Tetrahedron Letters 52 (2011) 401-403

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A new and facile synthesis of methyl 3-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxylate

Lukáš Tenora, Marian Buchlovič, Stanislav Man, Milan Potáček*

Department of Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

ARTICLE INFO

ABSTRACT

A four-step synthesis of methyl 3-amino-4,5,6,7-tetrahydrobenzo[*b*]thiophene-2-carboxylate from commercially available starting materials is presented.

© 2010 Elsevier Ltd. All rights reserved.

Article history: Received 11 October 2010 Revised 3 November 2010 Accepted 12 November 2010 Available online 18 November 2010

Ethyl 2-amino-4,5,6,7-tetrahydrobenzo[*b*]thiophene-2-carboxylate (**1a**), its 3-carboxylate regioisomer and derivatives were recently found to be important intermediates in the synthesis of pharmaceutically active compounds. Their structural framework can be found in products with antimicrobial, antimycobacterial, anti-inflamatory¹⁻³ and antitumor properties.⁴ Especially interesting are those molecules with a fused pyrimidine ring as they can be considered as potential nucleic acid antimetabolites. Thus, compound **1a** is a key intermediate in the synthesis of modulators **2** of histamine H4 receptors (Scheme 1). They are used for the treatment of disease states, disorders and conditions mediated by the receptor connected with allergy-related diseases.⁵

The recent patented synthesis⁵ of compound **1a** is based on a two-step protocol starting from cyclohexanone. Column chromatography had to be used to obtain the final product **1a** in 39% overall yield (Scheme 1).

We report herein a new approach to the title compound, the methyl homologue **1b**. The retrosynthetic analysis is shown in Scheme 2.

Our synthesis began with the reaction of cyclohexanone and pyrrolidine in benzene (or toluene) leading to enamine **3**. Compound **3** reacted smoothly with cyanogen chloride using a modification of Kuehne's protocol⁶ to give either 2-pyrrolidinyl-cyclohexene carbonitrile (**5**) or 2-oxo-cyclohexane carbonitrile (**4**) depending on the work-up procedure (Scheme 3). Contrary to Kuehne's procedure we used toluene as the solvent instead of the more toxic 1,4-dioxane. The best results were obtained when a toluene solution of enamine **3** was added to a carefully cooled toluene solution of cyanogen chloride. If target compound **4** was to be isolated directly, an aqueous hydrochloric acid work-up had to be used.^{6,7} Ketone **4** was obtained in 78% yield (see Supplementary data for details).

At first, reactions of compound **5** with ethyl 2-sulfanylacetate (**6**) were tested keeping in mind the synthesis of the target mole-

cule **9** (Scheme 3). However, enamine **5** was found to be an unsuitable substrate for the intended incorporation of acetate **6** into the structure. Under acidic conditions, only starting material was recovered, or rapid decomposition of compound **5** into ketone **4** was observed when the reaction mixture contained even a trace amount of water. Basic conditions resulted in the same negative results, and additionally, slow transformation of acetate **6** into its disulfide oxidation product was observed.

Scheme 1. Reagents and conditions: (i) DMF, POCl₃, NH₂OH-HCl, 40 °C; (ii) ethyl 2-sulfanylacetate, K_2CO_3 , EtOH/THF, 90 °C, 24 h, column chromatography.

Scheme 2. Retrosynthetic analysis of 1b.

^{*} Corresponding author. Tel.: +420 549496615; fax: +420 549492688. *E-mail address:* potacek@chemi.muni.cz (M. Potáček).

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.11.076

Scheme 3. Reagents and conditions: (i) *p*-toluenesulfonic acid, benzene, reflux; (ii) Et₃N, toluene, 4 °C, then rt for 18 h; (iii) 10% HCl, H₂O, rt; (iv) HCl (g), Et₂O, molecular sieves (5 Å), MeOH, rt; (v) base, MeOH, rt; or *p*-toluenesulfonic acid, EtOH, rt; (vi) *t*-BuOK, THF, reflux.

Figure 1. ORTEP representation⁹ of compound 8 (major diastereomer).

Thus, we tested the analogous treatment of ketone **4** with sulfanylacetate **6** according to a procedure carried out on similar structures.⁸ To our surprise, we were only able to obtain a mixture of diastereomeric lactones **8** in the ratio 2:1 (Scheme 3). The major diastereomer was isolated by fractional crystallization from methanol. The stereochemistry was determined by X-ray analysis⁹ (Fig. 1). Most attempts to transform lactones **8** into compound **9** by ring-opening resulted in recovery of ketone **4** (Scheme 3). However, passing anhydrous hydrogen chloride through a methanolic solution of lactones **8** finally yielded the desired product **9**.

On this basis we developed a new reaction protocol for the reaction of ketone **4** with acetate **6**. Both reactants were mixed in diethyl ether and gaseous HCl was bubbled through the reaction mixture for a few minutes. It was shown that at the moment when compound **4** was consumed, the reaction mixture contained, beside lactone **8** (85%), a small amount of product **9** (15%, monitored by GC–MS). Subsequently, methanol and an additional portion of gaseous HCl were added. The reaction was stopped when complete conversion of lactones **8** into product **9** was registered by GC–MS. During this transformation, intermediate **7** was also detected. However, its isolation was not attempted. Comparable results were obtained when the reaction was performed under solvent-free conditions with an excess of compound **6** (8 equiv).

In the final step, base-promoted cyclization of compound **9** was realized (Scheme 3). The reaction was accomplished either at room temperature in 24 h or in 15–30 min in boiling THF. The target molecule **1b** was obtained in pure form without any other purification necessary (see Supplementary data for analytical data).

In conclusion, we have developed a new means of access to methyl 3-amino-4,5,6,7-tetrahydrobenzo[*b*]-thiophene-2-carbox-ylate (**1b**) as an important intermediate in the synthesis of histamine H4 receptor modulators. Our synthesis consists of four steps leading to compound **1b** in 34% overall yield without any column chromatography required. The method is based on simple and industrially accessible chemicals with yields comparable to those obtained by other research groups.

Acknowledgement

The authors thank Marek Nečas for X-ray analysis.

Supplementary data

Supplementary data (experimental procedures) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.11.076.

References and notes

- 1. Chambhare, R. V.; Bobade, A. S.; Khadse, B. G. Indian J. Heterocycl. Chem. 2002, 12, 67–68; Chem. Abstr. 2003, 138, 170176.
- Magd-El-Din, A. A.; Atta, S. M. S.; Abd-El-All, A. S.; Galal, S. A.; Abdalah, M. M. World J. Chem. 2009, 4, 112–117.
- Soliman, R.; Habib, N. S.; El-Tombary, A. A.; El-Hawash, S. A. M.; Shaaban, O. G. Sci. Pharm. 2009, 77, 755–773.
- Uoto, K.; Horiuchi, T.; Akabane, K.; Takeda, Y. PCT Int. App. WO 02 51, 849, Jul 2002; Chem. Abstr. 2002, 137, 63255.
- Edwards, J. P.; Neff, D. K.; Smith, D. M.; Venable, J. D. US 2009/0075970 A1, 2009; Chem. Abstr. 2009, 150, 329838.
- 6. Kuehne, M. E. J. Am. Chem. Soc. 1959, 81, 5400-5404.
- 7. Buttke, K.; Niclas, H.-J. Synth. Commun. 1994, 24, 3241-3248.

- Yamada, Y.; Ohnishi, K.; Hosaka, K. Synthesis 1981, 64–65.
 Carbon (grey), oxygen (red), nitrogen (blue) and sulfur (yellow) atoms are drawn as principal ellipses (70% probability level); hydrogen atoms are drawn as fixed-

size spheres (cyan). Crystallographic data for compound ${\bf 8}$ (CCDC deposition number 795007) have been deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.