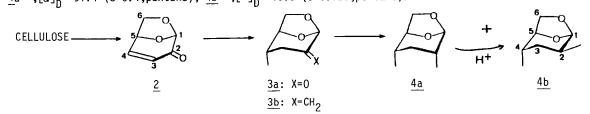
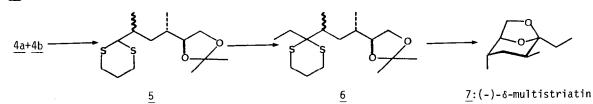
A STEREOSELECTIVE SYNTHESIS OF "NATURAL" (45,65,75)-SERRICORNIN, THE SEX PHEROMONE OF CIGARETTE BEETLE, FROM LEVOGLUCOSENONE

Masataka MORI^{*}, Tatsuji CHUMAN and Kunio KATŌ Central Research Institute, The Japan Tobacco Public Corporation Umegaoka 6-2, Midori-ku, Yokohama 227, Japan


Kenji MORI

Department of Agricultural Chemistry, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan

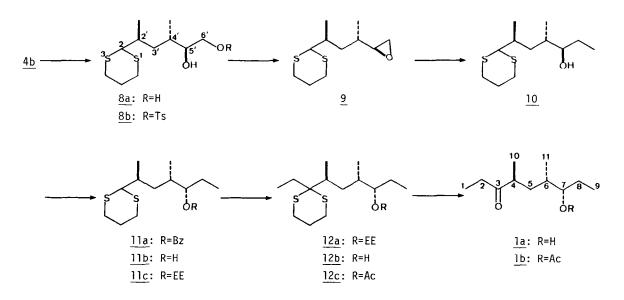
Summary: The natural stereoisomer of serricornin was synthesized stereoselectively from levoglucosenone. This firmly established the absolute stereochemistry of serricornin to be 4S,6S,7S. A short synthesis of $(-)-\delta$ -multistriatin was also reported.


In our course of the syntheses of the stereoisomers of serricornin $\underline{la}^{1,2}$, the sex pheromone of cigarette beetle (*Lasioderma serricorne (F.)*), which is a serious pest of cured tobacco leaves, it was proposed that the absolute stereochemistry of the natural one is 4S,6S,7S²). To confirm the proposed stereochemistry of <u>la</u>, we attempted the stereoselective synthesis of the (4S,6S,7S)isomer. A synthesis starting from an amino acid with a pivotal use of asymmetric alkylation has already been reported³). In the present study, as the starting material, we employed a carbohydrate enone "levoglucosenone" (<u>2</u>)⁴(1,6-anhydro-3,4-dideoxy- β -D-glycero-hex-3-enopyranos-2ulose), which is available on acid-catalysed pyrolysis of cellulose. The rigid 1,6-anhydro-Dsugar ring system was considered to be suitable to introduce the additional chiralities as described below.

Levoglucosenone (2) was prepared from cellulose powder by the method of Shafizadeh et al.^{4c)}, and the fractional distillation gave almost pure sample⁵⁾(>98% purity); b.p.65°/0.7mm, $[\alpha]_D^{23}$ -538° (c=1.1,CHCl₃)[Lit.^{4c)}[α]_D-530°]. Treatment of 2 with Me₂CuLi/Et₂0 (-60°→-20°) gave a single C-4 methyl adduct (<u>3a</u>)⁶⁾ in 64% yield; b.p.63°/5mm, $[\alpha]_D^{23}$ -299.4°(c=0.35, Et₂0); (DNPH deriv., m.p.217°-219°, $[\alpha]_D^{23}$ -179.3°(c=0.56, CHCl₃)[Lit.^{4b)}m.p.215°-216°, $[\alpha]_D$ -150°]). The pmr analysis indicated that the methyl group now introduced has an exo-configuration⁶⁾. The ketone <u>3a</u> was converted into the compound <u>3b</u>⁷⁾(Ph₃PCH₂/Et₂0), $[\alpha]_D^{23}$ -227.7°(c=0.35, Et₂0), MS m/z 140(M⁺), and subsequent hydrogenation (Pd-C) of <u>3b</u> gave two 2,4-di-C-methyl derivatives, <u>4a</u> and <u>4b</u>, in the ratio of \sim 4:1; <u>4a⁸</u>, $[\alpha]_D^{23}$ -91.4°(c=0.4,pentane); <u>4b⁸</u>, $[\alpha]_D^{23}$ -46.6°(c=0.125,pentane).

When the mixture of 4a and 4b was equilibrated in an acidic solution (catalytic p-TsOH/CHCl₃, under reflux,4h; then stood in a refrigerator,overnight), the ratio 4a:4b changed to 1.8:98.2. This fact indicated that the two methyl groups of 4a lies in unstable 1,3-diaxial relationship and the methyl group adjacent to enolizable acetal (at C-2) epimerized almost completely⁹.

To prove the stereochemistries of $\underline{4a}$ and $\underline{4b}$, we tried to convert them into an insect pheromone, multistriatin¹⁰⁾, according to the method of Weiler et al¹¹⁾. The mixture of $\underline{4a}$ and $\underline{4b}$ was treated with propanedithiol-BF₃.Et₂O/CHCl₃ (-20°+room temp.,2h), followed by protecting the freed glycol with 2,2-dimethoxypropane (PPTS/CH₂Cl₂) to give 5. The dithiane 5 was alkylated in the manner described previously (BuLi-TMEDA/THF,-60°+-10°,4h;EtI,-60°) to afford 6 in good yield. The hydrolysis of dithiane ($\underline{6}$) in an acidic condition (HgCl₂/MeCN,reflux,1h) afforded 7 as almost a single product. After purification by preparative GLC, the chiroptical and spectroscopic data of $\underline{7}$, $[\alpha]_D^{23}$ -84.7°¹² (c=0.155,pentane), were identical with those of (-)- δ -multistriatin¹³). The successful conversion of $\underline{4a}$ and $\underline{4b}$ into (-)- δ -multistriatin established the absolute configurations at C-4 and C-5 of these compounds to be 4S,5S. The absolute stereochemistries of $\underline{4a}$ and 4b were, therefore, assigned to be 1R,2R,4S,5S and 1R,2S,4S,5S, respectively.


The compound <u>4b</u> (~95% diastereometric purity), obtained by the method described above, was converted into dithiane $(\underline{8a}), [\alpha]_D^{23}-35.7^\circ(c=0.83, MeOH)$, in 27.5% overall yield from <u>3a</u>. The corresponding monotosylate (<u>8b</u>) (1 eq. of p-TsCl/C₅H₅N,0°,12h) was treated with KOH(1 eq.)/MeOH to afford an epoxide $(\underline{9})^{14}, [\alpha]_D^{23}-29.3^\circ(c=1.46, CH_2Cl_2)$, in 54% yield. The reaction of <u>9</u> with 5 eq. of Me₂CuLi/Et₂O (-40°→room temp,8h) gave alcohol $(\underline{10})^{15}, [\alpha]_D^{23}-19.63(c=1.15, CH_2Cl_2)$, in 77% yield. To obtain the alcohol having the desired configuration, we employed the method of Mitsunobu ¹⁶)

 $(Ph_3P,BzOH/Et_2O,diethyl azodicarboxylate,O^,lh; then room temp.,overnight).$ The resulting benzoate (<u>11a</u>) (37% yield) was saponified (10% KOH/MeOH,room temp.,overnight) to give alcohol (<u>11b</u>),[α]_D^{23}-32.76°(c=0.995,CH₂Cl₂). The GLC analysis revealed that the Walden inversion at C-5' proceeded completely¹⁷.

The compound <u>11b</u> was converted into acetyl serricornin (<u>1b</u>) as described previously²). The hydroxyl group of <u>11b</u> was protected as α -ethoxyethyl ether (EVE-PPTS/CH₂Cl₂, room temp.,1h) to give <u>11c</u>. The alkylation of dithiane <u>11c</u> at C-2 in the condition described above (as <u>5+6</u>) gave <u>12a</u>. The protection of the hydroxyl group of <u>12a</u> was exchanged to acetyl in the usual manner (PPTS/EtOH;Ac₂O/C₅H₅N), and hydrolysis of dithiane (<u>12c</u>) under the neutral condition (HgCl₂-CaCO₃,80% aq.MeCN,under reflux,1h) afforded <u>1b</u>. The crude <u>1b</u> was purified by prep. GLC; $[\alpha]_D^{23}$ -19.67°(c=0.335,hexane), $[\alpha]_{577}$ -17.75°, $[\alpha]_{546}$ -20.37°, $[\alpha]_{435}$ -38.42°, $[\alpha]_{365}$ -75.32°. The spectroscopic data of <u>1b</u> were analyzed by capillary GLC to give two peaks of the diastereomers corresponding to natural pheromone (4S,6S,7S) and its C-4 epimer (4R,6S,7S) in the ratio of 92:8. Based on the above data and the value of the (4S,6R,7R)-isomer²)($[\alpha]_D$ +36.75°), the $[\alpha]_D$ value of optically pure (100%) (4S,6S,7S)-serricornin acetate was calculated to be -18.2°.

The corresponding deacetylated product (\underline{la}) was biologically active toward male cigarette beetle¹⁸⁾.

In conclusion, the absolute stereochemistry of natural serricornin was firmly established to be $45,65,75^{19}$.

4596

References and Notes

- a) T.Chuman, M.Kohno, K.Kato and M.Noguchi, *Tetrahedron Lett.*, 2361 (1979).
 b) T.Chuman, K.Kato and M.Noguchi, *Agric. Biol. Chem.*, 43, 2005 (1979).
 c) M.Ono, I.Ohnishi, T.Chuman, M.Kohno and K.Kato, *ibid.* 44, 2259 (1980).
 d) K.Mori, H.Nomi, T.Chuman, M.Kohno, K.Kato and M.Noguchi, *Tetrahedron Lett.*, 22, 1127 (1981).
 e) T.Chuman, M.Kohno, K.Kato, M.Noguchi, H.Nomi and K.Mori, *Agric. Biol. Chem.*, 45, 2019 (1981).
- 2 M.Mori, T.Chuman, M.Kohno, K.Kato, M.Noguchi, H.Nomi and K.Mori, Tetrahedron Lett., 23, 667 (1982).
- a)K.Mori, Les Médiateurs chimiques, Versailles, 16-20 nov. 1981, Ed. INRA publ., 1982 (Les Colloques de l'INRA, 7).
 b) K.Mori, H.Nomi, T.Chuman, M.Kohno, K.Kato and M.Noguchi, Tetrahedron, in the press.
- a) Y.Halpern, R,Riffer and A.Broido, J. Org. Chem., <u>38</u>, 204 (1973). b) F.Shafizadeh and P.S.Chin, Carbohydr. Res., <u>58</u>, 79 (1977). c) F.Shafizadeh, R.H.Furneaux and T.T.Stevenson, *ibid.*, <u>71</u>, 169 (1979).
- 5 <u>2</u>: δ_μ 3.7-3.9(m,2H),5.0(t,J=6Hz,1H),5.4(d,J=1Hz,1H),6.1(dd,1H),7.3(dd,1H).
- 3a: ν_{max} 1730 cm⁻¹; δ_H 1.2(d,J=7Hz,3H),2.05(brd,J=16Hz,<1Hz,1H),2.3(m,1H),2.85(dd,J=16Hz,8Hz, 1H),~3.9(m,2H),4.4(m,1H),5.05(brs,1H). The small coupling (<1Hz) between H-3 axial (δ 2.05) and H-4 (δ 2.3) indicated the *cis*-disposition of these protons.
- 7 $\underline{3b}: \delta_{H} 1.1(d, J=7Hz, 3H), \sim 1.9(m, 2H), 2.7(m, 1H), \sim 3.9(m, 2H), 4.83(d, 1H), 4.76(d, 1H), 5.5(brs, 1H).$
- 8 4a: δ_H 1.12(d,J=7Hz,3H),1.26(d,J=7Hz,3H),1.1.5(4H),~3.9(m,2H),4.2(m,1H),5.24(brs,1H).
 4b: δ_H 0.81(d,J=7Hz,3H),1.17(d,J=7Hz,3H),1-1.5(4H),~3.9(m,2H),4.2(m,1H),5.16(brs,1H).
- 9 The similer phenomenone was observed in the case of the isomerization of β -multistriatin into the δ -isomer. (#10)
- 10 W.E.Gore, G.T.Pearce and R.M.Silverstein, J. Org. Chem., <u>40</u>, 1705 (1975); <u>41</u>, 2797 (1976).
- 1] P.-E.Sum and L.Weiler, Can. J. Chem., 56, 2700 (1978).; 60, 327 (1982).
- 12 The optical purity of 7 was calculated to be 95%, based on the literature $(89^\circ)(\#10)$.
- a) K.Mori and H.Iwasawa, Tetrahedron, <u>36</u>, 87 (1980).
 b) R.W.Hoffmann and W.Helbig, Chem. Ber., <u>114</u>, 2802 (1981).
- 14 <u>9</u>: v_{max} 2950, 2900, 1275 cm⁻¹; δ_{H} 0.92(d,J=7Hz,3H),1.08(d,J=7Hz,3H),1-2.3(4H),2.5(m,1H),2.7 (m,2H),2.75(m,4H),4.08(d,J=8Hz,1H).
- 15 <u>10</u>: v_{max} 3400 cm⁻¹, δ_{H} 0.90(t,J=8Hz,3H),0.92(d,J=7Hz,3H),1.08(d,J=7Hz,3H),1.2-2.2(m,8H),2.8 (m,4H),3.3(m,1H),4.1(d,J=8Hz,1H).
- 16 O.Mitsunobu and M.Eguchi, Bull. Chem. Soc. Jpn., 44, 3427 (1971).
- 17 No preceding diastereomer (<u>10</u>)was detected on the GLC analysis of <u>11b</u> (3% 0V-101,50m,capillary,220°); <u>10</u>: Rt. 10.0, <u>11b</u>: Rt. 9.8.
- 18 The details of the bioassay on la will be reported elsewhere.
- 19 Quite recently, Hoffmann et al. reported a synthesis of (4RS,6S,7S)-serricornin employing yeast reduction as the key-step: R.W.Hoffmann, W.Helbig and W.Ladner, *Tetrahedron Lett.*, in the press. We thank Prof. R.W.Hoffmann for kindly sending to K.M. his manuscript prior to publication.

(Received in Japan 22 July 1982)