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Abstract—In laboratory bioassays, Porapak Q-captured and steam-distilled
volatiles from the bark of host trees, Abies grandis, particularly from root-
rot-infected trees, attracted 50-70% of male and female fir engravers, Scolytus
ventralis. Gas chromatographic-electroantennographic detection (GC-EAD)
analyses of Porapak Q-captured bark volatiles revealed 19 EAD-active com-
pounds of which 13 (mostly monoterpenes) were identified by GC-mass spec-
trometry (GC-MS). In separate field experiments, multiple-funnel traps baited
with two blends of these 13 synthetic volatiles released at 280 and 340 mg/
24 hr attracted 66 and 93% of the total S. ventralis captured, respectively.
The clerid predator, Thanasimus undulatus, also responded strongly to the
kairomonal volatiles. Additional experiments produced no evidence for aggre-
gation pheromones in S. ventralis. These included laboratory bioassays and
GC and GC-EAD analyses of Porapak Q-captured volatiles from male- and
female-infested logs or trees undergoing mass attack in the field, GC analyses
and/or bioassays of extracts from female accessory glands, extracted volatiles
from emerged, attacking and juvenile hormone-treated beetles of both sexes,
and videotape analysis of the behavior of attacking beetles on the bark surface.
We argue against the hypothesis of pheromone-mediated secondary attraction
in 5. ventralis and conclude that the attack dynamics of this species can be
explained solely by its sensitive primary attraction response to host volatiles.

Key Words—Semiochemicals, primary attraction, kairomones, Scolytus ven-
tralis, Thanasimus undatulus, Abies grandis, monoterpenes, sesquiterpenes.
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Bark beetles must locate and detect not only the right host species but also the
most susceptible trees within the host population (Raffa and Berryman, 1987).
There is conflicting evidence as to whether all bark beetles land on potential
hosts at random, making a decision on host suitability at close range, or whether
they orient toward host volatiles (primary attraction). It is widely accepted that
after pioneer beetles have initiated attack the majority of the population orients
to the host in response to secondary attractants, usually a blend of pheromones
released by conspecifics and kairomones released by the tree (Wood, 1982;
Birch, 1984; Borden, 1985).

Volatiles released by the host are attractive to subcortical scolytids in the
genera Dendroctonus, Hylastes, Hylurgops, Hylurgopinus, Ips, Pityogenes,
Pseudohylesinus, Scolytus, Tomicus, and Trypodendron (Goeden and Norris,
1964; Rudinsky, 1966a,b; Meyer and Norris, 1967; Moeck, 1970; Moeck et
al., 1981; Byers et al., 1985, 1990; Miller et al., 1986; Lanne et al., 1987;
Swedenborg et al., 1988; Voltz, 1988; Byers, 1989; Miller and Borden, 1990a;
Moeck and Simmons, 1991; Lindelow et al., 1992; Hobson et al., 1993; Tunset
et al., 1993). Monoterpenes such as a-pinene, myrcene, terpinolene,
jS-pinene, /3-phellandrene, and 3-carene, as well as sesquiterpenes like a-atlan-
tone, a-cubebene, and cadinene are primary attractants when tested alone for
bark beetles (Chararas, 1980; Byers et al., 1985; Millar et al., 1986; Philips et
al., 1988; Schroeder, 1988; Ch6nier and Philogene, 1989; Schroeder and Lin-
delow, 1989; Miller and Borden, 1990b; Phillips, 1980; Byers, 1992; Hobson
et al., 1993). Synergistic effects on attraction often occur when terpenes are
combined with the host kairomone ethanol or with insect-produced pheromones
(Borden, 1985).

The fir engraver, Scolytus ventralis LeConte (Coleoptera: Scolytidae), is a
major cause of mortality of true firs, especially white fir, A. concolor Hildebr.
and grand fir, A. grandis (Dougl.) Lindl., in North America. Outbreaks of this
bark beetle have occurred at least once a decade over the last 60 years (Ferrell,
1986; Wood and van Sickle, 1991). In the last decade, fir engravers have killed
hundreds of thousands of grand and white fir in western North America (Wood
and van Sickle, 1991; Campbell and Liegel, 1996; unpublished records from
USDA, Forest Service, Northern Region). Mortality caused by the fir engraver
depends on a strict mutualistic association with the plant-pathogenic fungus,
Trichosporium symbionticum Wright, that is apparently essential for successful
reproduction and colonization of trees (Wright, 1935; Livington, 1971; Wong
and Berryman, 1977).

Some observations suggest that S. ventralis selects its host through random
landing on both resistant and susceptible trees (Struble, 1957; Ashraf and Ber-
ryman, 1969; Berryman and Ashraf, 1970). However, a high correlation occurs

1050 MACIAS-SAMANO ET AL.

INTRODUCTION



between root-tot infections and successful fir engraver attacks (Cobb et al.,
1973; Hertert et al., 1975; Ferrell and Smith, 1976; Wright et al., 1984), which
suggests that the insect can detect root-rot-infected trees. There is increasing
evidence that diseased and healthy conifers can be detected by released volatiles.
White fir trees that survived fir engraver attacks had a different monoterpene
composition than trees that were killed (G. T. Ferrell, USDA Forest Service,
Redding, California, personal communication). Concentrations of five mono-
terpenes, tricyclene, a-pinene, camphene, y-terpinene, and bornyl acetate were
significantly higher in lodgepole pine, Pinus contorta Dougl., attacked by one
or more diseases (dwarf mistletoe, comandra blister rust, and root rot) than in
healthy ones (Nebeker et al,, 1995). Similarly, spruce, Picea excelsa Lk.,
infested with Armillaria root rot, contained increased amounts of oils (Madziara-
Borusiewicz and Strzelecka, 1977). Moreover, needles of drought-stressed Nor-
way spruce, Picea abies (L.), had a higher total monoterpene content and greater
amounts of tricyclene, a-pinene, and camphene than control trees (Kainulainen
et al., 1993).

Several attempts have been made to find evidence for primary and second-
ary attraction of the fir engraver. Vite' and Pitman (1967) reported that 5. ven-
tralis and S. unispinosus LeConte respond to host odors in field trials and
suggested that an insect-produced attractant was not indicated. Ferrell's (1969,
1971) field experiments showed that the fir engraver can land on different species
but will land preferentially on its host, white fir. Fir engravers were trapped
twice as frequently on girdled or severed-standing trees as on ungirdled controls.
However, these experiments could not differentiate between primary and sec-
ondary attraction, because test trees were not protected from insect attacks, and
thus secondary attraction was not prevented. In laboratory bioassays, both male
and female S. ventralis were highly attracted to aged host phloem and less so
to frass produced by virgin females (Ferrell, 1969).

Fir engravers exposed to constitutive grand fir oleoresin or to its volatile
monoterpenes (individually presented) died at significant rates within 4-12 hr
after exposure (Ferrell, 1969; Raffa et al., 1985). The monoterpenes tricyclene,
a-pinene, 0-pinene, camphene, myrcene, sabinene, limonene, /3-phellandrene,
bornyl acetate, and terpinolene are present in the constitutive resin. The com-
position of traumatic resin induced by wounding is similar, except for the addi-
tion of A3-carene, the absence of bomyl acetate, and a significant increase in
the quantities of /3-pinene and myrcene (Russell and Berryman, 1976; Raffa and
Berryman, 1987; Lewinsohn et al., 1990). Each of these compounds was repel-
lent to walking beetles in laboratory bioassays (Bordash and Berryman, 1977).
Growth of T. symbionticum was inhibited by camphene, /3-pinene, myrcene,
A3-carene, and limonene (Wong and Berryman, 1977; Raffa et al., 1993).

Possible evidence for secondary attraction in S. ventralis was found by
Ashraf and Berryman (1969). They observed that grand fir logs attacked by the

PRIMARY ATTRACTION OF FIR ENGRAVER 1051



fir engraver attracted more flying conspecific beetles than uninfested control
logs. Ethanolic extracts of S. ventralis frass were strongly attractive in the field.
However, there were only two replicates, the frass-producing sex was not
reported, and there was no control for ethanol, a known semiochemical for other
bark beetles (Pitman et al., 1975; Moeck, 1970). However, Ferrell (1969) found
that S. ventralis were not arrested by ethanol in laboratory bioassays. As the
season progressed, attacks by S. ventralis became increasingly aggregated, but
because attack density is directly related to gallery elongation (Ashraf and Ber-
ry man, 1969), an attractant could either be released by the beetle or by the host
tree.

In a 1968 study by Ferrell and Borden (unpublished), laboratory bioassays
revealed that virgin female frass and fresh grand fir phloem sawdust arrested
equal numbers of S. ventralis at high doses, but at progressively lower doses
the response to the frass disappeared before the response to sawdust. Virgin
male- and female-produced frass was equally attractive. Grand fir phloem disks
containing a mining female remained highly attractive for hours, while disks
lacking a beetle rapidly lost potency. Fecal pellets separated from virgin female
frass proved no more attractive on an equal weight basis than whole frass. The
above results support the hypothesis of primary attraction for S. ventralis, but
do not rule out the possibility of a pheromone.

Secondary attraction does occur in the genus Scolytus. The smaller Euro-
pean elm bark beetle, S. multistriatus Marsham, produces and responds to the
pheromones 4-methyl-3-heptanol and multistriatin in combination with the ses-
quiterpene a-cubebene; the large elm bark beetle, S. scolytus F. utilizes only
4-methyl-3-heptanol and a-cubebene (Lanier et al., 1977; Blight et al., 1978).
Field tests with these three components have also caught S. pygmaeus F. and
S. laevis Chapuis (Minks and Van Deventer, 1978; Bejer, 1979), suggesting
that the same compounds are involved in secondary attraction for these beetles.
For S. quadrispinosus Say (Goeden and Morris, 1964), S. numidicus Brisout
(Chararas, 1980), and S. rugulosus Ratzeburg (Kovach and Gorsuch, 1985),
there is evidence only for primary attraction.

We report the results of laboratory and field experiments supporting the
hypothesis that primary attraction occurs for S. ventralis and elucidating the
kairomones involved. We argue against the hypothesis that S. ventralis requires
secondary attraction for successful host selection.

METHODS AND MATERIALS

Collection of Insects and Host Material. Bolts of grand fir from healthy
and root-rot-infected trees (Hagle et al., 1987), as well as from trees infested
with S. ventralis, were collected in August and September 1993-1995 from
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felled trees near Coeur d'Alene, Idaho. All logs were kept at 2°C until used.
Infested logs were transferred to mesh screen cages at 24-30°C, and water was
sprayed on them every five to six days to prevent desiccation. Emerged beetles
were collected daily and sexed by comparing morphological characteristics of
the abdominal sternites and the frons (Blackman, 1934; Edson, 1967).

Collection and Analysis of Beetle Host Volatiles. Volatiles from logs were
obtained by drilling entrance holes (1.5 mm diam.) approximately 3 cm apart
in the bark of fresh grand fir bolts ca. 21 cm long X 12 cm diam. These bolts
were set inside separate glass aeration chambers (28 cm long X 15 cm diam.),
and either 130 males or 130 females were allowed to bore into the bark, or the
log remained without beetles as an uninfested control. Air was drawn through
the chamber at 1.7 liters/mm, and then through glass tubing (14 mm OD x 20
cm long) containing Porapak-Q (Byrne et al., 1975). Volatiles were eluted from
the trap with 150 ml of distilled pentane and the effluent was concentrated to 5
ml by distillation in a 30-cm Dufton column.

Differential diagnosis (Vite and Renwick, 1970) of male- and female-pro-
duced volatiles was used to search for sex-specific compounds. GC analyses
employed Hewlett Packard 5830A, 5880A, and 5890A instruments equipped
with capillary inlet systems and FID. Capillary columns (30 m x 0.25 or 0.32
mm ID) coated with SP-1000 (Supelco, Bellefonte, Pennsylvania) or DB-1 (J
& W Scientific Inc., Folsom, California) were used. Coupled GC-mass spec-
trometry (GC-MS) employed a DB-23 column and a Varian Saturn ion trap.
Helium was the carrier gas for GC and GC-MS.

Isolation of Bark Oil. Bark tissue (cortex plus phloem) was peeled from
fresh logs of either healthy or root-rot-infected grand fir and cut into small chips
(approx. 1 cm2). Bark oil was obtained by steam distillation. A concurrent steam
distillation-continuous extraction still head (Flath and Forrey, 1977) was
employed for the isolation of volatile oil from bark chips. The steam distillation
was conducted for 4 hr after boil-up, and pentane was used as the extraction
solvent. After evaporation of most of the pentane under a stream of nitrogen,
residual solvent was removed by brief vacuum pumping.

Fractionation of Bark Oil. A Varian 1200 gas chromatograph (GC) equipped
with a 10:1 effluent splitter and thermal gradient collector (Brownlee and Sil-
verstein, 1968) was employed for micropreparative fractionation of A. grandis
bark oil. The column was a stainless steel tube (3.05 m x 3.18 mm OD) packed
with 10% SP-1000 on Supelcoport (100/120 mesh) (Supelco). The temperature
program was 70°C for 2 min, then 4°C/min to 180°C and held for 20 min. The
injection port and flame-ionization detector (FID) temperatures were 260°C and
270°C, respectively, and helium was the carrier gas. Typically, 1.5-jil aliquots
of oil were used per ran, and fractions were rinsed from the collection tubes
with pentane into 1-ml volumetric tubes that were made up to volume. A Hewlett
Packard 5830 GC fitted with a glass column (30 m x 0.50 mm ID) coated with
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SP-1000 and FID was employed for determination of components in the fractions
by the external standard method. The temperatures and carrier gas were as
above. The FID was calibrated by analyzing a solution containing a known
concentration of bark oil. Fraction 1 contained monoterpenes (slightly beyond
the retention time of phellandrene), and fraction 2 contained the remaining
compounds, mostly sesquiterpenes.

GC-EAD Analysis. Extracts and oils obtained by steam distillation and by
laboratory and field aerations were subjected to coupled gas chromato-
graphic-electroantennographic detection (GC-EAD) analyses (Arn et al., 1975)
adapted for an intact bark beetle (Gries, 1995) or an excised bark beetle antenna.
A Hewlett Packard 5890 A instrument equipped with a DB-23-coated fused
silica column (30 m X 0.32 mm ID; J & W Scientific) was used. Responses of
excised antennae were amplified by utilizing a custom-built amplifier with a
passive low pass filter and a cutoff frequency of 10 kHz. Compound identities
were confirmed by comparison of their mass spectra with those of authentic
samples.

Analysis of the chirality of a- and /J-pinene, camphene, and limonene was
performed as follows: ca. 10 /xg of grand fir steam-distilled oil was injected
twice under split conditions into a Varian 3400 GC remodified according to
Brownlee and Silverstein (1968) to a preparative GC. The GC was equipped
with a DB-23 column (30 m X 0.32 mm ID; J & W Scientific; GC conditions:
40°C hold for 5 min, then program 5°C/min up to 200°C; the injector was set
to 240°C and the auxiliary heater for the preparative unit at 250°C). At these
conditions a-pinene eluted at 3.64 min retention time, camphene at 4.66,
/3-pinene at 5.70, and limonene at 7.83, respectively. They were condensed in
glass tubes (25 cm long X 1 mm ID), which were then rinsed with 25 /tl of
hexane into a 1.5 ml vial. The two collections were combined to give a total
of 50 n\, and the samples of camphene and limonene were concentrated to ca.
10 pl. Each singly collected monoterpene was then injected (1 /*l) into another
Varian 3400 GC equipped with a Cyclodex-B-column (30 m X 0.25 mm ID, J
& W Scientific; GC conditions: split injection, 80°C isothermal, injector and
detector at 200°C). Chiral monoterpenes coincided with authentic standards of
(+)-a-pinene and (—)-a-pinene, (—)-camphene, (-)-|8-pinene, and (-)-limo-
nene.

Preparation of Test Stimuli for Laboratory and Field Bioassays. Bark and
sapwood sawdust from fresh logs of grand fir were obtained by drilling with a
1.5-mm-diam. bit. Frass produced by the insects was obtained by confining
male or female beetles in gelatin capsules attached to a fresh bolt of grand fir.
Frass deposited into the capsules was collected on days 2-8 after the insects
began to bore into the bark. Frass was stored in air-tight vials and kept at -15 °C
until used.

All chemicals used in preparation of test stimuli, their purity, and their
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sources are listed in Table 1. Two synthetic blends (SB1 and SB2) (Table 2)
were prepared to mimic as closely as possible the spectrum of antenally active
volatiles in the bark. SB1 was prepared with crude (3-phellandrene, which had
limonene as an impurity in a 2:1 proportion (limonene-/3-phellandrene), much
higher than the 1:10 ratio in the grand fir bark oil. SB2, containing synthetic
/3-phellandrene of greater purity (53%) and without limonene, was prepared as
follows. A solution of dimsyl anion was prepared by adding, after washing,
29.6 g (0.77 mol) of 60% sodium hydride dispersion to 400 ml dimethyl sulf-
oxide (DMSO). The mixture was slowly warmed, and stirred for 3 hr until H2

evolution had ceased. To this was added methyltriphenylphosphonium bromide,
289 g (0.71 mol), to produce a yellow mixture that was difficult to stir until
more DMSO was added. A solution of 100 g (0.68 mol) 4-isopropyl-2-cyclo-
hexenone (Aldrich Chemical Co.) in 100 ml DMSO was added via a dropping
funnel, and the mixture was stirred overnight. The reddish mixture was quenched
with 50% aqueous methanol and extracted with hexane. The combined hexanes
were filtered, washed with more 50% methanol, then with saturated salt solution,
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TABLE 1 . CHEMICAL PURITY AND SOURCES OF COMPOUNDS USED IN THIS STUDY

Chemical

(i)-a-Pinene
Camphene
(-)-j3-Pinene
(+)-/3-Pinene
Myrcene
(S)-(-)-Limonene
(R)-( +)-Limonene
(3-Phellandrene (synthetic)
j3-Phellandrene (comm.)
a-Terpinolene
p-Cymene
(-)-ex-Cubebene
(+)-Longifolene
(E)-Pinocarveol
Bomyl acetate
a-Terpineol
(— )-Bomeol
Cadinene
Veibenone
(E)-Nerolidol
Nerolidol
Methyl-isoeugenol

Purity (%)

98
81
99
98
90
96
97
53
30
29
99
98
90
90
98
95
99
72
93
95
98
99

Source

Sigma Chemical Co.
Matheson, Coleman & Bell
Aldrich Chemical Co.
Aldrich Chemical Co.
Aldrich Chemical Co.
Aldrich Chemical Co.
Aldrich Chemical Co.
Synthesized
Glfdco Organics
Givaudan Lab.
Aldrich Chemical Co.
Fluka Chemical Corp.
Sigma Chemical Co.
Phero Tech Inc.
Matheson, Coleman & Bell
Aesar
Aldrich Chemical Co.
Phero Tech Inc.
Phero Tech Inc.
Aldrich Chemical Co.
Aldrich Chemical Co.
Aldrich Chemical Co.
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and dried over sodium sulfate. The crude product was distilled at 120°C, 20
torr, to yield 22.7 g of /J-phellandrene, which was identical to authentic
|3-phellandrene by GC and GC-MS analysis.

Laboratory Experiments. The bioactivity of captured volatiles was tested
in an arena olfactometer in which beetles made a choice between responding to
a photic and an olfactory stimulus (Moeck, 1970). A light source (microscope
lamp, low power) was located 49 cm from the insect release point (which
received a light intensity of 76.6 lux), and the air carrying test stimuli was
delivered perpendicular to the light beam 6.5 cm from the release point. The
arena surface, a filter paper strip (Whatman chromatographic 3 MM) 30 cm
long X 15 cm wide, was replaced every time a different sex or stimulus was
tested. Prior to bioassays, beetles were held in groups of five (sexes kept sep-
arately) in Petri dishes with moistened paper at 21 °C and 69 lux for 2 hr. Bulk
stimuli (frass or sawdust) were placed in weighing boats directly below the air
outlet and even with the arena surface. Extracted or captured volatiles were
released from a glass tube (9 mm ID) lined with filter paper (10 cm diam.)
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TABLE 2, CHEMICAL COMPONENTS AND THEIR PERCENTAGES IN SYNTHETIC BLENDS
SB1 AND SB2a

Chemical

(±)-a-Pinene
Camphene
(3-Pinene
Myrcene
(±)-Limonene
/3-Phellandrene (synthetic)
/3-Phellandrene (comm.)
a-Terpinolene
a-Cubebene
(±)-Longifolene
Bornyl acetate
(-)-Borneol
Nerolidol
Methyl-isoeugenol

Percent composition
in blend

SB1

13.4
3.0

41.7
1.5

17.5

9.2
0.8
0.03
0.5
7.0
2.5
2.6
0.2

SB2

15.6
3.2

45.7
1.5
1.3

18.8

0.8
0.03
0.5
7.3
2.5
2.6
0.2

aThe commerical 0-phellandrene used in SB1 includes limonene as an impurity. /3-Pinene was
deployed in a 1 : 50 ratio of (-) and (+) enantiomers, and nerolidol was deployed in a 2: 1 ratio
of £ and Z isomers. a-Cubebene and methyl-isoeugenol were present in the bark oil in 3.53 and
0.49%, respectively. However, due to short supply they were deployed in the low percentages
that appear in this table.



impregnated with volatile extract in pentane. Medical-quality air was passed
continuously through the tube at 1200 ml/min. A positive response was recorded
if a beetle entered and stayed inside a rectangular area ( 3 x 1 5 cm) transverse
to the runway just in front of the air outlet.

Attractiveness of stimuli was tested in eight bioassay experiments. Exper-
iments 1-5 and 7 used male and female beetles; experiments 6 and 8 employed
only females, the most responsive sex. Experiment 1 tested volatiles emanating
from 250 mg of freshly ground grand fir sapwood, bark, or frass produced by
males or females; medical-quality air was the control stimulus. Experiment 2
tested Porapak Q-trapped volatiles from female-infested grand fir logs at doses
of 0.03, 0.3, 3, 30, and 90 beetle-hours (bh) (1 bh = volatiles released by 1
female in 1 hr). Porapak Q-trapped volatiles from an uninfested grand fir log
were used as the control stimulus. Experiment 3 tested Porapak Q-trapped vol-
atiles from male-infested grand fir logs at doses of 0.3 and 3 bh. Trapped
volatiles from an uninfested grand fir log were used as the control stimulus.
Experiment 4 tested steam-distilled bark oil from a healthy tree at doses of
0.009, 0.097, 0.975, 9.75, and 97.5 mg equivalents, with pentane as a control
stimulus (1 mg equiv = amount of oil distilled from 1 mg of starting material).
Experiment 5 tested Porapak Q-trapped volatiles from an uninfested grand fir
log at doses of 0.001, 0.01, 0.1, 1, and 10 mg/^1, with pentane as a control
stimulus. Experiment 6 compared female responses towards steam-distilled bark
oil from healthy and root-rot-infected grand fir at doses of 0.0006, 0.006, 0.06,
0.6, 6, and 60 mg equiv, with pentane as a control stimulus. Experiment 7
tested two fractions of steam distilled bark oil from root-rot-infected grand fir
at 1 /ig equiv, with pentane as a control stimulus. Experiment 8 compared the
activity of the two fractions tested in experiment 7 with the activity of two
tentative synthetic fractions3 without complete confirmation of the bioactivity
of all components.

Field Experiments. Synthetic blends of compounds that were antennally
active, attractive in the laboratory, and available in sufficient quantity were field
tested in a mature Abies grandis/Acer rubrum forest with moderately abundant
Douglas fir (Steel and Gier-Hayes, 1992), located 10 km north of Coeur d'Alene,
Idaho. Twelve-unit, multiple-funnel traps (Lindgren, 1983) (Phero Tech, Inc.)
baited with candidate kairomonal blends were deployed in 10 randomized com-
plete blocks, with > 15 m between traps and 15 m between trap lines. Captured
beetles were bagged and frozen until they could be counted and sexed. Exper-
iments 9 and 10, respectively, tested attraction to two different synthetic blends

Composition (jig) of synthetic fraction 1: a-pinene (6.9), camphene (1.2), (3-pinene (21.4), myr-
cene (0.2), limonene (0.5), and crude /3-phellandrene (3). Composition of synthetic fraction 2: ct-
terpinolene (0.3), p-cymene (0.001), longifolene (0.02), (E)-pinocarveol (0.04), bomyl acetate
(1), a-terpineol (0.3), borneol (0.4), cadinene (0.8), verbenone (0.06), (£)-nerolidol (0.04), (Z)-
methyl isoeugenol (0.04), and (E)-methyl isoeugenol (0.08).
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(SB1 and SB2) of 13 components each (Table 2), as well as steam-distilled bark
oil, and an unbaked control. The synthetic blends used in these experiments
differ from those employed in experiment 8 only by the presence of a-cubebene
and the lack of p-cymene, (E)-pmocarveol, and verbenone. a-Cubebene was
present in the bark oil and was erroneously identified as an antennally active
peak. It was incorporated as 0.03% of the synthetic blends SB1 and SB2. Release
rates of SB1, SB2, and the bark oil, determined under laboratory conditions at
32°C, were 340, 280, and 50 mg/24 hr, respectively.

Statistical Analysis. Percentages of male and female beetles responding in
laboratory bioassays were transformed by arcsin 4x to normalize the data and
stabilize the variances between replicates (Zar, 1984), except for experiment 6,
and were analyzed by ANOVA followed by the Ryan-Einot-Gabriel-Welsh
(REGW) multiple range test (Day and Quinn, 1989). For experiment 6, responses
to the volatiles from healthy or root-rot-infected trees at each dose were com-
pared by t tests. The REGW test was also used for data from field experiments,
but with a log10 (x + 1) transformation (Zar, 1984). All analyses employed
SAS computer software (SAS Institute, 1994) with a = 0.05.

RESULTS

In most laboratory bioassays, females were more responsive and less
variable in their responses than males. All stimuli in experiment 1 (Figure 1)
were significantly more attractive to males and females than the air control. Host
bark, sapwood sawdust, and male or female frass were equally attractive. Cap-
tured volatiles from female-infested logs were no more attractive at any of five
doses than those from uninfested logs in experiment 2 (Figure 1). In experiment
3, volatiles from male-infested logs were less attractive to females than were
volatiles from uninfested logs, but for males there was no difference in response
to treatments (Figure 1).

In experiment 4 (Figure 2), responses by females to steam-distilled bark
extract were significantly higher than those to pentane at doses of 0.975 and
9.75 mg equiv; males responded significantly to stimuli at these doses and also
at a dose of 0.975 mg equiv. Experiment 5 (Figure 2) showed a similar trend
for captured volatiles; females responded significantly at doses of 0.1, 1.0, and
10.0 mg/^il, while males responded only at the two highest doses. Steam-dis-
tilled bark volatiles from root-rot-infected trees were more attractive to walking
beetles at most doses than volatiles from uninfected trees, and significantly at
two doses (Figure 2, experiment 6). At doses > 0.0006 mg equiv and <60 mg
equiv, 61 % of all responses were to the volatiles from infected trees.

In experiment 7, neither fraction of bark beetle oil distillate alone was more
attractive to walking beetles than the pentane control stimulus, but there was a
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FIG. 1. Results of laboratory bioassays showing the percent responses of walking male
and/or female S. ventralis tested in 10 groups of five insects (males or females) to sawdust
or frass presented in 250 mg doses (experiment 1), Porapak Q-trapped volatiles from
logs infested with female S. ventralis (experiment 2) or with males (experiment 3). Bars
for each sex with the same letter are not significantly different, REGW test, P < 0.05.





very clear synergistic effect of combining the two fractions, especially for females
(Figure 3). This effect was reproduced in experiment 8 by combining the defined
synthetic fractions (Figure 3).

In GC-EAD analyses of A. grandis volatiles, female S. ventralis antennae
responded to many compounds, including (±)-a-pinene, (—)-camphene, (-)-
j3-pinene, myrcene, (—)-limonene, /3-phellandrene, a-terpinolene, longifolene,
bomyl acetate, borneol, (E)-nerolidol, and methyl-isoeugenol (Figure 4). When
the synthetic blends SB1 and SB2 (the latter with a correct ratio of limonene-
0-phellandrene) were tested in the field in experiments 9 and 10, both S. ventralis
and the clerid predator, Thanasimus undatulus Say, were captured in significant
numbers in traps baited with the synthetic blends (Figure 5). Neither species
responded to the bark oil distillate.

A summary of negative results from experiments searching for evidence of
secondary attraction in 5. ventralis is given in Table 3. These experiments
included laboratory and field aerations, hormone treatments, GC analysis of
gland extracts, and videotaping of behavior.

DISCUSSION

When examined in detail our results consistently support the primary attrac-
tion aggregation hypothesis. Both sexes of 5. ventralis displayed the same gen-
eral trend of response to any material tested, with females attracted in slightly
higher numbers to a broader dose range of stimuli than males. This finding is
concordant with the role of females as the pioneer sex that must perceive and
select the most suitable host trees. The superior attraction of volatiles from
female-infested logs over those from male-infested logs can be accounted for
by the higher rate of boring by females, which would release more host volatiles
than boring by males. The results from experiment 3 suggest that boring males
produced a repellent pheromone, but this hypothesis was not followed further.

The results from GC-EAD analyses, bioassays that indicate a requirement
for a blend of host volatiles to achieve attraction, and the finding that attraction
can be reproduced by substituting synthetic blends for natural ones are all indic-
ative of a species highly adapted to respond to host kairomones. Further evidence

FIG. 2. (Opposite) Results of laboratory bioassays showing the percent responses of
walking male and/or female S. ventralis tested in 10 groups of five insects (males or
females) to steam distilled bark oil (experiment 4), Porapak Q-captured volatiles from
grand fir bark chips (experiment 5), and steam-distilled bark oil from root rot-infected
or healthy grand firs (experiment 6). For experiments 4-5, bars for each sex with the
same letter are not significantly different, REGW test, P < 0.05. Asterisks in experiment
6 indicate significant difference in paired responses within a dose, t test, P < 0.05.
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FIG. 3. Results of laboratory bioassays showing the percent responses of walking male
and/or female S. ventralis tested in 10 groups of five insects (males or females) to
fractionated and unfractionated steam-distilled bark oil from root-rot-infected grand fir
presented in 1-̂ g doses (experiment 7), and combinations of fractions of natural and
synthetic bark oil from grand fir presented in 100-ng doses (experiment 8). Within each
experiment and sex of beetles, bars with the same letter are not significantly different,
REGW test, P < 0.05.

of the sensitivity of S. ventralis to specific volatiles from its host is that it is
repelled in laboratory bioassays at equivalent doses by bark oil from subalpine
fir (unpublished results). Although both A. grandis and A. lasiocarpa are similar
in their major volatile components, some minor components are not shared by
both (Zavarin, 1968; von Rudolf, 1975).
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FIG. 4. Representative paired recordings of FID and BAD with female 5. ventralis
antenna to steam-distilled grand fir bark volatiles. Chromatography: DB-23 column (30
m x 0.32 mm ID) splitless injection; injector and FID temperature 240°C. Temperature
program: 50°C for 1 min, then 10°C/min to 200°C, FID 1 = Porapak Q-trapped volatiles
from female-infested logs; FID 2 = Porapak Q-trapped volatiles from field aeration of
a 1-m section of a root-rot-infected, uninfested standing grand fir.

The repellent effect of individual terpenoid components found by Bordash
and Berryman (1977) was apparently overturned by offering a blend of the same
materials in a ratio of components similar to that found in the naturally occurring
bark volatiles. An equivalent situation was found by Visser and Ave (1978), in
which the Colorado potato beetle, Leptinotarsa decemlineata Say, was attracted
to a specific blend of green leaf volatiles, but when these compounds were tested
individually or incorporated into the blend at different ratios, the attraction ceased
or decreased, respectively. Similarly, Anderson et al. (1993) reported that ovi-
position by the cotton leafworm, Spodoptera littoralis (Boisd.), was strongly
deterred by a mixture of six compounds from conspecific larval frass. If one of
the compounds was excluded from the mixture, the deterrent effect was lost.

The response of the predator T. undatuhis to the same blend that attracts
its prey is analogous to similar predator-host interactions in which T. un-
datulus responded to the pheromone frontalin produced by the Douglas fir beetle,
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FIG 5. Numbers of S. ventralis and T. undatulus captured in multiple-funnel traps in
experiment 9 (July 7-16, 1996) and experiment 10 (July 2-9, 1996), Coeur d'Alene,

Idaho; N = 10. Release rate for SB1 was 340 mg/24 hr; for SB2, 280 mg/24 hr; and
for the bark oil, 50 mg/24 hr. For each experiment and insect, bars with the same letter
are not significantly different, REGW test, P < 0.05.

TABLE 3. SUMMARY OF ADDITIONAL EXPERIMENTS (MACIAS-SAMANO, 1997)
PERFORMED TO TEST HYPOTHESIS OF SECONDARY ATTRACTION IN S. ventralis

Experiments

Laboratory aerations
Volatiles collected on Porapak-Q from
groups of 20-500 male, female, or mixed-
sex S. ventralis held in glass tubes (Rudin-
sky et al., 1973). Beetles were virgin-unfed,
virgin-fed, or mated-fed. Aerations also
made of grand fir bolts infested with males,
females or both.

Field aerations
Adapting the methodology of Browne et al.
(1979), 1-m-long sections of bole of
standing grand fir trees under attack by S.
ventralis were wrapped in a plastic sheet
open at the top with the bottom attached to a
Porapak Q trap under vacuum from a
portable pump. Aerations continued for 50
hr. Volatiles from unattacked control trees
captured in identical manner.

Results

GC and GC-EAD analyses of captured
volatiles revealed no sex-specific com-
pounds. No preferential response by beetles
of either sex to volatiles from either sex or
type of treatment.

GC analysis of the captured volatiles revealed
no volatiles specific to attacked trees and no
differences in ratios of components. This
was confirmed by comparative GC-EAD
analysis of extracts from one infested and
one uninfested tree.
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Dendroctonus pseudotsugae Hopkins (Ross and Daterman, 1995), and ipsdienol
produced by Ips spp. (Miller et al., 1991). In each instance, the predators and
their prey responded to identical stimuli, suggesting that T. undatulus may have
distinct semiochemical-based, prey-adapted races. Thanasimus spp. are char-
acteristically attracted to the pheromones of several host scolytid species (Vite'

TABLE 3. CONTINUED

Experiments

Hormone treatment
With Harring's (1978) technique, 120 5.
ventralis of each sex were treated topically
with 1 and 10 /tg of methoprene in 1 and 10
^1 of pentane. After 24 hr, treated and con-
trol beetles were extracted in pentane.
Extracts also made of male and female fir
engravers allowed to bore into phloem
pieces treated with 1 and 10 jig of
methoprene.

Gland extracts
Exploring the hypothesis of Gore et al.
(1977) that accessory glands at the base of
vaginal palpi of S. multistriatus were
associated with pheromone production, we
excised 276 abdominal tips (containing the
palpi and gland) from unfed female S.
ventralis as well as from females that had
been fed for two days. Excised tips were
macerated in ice-cold pentane.

Videotaping
Over 20 hr of videotaping of male and
female S. ventralis walking on surface of
grand fir logs, females initiating attack, and
males courting females were evaluated.

Results

No sex-specific volatiles revealed by GC
analysis of extracted beetles.

GC analysis of abdominal tip extracts re-
vealed trace amounts of exo-brevicomin as
confirmed by GC-MS. No attraction to exo-
brevicomin in laboratory bioassays or field
experiments was observed.

Several females were observed rubbing the tip
of the abdomen on bark in apparent marking
behavior, and a few others possibly calling
while running with protruded, swollen ab-
dominal tips." There was no observed re-
sponse by males to either marking or calling
females, and no sex-specific volatiles were
revealed by GC analysis of aerated or
extracted beetles (above). Gallery initiation
and courtship similar to that by S. multi-
striatus (Svihra and Clark, 1980) was
observed, but no behavior observed that
would suggest pheromone release.

aJ. E. Macfas-Simano and J. H. Borden: Host finding and mating behavior of the fir engraver.i
Paper presented at the annual meeting of the Entomological Society of America, Indianapolis,
Indiana, December 13-15, 1993.



and Williamson, 1970; Bakke and Kvamme, 1981; Mizell et al., 1982; Payne
et al., 1984; Raffa and Klepzig, 1989; Hems et al., 1991; Miller et al., 1991).
Another predator, the blackbellied clerid, Enoderus lecontei (Wolcot), reported
as the most abundant predator of the fir engraver (Struble, 1957; Ashraf and
Berryman, 1969; Berryman and Ferrell, 1988), was not trapped in response to
the synthetic blends, but at the same field site was attracted (Macfas-Samano,
1997) by the aggregation pheromone (Macias-Samano et al., 1997) of Pityok-
teines elegans Swaine, which implies that this clerid is following P. elegans
and not S. ventralis.

The thresholds for perception of and response to bark oil and the blend of
synthetic host kairomones are similar to those for pheromones in the genera
Dendroctonus and Ips (Borden, 1985), and much lower than for kairomones in
other genera (Dickens, 1979). In particular, the threshold for response near 0.1
mg equiv of bark oil distillate is easily equivalent to the response of male S.
multistriatus in laboratory bioassays to 10 mg of pheromone-laden frass from
virgin females (Peacock et al., 1973). The ability of the synthetic blends released
at 340 and 280 mg/24 hr for SB1 and SB2, respectively, to attract S. ventralis
in the field is also remarkable, considering the competition from natural odor
sources in the forest, and the fact that these are the summed release rates for
13 components (Table 2). In comparison, red turpentine beetles, Dendroctonus
valens (LeConte, were attracted in the field to specific enantiomers of a- and
l3-pinene released at 0.8-70 ml/24 hr (Hobson et al., 1993), doses ranging from
2 to 200 times those at which SB1 and SB2 were released.

Although grand fir bark oil was highly attractive to 5. ventralis in laboratory
bioassays, its failure to attract S. ventralis in the field when released at 50 mg/
24 hr suggests that the release rates of 340 and 280 mg/24 hr for SB1 and SB2,
respectively, were just above the threshold for attraction. Additional experi-
mentation has shown bark oil to be attractive to fir engravers when released at
386 mg/24 hr (Macias-Samano, 1997).

Because of the intolerance of S. ventralis to resin and the inhibition of
growth by T. symbionticum in the presence of monoterpenes (Raffa et al., 1985),
there is a low likelihood that fir engravers could overcome the induced defense
system of healthy trees (Raffa, 1991), even by mass attack. Therefore, avoidance
of stimuli associated with host resistance would be adaptive (Raffa and Berry-
man, 1987), as would orientation toward stimuli associated with susceptible
weakened hosts. Mass attack behavior would be adaptive only to the extent that
slightly resistant trees could be included as suitable hosts. A preference for
weakened hosts is supported by the high correlation of root-rot infections and
fir engraver attacks (Cobb et al., 1973; Hertert et al., 1975; Ferrell and Smith,
1976; Wright et al., 1984) and by our findings that fir engravers are more
attracted to oil from the bark of root-rot-infected trees than from the bark of
healthy trees. Other bark beetles can apparently also detect fungus-infested hosts.
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For example, seven times more pine engravers, Ips pini (Say), bored into trees
infected by Leptographium terebrantis Barras and Perry, than into healthy ones
(Raffa and Klepzig, 1996). Nebeker et al. (1995) showed that lodgepole pines
infested with Armillaria root rot had a 20 times higher bornyl acetate content
in the resin than healthy trees. Conversely, traumatic resin from grand fir con-
tains no bornyl acetate (Russell and Berryman, 1976; Raffa and Berryman, 1987;
Lewinsohn et al., 1990) and may not be attractive to host-seeking fir engravers.
In our experiments bornyl acetate elicited a very clear and strong EAD response
in fir engraver antennae and was attractive to walking S. ventralis when tested
alone at doses ranging from 10 to 100 ng in laboratory bioassays (results not
shown).

In a kairomone-driven system, it would be adaptive for both sexes to respond
at high levels to a host kairomonal signal, and to rely on close-range recognition
factors for mate selection. Accordingly, one would not expect the sex ratio of
responding beetles to be altered if the host were under attack by conspecifics.
Field investigations by Ferrell (1969) support this hypothesis; the sex ratios of
S. ventralis caught on girdled unattacked and girdled attacked trees did not differ,
nor did they differ from the sex ratio at emergence. Results from experiment 1
and from the female-male sex ratios of 12:8 and 47:35 in experiments 9 and
10, respectively, are consistent with Ferrell's (1969) observations.

There are other bark beetles that are attracted to host resin and/or some of
its components and that also do not seem to have aggregation pheromones. The
red turpentine beetle is attracted to mixtures of a-pinene, myrcene, and 3-carene
(Hobson et al., 1993) and demonstrates a remarkable chiral specificity toward
(S)-(-)-a-pinene (White and Hobson, 1993). The native elm bark beetle, Hylur-
gopinus rufipes (Eichhoff), is attracted to cut elm wood (Martin, 1936), wounded
elms (Landwehr et al., 1981), and to naturally and artificially moribund elms
(Gardiner, 1979; Millar et al., 1986). Several sesquiterpenes were attractive to
H. rufipes when deployed in traps (Millar et al., 1986), but no pheromone could
be demonstrated in this species (Swedenborg et al., 1988).

Historically, research on the chemical ecology of scolytids has disclosed
occasions when species were considered to be kairomone-driven but were later
shown to employ aggregation pheromones. For example, Meyer and Norris
(1967) attributed the higher attraction of S. multistriatus to female- than male-
infested logs to the greater release of host volatiles by the actively boring females.
However, Peacock et al. (1971) demonstrated the presence of a female-produced
aggregation pheromone by showing much higher attraction to logs infested with
40 females than to logs infested by 400 males. The contention by Byers et al.
(1985) and Vite" et al. (1986) that the pine shoot beetle, Tomicus piniperda (L.),
relies solely on primary attraction in host selection has recently been countered
by Teale (1996), who used GC-EAD analysis as the basis for demonstrating
that this species also uses an aggregation pheromone. Therefore, we pursued an
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exhaustive series of experiments using GC and GC-EAD techniques as well as
other approaches to test the hypothesis of secondary attraction in S. ventralis,
with consistently negative results. Moreover, a review of 50 years of published
information on the fir engraver failed to yield compelling evidence for a pher-
omone-driven system and supported the hypothesis that from an evolutionary
perspective the fir engraver has become well adapted to rely on host kairomones
to mediate host selection.

One significant adaptation is the transverse orientation of S. ventralis gal-
leries, which allows T. symbionticum to be inoculated into the greatest possible
amount of vascular tissue (Wong and Berryman, 1977). This in turn results in
a large area invaded by the fungus and a correspondingly large area in which
the insect can breed. Because S. ventralis can avoid encountering large amounts
of constitutive resin, which is localized primarily in cortical pitch blisters (Ban-
nan, 1936; Littelfield, 1973; Ferrell, 1969, 1983), there is little selective pres-
sure to develop a resin detoxification system (Raffa and Berryman, 1987), a
process by which other bark beetles produce pheromones (Renwick, 1988).

Because exposure to resin can be avoided, fir engravers produce single
galleries in living trees that can be as successful, or more so, as those in mass-
attacked trees (personal observation). Several reports (Struble, 1957; Johnson
and Shea, 1963; Berryman, 1969; Berryman and Ashraf, 1970; Felix et al.,
1971; Ferrell, 1973) describe the scars of old isolated attacks, both successful
and unsuccessful, embedded in the xylem of living firs. The ability to kill a
patch of bark and potentially reproduce in it (Ferrell, 1973; personal observation)
is found in very few other bark beetles. Among them is Dendroctonus micans
Kugelann, which like S. ventralis is not known to orient by pheromonal com-
munication (Gregoire, 1985).

Scolytus ventralis flies over an eight-week period (Struble, 1957; Ashraf
and Berryman, 1969) and can respond to stressed trees throughout the growing
season as they become available (Raffa and Berryman, 1987). Linking the long
period of flight with the absence of strong mass attack behavior (Ashraf and
Berryman, 1969), and great variability in attack density when trees are mass
attacked (Berryman, 1968a,b), there is presumably less advantage to synchro-
nous flight and attack than in other species of tree-killing bark beetles (Raffa
and Berryman, 1987) that are driven by pheromones. This hypothesis is sup-
ported by the fact that grand fir is incapable of induced responses to wounding
under conditions of intense water stress (Lewinsohn et al., 1993).

As hypothesized for pheromone-mediated mass attack (Alcock, 1982), mass
attack by S. ventralis, when it does occur, would simply be a consequence of
each beetle attempting to maximize its fitness by responding to the volatiles
emitted by a potentially suitable host. In support of this hypothesis, Berryman
and Ashraf (1970) found that aggregation on a host by the fir engraver is directly
associated with the degree of gallery elongation.
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Based on our findings and the above discussion, we hypothesize that both
sexes of 5. ventralis are attracted to and aggregate on a tree, first because of
odors emitted by the tree, and subsequently because the pioneer boring insects
(females) liberate host kairomones, not insect-produced pheromones, by expos-
ing vascular tissue to the air. These compounds would signal other insects of
the presence of a suitable host. Close-range phagostimulatory signals might
stimulate boring, and mating might be regulated by a combination of stridulatory
signals (Ferrell, 1969; Rudinsky et al., 1978) and close-range pheromonal stim-
ulation. Such close-range signals and their regulation have been suggested by
observations of apparent calling and marking behavior revealed by videotape
analysis.
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