Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Novel pyrazolo-tetrahydropyridines as potent orexin receptor antagonists

Thierry Sifferlen *, Christoph Boss *, Emmanuelle Cottreel, Ralf Koberstein, Markus Gude, Hamed Aissaoui, Thomas Weller, John Gatfield, Catherine Brisbare-Roch, Francois Jenck

Actelion Pharmaceuticals Ltd, Drug Discovery and Preclinical Research & Development, Gewerbestrasse 16, CH-4123 Allschwil, Switzerland

ARTICLE INFO

Article history: Received 17 December 2009 Accepted 14 January 2010 Available online 22 January 2010

Keywords: Orexin receptors Neuropeptides G protein-coupled receptors Sleep

ABSTRACT

A novel series of dual orexin receptor antagonists was prepared by heteroaromatic five-membered ring system replacement of the dimethoxyphenyl moiety contained in the tetrahydroisoquinoline core skeleton of almorexant. Thus, replacement of the dimethoxyphenyl by a substituted pyrazole and additional optimization of the substitution pattern of the phenethyl motif allowed the identification of potent antagonists with low nanomolar affinity for hOX₁R and hOX₂R. The synthesis and structure–activity relationship of these novel antagonists will be discussed in this communication. These investigations furnished several suitable candidates for further evaluation in in vivo studies in rats.

© 2010 Elsevier Ltd. All rights reserved.

In 1998, two independent research groups discovered two neuropeptides, orexin A and orexin B (or hypocretin-1 and hypocretin-2), which are produced exclusively by neurons in the lateral hypothalamus.^{1,2} Two orphan G protein-coupled receptors (GPCR) for these endogenous ligands were as well identified and are known as orexin 1 (OX_1R) and orexin 2 (OX_2R) receptors. Orexin A shows potent agonistic activity toward both subtypes of orexin receptors,² whereas, orexin B exhibited greater affinity for OX₂R as compared to the OX₁R.² Several studies highlighted the potential role of the orexin neuropeptides in the regulation of a variety of biological functions including feeding,² and the sleep/wake cycle.^{3,4} Several groups have developed orexin antagonists to explore the physiological role of the orexin receptors.⁵ We have recently reported that a dual orexin receptor antagonist, almorexant (Fig. 1) enabled somnolence without cataplexy in rats, dogs, and humans.⁶ In the course of our efforts toward the identification of small molecule orexin antagonists, we were interested in the heterocyclic replacement of the dimethoxyphenyl moiety contained in the tetrahydroisoquinoline core skeleton.⁷ Here, we describe the efforts in optimizing a novel series of nonpeptidic, dual orexin antagonists structurally related to almorexant where the dimethoxyphenyl part was replaced by a substituted pyrazole (Fig. 1).

The preparation of the planned pyrazolo-tetrahydropyridine derivatives began with the synthesis of the trisubstituted pyrazole **9** (Scheme 1). Acylation of *Meldrum's* acid **1** with diketene **2** quantitatively afforded intermediate **3**.⁸ Subsequent reaction of a methanolic solution of **3** with ethylhydrazine in presence of trieth-

ylamine regioselectively led to the formation of the pyrazolo-derivative **4**.⁹ Hydrolysis under acidic conditions (*p*-TsOH in methanol) resulted in the formation of methyl ester **5** which was quantitatively converted to the corresponding primary amide **6** by treatment with a solution of ammonia in methanol. Dehydration of amide **6** (trifluoroacetic anhydride, pyridine) smoothly delivered the expected nitrile **7**.¹⁰ Reduction of **7** (LiAlH₄, THF) followed by protection of the resulting primary amine with a benzyloxycarbonyl moiety gave after purification the protected compound **8**. A final deprotection of the amino function by hydrogenolysis using palladium over charcoal delivered the expected primary amine **9**.

For the preparation of the homologous primary amine **13**, deviation from the first synthetic route began with methyl ester **5** (Scheme 2). Reduction of methyl ester **5** (LiAlH₄) quantitatively led to the corresponding primary alcohol **10**. Activation of the alcohol **10** as the mesylate and subsequent nucleophilic displacement mediated by tetrabutylammonium cyanide gave the expected nitrile **11**. Borane reduction of **11** followed by protection of the resulting primary amine with a benzyloxycarbonyl moiety afforded

Figure 1. Almorexant and the corresponding pyrazolo-tetrahydropyridines.

^{*} Corresponding authors. Tel.: +41 615656561; fax: +41 615656500.

E-mail addresses: thierry.sifferlen@actelion.com (T. Sifferlen), christoph.bos-s@actelion.com (C. Boss).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.01.070

Scheme 1. Reagents and conditions: (a) Et_3N , CH_2Cl_2 , room temperature (100%); (b) $EtNHNH_2$, Et_3N , MeOH, 60 °C; (c) *p*-TsOH, MeOH, 60 °C, (70% for two steps); (d) 7 M NH_3 in MeOH, room temperature (100%); (e) trifluoroacetic anhydride, pyridine, dioxane, room temperature (88%); (f) $LiAlH_4$, THF, 0 °C; (g) $CICO_2Bn$, NaHCO₃, THF, H₂O, room temperature (29% for two steps); (h) H₂, 10% Pd/C, MeOH, room temperature (94%).

Scheme 2. Reagents and conditions: (a) LiAlH₄, THF, 0 °C (100%); (b) MeSO₂Cl, Et₃N, THF, 0 °C; (c) *n*-Bu₄NCN, THF, 75 °C (86% for two steps); (d) 1 N BH₃·THF, THF, 75 °C; (e) ClCO₂Bn, K₂CO₃, THF, H₂O, room temperature (74% for two steps); (f) H₂, 10% Pd/C, MeOH, room temperature (100%).

12. Finally, deprotection of the amino function by hydrogenolysis using palladium over charcoal delivered the expected primary amine **13**.

The target pyrazolo-tetrahydropyridine derivatives could be prepared according to two convenient synthetic routes (Scheme 3). Primary amine 9 was allowed to react with diversely substituted aldehydes 14 in a microwave-assisted Pictet-Spengler reaction (AcOH, EtOH, microwave) affording with good yields a racemic mixture of pyrazolo-tetrahydropyridine derivatives 15. Finally, Nalkylation with the chiral (*S*)-tosylate **16** yielded, after purification, the target pyrazolo-tetrahydropyridine derivatives 17. According to an alternative synthetic route, primary amines 9 and 13 were acvlated with diverselv substituted carboxylic acid derivatives 18 (PvBOP, DIPEA, DMF) resulting in the amides 19 which were transformed into the pyrazolo-tetrahydropyridine derivatives 15 via Bischler-Napieralski reaction (POCl₃, MeCN) and subsequent imine reduction (NaBH₄, MeOH). Again, a final alkylation of the resulting racemic mixture of secondary amines 15 with the chiral (S)-tosylate **16** gave after purification the target pyrazolo-tetrahydropyridine derivatives 17.

Scheme 3. Reagents and conditions: (a) AcOH, EtOH, microwave (100 W; 130 °C; 14 bar; 6 min); (b) DIPEA, 3-methyl-2-butanone, 90 °C; (c) PyBOP, DIPEA, DMF, room temperature; (d) POCl₃, MeCN, 90 °C; (e) NaBH₄, MeOH, 0 °C.

A cell-based FLIPR assay (fluorometric imaging plate reader) measuring Ca²⁺ flux as a functional determinant of orexin binding allowed to evaluate the antagonistic activity of the synthesized pyrazolo-tetrahydropyridines with both orexin receptors.¹¹ Preliminary structure-activity relationship (SAR) studies explored the potency against both receptors of derivatives containing a monosubstituted phenyl ring. A variety of substituents representing different electronic properties were investigated. Moving an electrondonating methyl substituent from the *ortho* to the *meta*-position allowed a sixfold increase in hOX₁R potency as illustrated with the two mixtures of diastereoisomers 20 and 21 (Table 1). A paramethyl group allowed an additional gain of potency toward both orexin receptors (diastereoisomers 22). Compared to methyl, a *para*-methoxy mojety was detrimental and resulted in a complete loss of potency toward hOX₁R (23). Previous investigations in the tetrahydroisoquinoline series $(X-Y = CH_2CH_2)$ indicated that the (S;R)-stereoisomer was the most active one (Fig. 1). The influence of the stereochemistry was investigated with pyrazolo-tetrahydropyridine derivatives containing an electron-donating para-ethyl or para-isopropyl substituent. Evaluation of the antagonistic activity of the separated diastereoisomers highlighted that the (R;R) isomers were significantly less potent against both receptors (stereoisomers 24–27). Derivatives with a para-ethyl or a para-methyl group are almost equipotent (22 and 24). A larger para-isopropyl residue induced a threefold decrease in hOX₁R potency (26). Similar effects on potency could be observed with electron-withdrawing substituents. Thus, moving a fluorine atom from the ortho to the meta-position allowed an enhancement in potency toward both orexin receptors (diastereoisomeric mixtures 28 and 29). A larger meta-trifluoromethyl moiety afforded an almost equipotent compound (**30**), and a *para*-CF₃ was even more beneficial (**31**). Substitution of the para-position with a chlorine atom resulted in decreased potency toward hOX₁R as shown with diastereoisomers **32**. The importance of the linker between the pyrazolo-tetrahydropyridine and the phenyl ring was as well investigated. Replacement of the CH₂CH₂ linker with the CH₂O linker gave a complete loss of affinity for hOX₁R as illustrated with the selective orexin 2 receptor antagonist **33**, a direct analogue of **22**. Shortening of the C₂-linker as in **31** resulted in reduced potency as exemplified with 34.

After this first exploration of derivatives containing a monosubstituted phenyl ring, it was apparent that a *para*-methyl or a *para*-trifluoromethyl moiety afforded the most potent compounds.
 Table 1

 SAR studies of the phenyl-X-Y moiety

 $\begin{aligned} X-Y &= CH_2CH_2 \text{ or } CH_2: (S;R)\text{-stereoisomer} \\ X-Y &= OCH_2: (R;R)\text{-stereoisomer} \end{aligned}$

 $X-Y = CH_2CH_2$ or CH_2 : (R;R)-stereoisomer X-Y = OCH₂: (S;R)-stereoisomer

Compound	X-Y	Stereochemistry	R ₂	R ₃	R ₄	hOX ₁ R ^a	hOX ₂ R ^a
20	CH ₂ CH ₂	(S;R) + (R;R)	Me	Н	Н	1031	21
21	CH ₂ CH ₂	(S;R) + (R;R)	Н	Me	Н	180	19
22	CH ₂ CH ₂	(S;R) + (R;R)	Н	Н	Me	108	6
23	CH ₂ CH ₂	(S;R) + (R;R)	Н	Н	OMe	10,000	219
24	CH ₂ CH ₂	(S;R)	Н	Н	Et	63	3
25	CH ₂ CH ₂	(<i>R</i> ; <i>R</i>)	Н	Н	Et	1424	174
26	CH ₂ CH ₂	(S;R)	Н	Н	<i>i</i> -Pr	161	9
27	CH ₂ CH ₂	(<i>R</i> ; <i>R</i>)	Н	Н	<i>i</i> -Pr	1919	179
28	CH ₂ CH ₂	(S;R) + (R;R)	F	Н	Н	669	22
29	CH ₂ CH ₂	(S;R) + (R;R)	Н	F	Н	402	10
30	CH ₂ CH ₂	(S;R) + (R;R)	Н	CF ₃	Н	358	7
31	CH ₂ CH ₂	(S;R)	Н	Н	CF ₃	128	3
32	CH ₂ CH ₂	(S;R) + (R;R)	Н	Н	Cl	993	12
33	OCH ₂	(<i>R</i> ; <i>R</i>)	Н	Н	Me	10,000	19
34	CH ₂	(S;R) + (R;R)	Н	Н	CF ₃	769	25

^a IC₅₀ values in nM (FLIPR assay).

In an attempt to further improve potency in this series of orexin receptor antagonists, additional substituents were added on the phenyl moiety (Table 2).¹² Having a *para*-methyl substituent, the addition of an *ortho*-fluorine atom was unfavorable mainly for hOX₁R potency (**35**) whereas a *meta*-fluorine was well tolerated as illustrated with compound **36**. Difluorination of the *para*-tolyl motif was also nicely tolerated as shown with derivative **37**, and an almost threefold increase in hOX₁R potency could be even achieved with the isomeric and potent dual orexin receptor antagonist **38**. The addition of a second methyl substituent in the *para*-tolyl moiety was then investigated and like with fluorine, an addi-

Table 2

SAR studies of derivatives containing a poly-substituted phenyl ring

Compound	п	R_2	R ₃	R ₄	R_5	R ₆	hOX ₁ R ^a	hOX ₂ R ^a
35	1	F	Н	Me	Н	Н	147	8
36	1	Н	F	Me	Н	Н	49	2
37	1	F	F	Me	Н	Н	57	5
38	1	Н	F	Me	F	Н	16	5
39	1	Me	Н	Me	Н	Н	131	7
40	1	Н	Me	Me	Н	Н	7	3
41	1	F	Н	CF_3	Н	Н	52	8
42	1	F	F	CF_3	Н	Н	23	8
43	1	Н	F	CF_3	F	Н	5	4
44	2	Н	Me	Me	Н	Н	36	5
45	2	Н	F	CF ₃	F	Н	22	12

^a IC₅₀ values in nM (FLIPR assay).

tional ortho-methyl group was unfavorable mainly for hOX₁R potency (39). The addition of a meta-methyl residue was beneficial due to an additive effect on orexin activity which allowed for a substantial eightfold increase of the affinity for the hOX₁R resulting in compound **40**, the most potent dual orexin receptor antagonist identified so far in this series. In a next step, the addition of fluorine substituents was explored with the derivative containing a paratrifluoromethyl group on the phenyl ring. An additional ortho-fluorine atom induced a twofold increase in hOX₁R potency (**41**). Difluorination of the para-trifluoromethylphenyl allowed for a significant gain in potency as shown with 42, and the affinity for the hOX₁R could be even increased with the isomeric derivative 43 which is one of the most potent dual orexin receptor antagonist identified in this series. Finally, investigations of seven-membered analogues (44 and 45) showed that the corresponding six-membered derivatives (40 and 43) were more potent toward both orexin receptors. In vivo effects of compounds 40 and 43 on sleep and wake cycles were evaluated in adult male wistar rats implanted with radiotelemetric probes.¹³ Compounds were orally administrated at 100 mg/kg at the beginning of the dark active phase and electroencephalographic (EEG) and electromyographic (EMG) signals, home cage activity and body temperature recorded. Both compounds showed the same pattern of activity on sleep and wake cycles as almorexant (Fig. 1)⁶ but to a lesser extent. Over the 12 h dark period following administration, the compounds decreased the home cage activity (p < 0.05 for compound **40** and p < 0.001for compound **43**, paired *t*-test, Fig. 2A) and the time spent in active wake (p < 0.01 for compound **40** and p < 0.05 for compound **43**, paired *t*-test, Fig. 2B). Time spent in non-REM (rapid eve movement) sleep was increased significantly (p < 0.05 for both compound, paired *t*-test). We also observed a non-significant increase of the time spent in REM sleep (15% and 8% increase for compounds 40 and 43, respectively). Like almorexant, the two dual orexin receptor antagonists showed a very particular profile, that is, they increased both non-REM and REM sleep in physiological proportions.

Figure 2. Effects of compound **40** and compound **43** on home cage activity (A), time spent in AW (AW, B), time spent in non-REM sleep (NREM, C) and time spent in REM sleep (D). Effects measured and integrated over 12-h night period following administration. Data are presented as means ± SEM. p < 0.05, p < 0.01, p < 0.001 (n = 7 for compound **40** and n = 8 for compound **43**).

In conclusion, we have described a novel series of dual orexin receptor antagonists based on the heterocyclic replacement of the dimethoxyphenyl moiety present in the tetrahydroisoquinoline series around almorexant. Additional structure–activity relationship (SAR) studies of the phenethyl motif allowed the identification of potent dual receptor antagonists with low nanomolar potency for hOX₁R and hOX₂R. This series demonstrated excellent in vitro cell-based activity and exhibited activity in the in vivo sleep-model.

Acknowledgments

The authors would like to thank Katalin Menyhart, Celia Müller, Viktor Ribic, Pascal Rebmann, Ursula Fusco-Hug and Daniel Trachsel for expert technical support and Henri Ramuz for continuous stimulating discussions.

References and notes

- de Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.; Foye, P. E.; Danielson, P. E.; Fukuhara, C.; Battenberg, E. L.; Gautvik, V. T.; Bartlett, F. S., 2nd; Frankel, W. N.; van den Pol, A. N.; Bloom, F. E.; Gautvik, K. M.; Sutcliffe, J. G. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 322.
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R. M.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.; Wilson, S.; Arch, J.; Buckingham, R. E.; Haynes, A. C.; Carr, S. A.; Annan, R. S.; McNulty, D. E.; Liu, W.; Terrett, J. A.; Elshourbagy, N. A.; Bergsma, D. J.; Yanagisawa, M. *Cell* **1998**, *92*, 573.
- Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P. J.; Nishino, S.; Mignot, E. Cell 1999, 98, 365.

- Chemelli, R. M.; Willie, J. T.; Sinton, C. M.; Elmquist, J. K.; Scammell, T.; Lee, C.; Richardson, J. A.; Williams, S. C.; Xiong, Y.; Kisanuki, Y.; Fitch, T. E.; Nakazato, M.; Hammer, R. E.; Saper, C. B.; Yanagisawa, M. Cell 1999, 98, 437.
- For recent reviews on the medicinal chemistry of orexin antagonists, see: (a) Roecker, A. J.; Coleman, P. J. *Curr. Topics Med. Chem.* **2008**, *8*, 977; (b) Boss, C.; Brisbare-Roch, C.; Jenck, F. *J. Med. Chem.* **2009**, *52*, 891; (c) Boss, C.; Brisbare-Roch, C.; Jenck, F.; Aissaoui, H.; Koberstein, R.; Sifferlen, T.; Weller, T. *Chimia* **2008**, *62*, 974.
- Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.; Aissaoui, H.; Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de Haas, S. L.; Hess, P.; Qiu, C.; Buchmann, S.; Schertz, M.; Weller, T.; Fischli, W.; Clozel, M.; Jenck, F. *Nat. Med.* 2007, 13, 150.
- Koberstein, R.; Aissaoui, H.; Bur, D.; Clozel, M.; Fischli, W.; Jenck, F.; Mueller, C.; Nayler, O.; Sifferlen, T.; Treiber, A.; Weller, T. Chimia 2003, 57, 270.
- 8. Kang, J.; Kim, Y. H.; Park, M.; Lee, C. H.; Kim, W. Synth. Commun. **1984**, *14*, 265. 9. Vicentini, C. B.; Manfrini, M.; Mazzanti, M.; Manferdini, M.; Morelli, C. F.;
- Veronese, A. C. *Heterocycles* **2000**, *53*, 1285. 10. Campagna, F.; Carotti, A.; Casini, G. *Tetrahedron Lett.* **1977**, *21*, 1813.
- 11. FLIPR assay: Chinese hamster ovary (CHO) cells expressing the human orexin receptors (hOX₁R or hOX₂R) were seeded into 96-well plates and incubated at 37 °C in 5% CO₂ with the cytoplasmic fluorescent calcium indicator fluo-3 AM (Molecular Probes). After washing the cells, intercellular Ca²⁺ mobilization was monitored as a change in cell fluorescence intensity by FLIPR (Molecular Devices). Differing concentrations of orexin antagonists were added to the plates prior to addition of orexin A. For each antagonist, IC₅₀ (the concentration of compound needed to inhibit 50% of the agonistic response) is calculated.
- For the purposes of this communication, a dual antagonist is defined as having less than 20-fold selectivity for either OX₁R or OX₂R.
- 13. For pharmacodynamic sleep studies, adult male wistar rats were implanted with radiotelemetric probes (Data Sciences International) under general anesthesia. Those implants allow the recording of the electroencephalogram (EEG), the electromyogram (EMG), home cage activity and body temperature in freely moving animals. Compounds were administrated orally at the beginning of the dark active phase and formulated in 100% PEG-400. We used groups of 7 or 8 animals, in a cross over design, with at least 4-day washout periods separating consecutive administration.