) Optimized reaction conditions employed 5 mol % Pd(dba)<sub>2</sub>, 10 mol % ligand, and 1.6 equiv donor 2 in toluene at 0 °C for 15 h. Pd<sub>2</sub>(dba)<sub>3</sub>-CHCl<sub>3</sub> complex (2.5 mol %) gave identical reactivity.
  (9) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
- (10) For a discussion on the regioselectivity of [6 + 4] cycloadditions to tropones see : Garst, M. E.; Roberts, V. A.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1984, 106, 3882.
- (11) (a) Doering, W. v. E.; Knox, L. H. J. Am. Chem. Soc. 1951, 73, 828. (b) Doering, W. v. E.; Knox, L. H. J. Am. Chem. Soc. 1952, 74, 5683. (c) Doering, W. v. E.; Hiskey, C. F. J. Am. Chem. Soc. 1952, 74, 5688.
- (12) Singleton, D. A.; Schulmeier, B. E. J. Am. Chem. Soc. 1999, 121, 9313.
- (13) In contrast to our flexible system, a rigidly held 1,5-diene undergoes a similar rearrangement at room temperature: (a) Paddon-Row, M. N.; Warrener, R. N. *Tetrahedron Lett.* **1974**, *15*, 3797. (b) Tegmo-Larsson, I.; Houk, K. N. *Tetrahedron Lett.* **1978**, *19*, 941.

JA806979B