

Tetrahedron Letters 39 (1998) 2675-2678

TETRAHEDRON LETTERS

Studies of Zoanthamine Alkaloids. Enantiocontrolled Construction of the Tetracyclic Hemi-Aminal Core.

David R. Williams* and Guillermo S. Cortez

Department of Chemistry, Indiana University Bloomington, Indiana 47405 U.S.A.

Received 13 January 1998; revised 9 February 1998; accepted 11 February 1998

Abstract: A concise enanticocontrolled synthesis of the enamine-aminal heterocyclic core found in the zoanthamine alkaloids is presented. Conjugate addition of a chiral imine provides for excellent diastereofacial selectivity in the generation of the quaternary C9 asymmetry of 4. © 1998 Elsevier Science Ltd. All rights reserved.

The zoanthamine alkaloids have been described as a family of marine metabolites with a unique array of structural and stereochemical complexity.¹ Zoanthamine (1) has displayed potent inhibitory activity toward phorbol myristate-induced inflammation in addition to powerful analgesic effects comparable to indomethacin. The inhibition of growth of P388 murine leukemia cell cultures has been reported,^{2a} and very recently, norzoanthamine (2) has been shown to suppress the loss of bone weight and strength in ovariectomized mice.^{2b} Recently, Tanner and coworkers have described model studies toward preparation of the A/B-*trans*-decalone ring system.³ As a prelude to studies for total synthesis, our efforts have examined methodology for an enantiocontrolled pathway to the tetracyclic enamine **4**, which is a prominent feature of these natural products (**1**, **2**, and **3**). This communication demonstrates the effective use of an asymmetric Michael addition reaction followed by an intramolecular aza-Wittig condensation for construction of the novel hemi-aminal **4**.

Our synthesis studies began with an enantioselective preparation of the requisite C_1 - C_5 amino alcohol fragment as described in Scheme 1.⁴ Evans methodology for asymmetric alkylation provided the known oxazolidinone **6** (98% de).⁵ An efficient iodolactonization of **6** led to the *trans*-disubstituted butyrolactone **7** with outstanding diastereoselectivity (ratio >35:1). In situ generation of N-iodosuccinimide (NIS) under buffered conditions following the protocol described by Merck investigators,⁶ apparently contributed to a significant improvement in the observed 1,3-asymmetric induction for this kinetic cyclization compared to results for iodine.⁷

placement of the C-4 methyl group in the pseudo-axial disposition. A minimization of 1,3-diaxial interactions results in a pseudoequatorial orientation for the developing iodomethyl substituent.⁸

Azide displacement and the subsequent quantitative borane reduction of lactone 7 gave diol 8. Silylation of the diol and selective deprotection⁹ afforded the primary alcohol 9, which was transformed into iodide 10 ($[\alpha]_{D}^{25}$ -8.8° (c = 0.02, CHCl₃)) via standard procedures.

Development of the stereogenic quaternary center at C-9, and cyclization to the hemi-aminal core 4 are described in Scheme 2. Low temperature deprotonation of the cyanohydrin 11^{10} afforded a reactive enolate for α -alkylation with iodide 10. Subsequent mild hydrolysis of this acyl equivalent cleanly produced the vinyl ketone 12 (89% yield) without evidence of polymerization. The critical step in the formation of the C-8/C-9 bond of 4 was accomplished by utilizing the chiral imine methodology of Pfau and d'Angelo.^{11a,11c} This deracemizing alkylation of 2-methylcyclohexanone occurred with initial preparation of chiral imine 13.^{11b} In the presence of fused zinc chloride (0.5 equiv.), rate-limiting isomerization to the more substituted enamine 14 triggers conjugate addition to the α , β -unsaturated ketone 12. A minimization of nonbonded allylic interactions of the chiral controller unit of 14 with the neighboring C-11 methylene dictates facial approach (opposite to phenyl). It has been postulated that initial coordination of the enone may occur through the contact pair 15.¹² In this manner, diketone 16 was obtained in 64% yield upon mild acidic hydrolysis (10% aqu. AcOH; 3 hrs). Remarkable diastereoselectivity was established (ratio 22:1) via ¹H NMR (500 MHz)

Scheme 1

analysis of the C-9 methyl signals of product prior to purification. The C-9 stereoassignment of 16 is based upon the literature precedent.^{11,12}

Finally, the amino functionality of 16 was released upon application of the Staudinger reaction of the primary azide with *tri*-n-butylphosphine. Direct intramolecular aza-Wittig condensation led to isolation of the desired tetrahydroazepine 17 in excellent yield (13 C NMR δ 205.1 and 99.4). 13 Hemi-aminal 4 was produced by desilylation of 17, which resulted in ketalization, amination, and dehydration to the tetracyclic core of the zoanthamine alkaloids. 14

In summary, these studies have demonstrated the construction of a novel enamine-hemiaminal system. Enantiocontrol was established at a critical quaternary site via an asymmetric Michael addition, and the aza-Wittig process initiated the cascade of internal aminations. Further studies toward the synthesis of zoanthamine will be reported in due course.

Acknowledgment: We thank the National Institutes of Health (GM41560) for generous financial support. Additionally, Guillermo Cortez was supported by an NIH Predoctoral Minority Fellowship (GM18547). A grant from Merck Research Laboratories is also gratefully acknowledged.

References:

- a) Rao, C. B.; Anjaneyula, A. S. R.; Sarma, N. S.; Venkateswarlu, Y.; Rosser, R. M.; Faulkner, D. J.; Chen, M. H. M.; Clardy, J. J. Am. Chem. Soc. **1984**, 106, 7984. b) Rao, C. B.; Anjaneyula, A. S. R.; Sarma, N. S.; Venkateswarlu, Y.; Rosser, R. M.; Faulkner, D. J. J. Org. Chem. **1985**, 50, 3757. c) Rao, C. B.; Rao, D. V.; Naju, V. S. N.; Sullivan, B. W.; Faulkner, D. J. Heterocycles **1989**, 28, 103. d) Rahman, A. -U.; Alui, K. A.; Abbar, S. A.; Choudhary, M. I.; Clardy, J. Tetrahedron **1989**, 30, 6825.
- a) Fukuzawa, S.; Hayashi, Y.; Uemura, D.; Nagatsu, A.; Yamada, K.; Ijuin, Y. Heterocycl. Commun. 1995, *I*, 207. b) Kuramoto, M.; Hayashi, K.; Fujitani, Y.; Yamaguchi, K.; Tsuji, T.; Yamada, K.; Ijuin, Y.; Uemura, D. Tetrahedron Lett. 1997, 38, 5863.
- a) Tanner, D.; Tedenborg, L.; Somfai, P. Acta Chem. Scand. 1997, 51, 1217. b) Tanner, D.; Andersson, P. G.; Tedenborg, L.; Somfai, P. Tetrahedron 1994, 50, 9135.
- All new compounds were purified by silica gel chromatography and fully characterized by ¹H NMR, ¹³C NMR, FTIR, and HRMS data.
- a) Ho, G., -J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271. b) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
- a) Maligres, P.E.; Upadhyay, V.; Rossen, K.; Cianciosi, S.J.; Purick, R.M.; Eng, K.K.; Reamer, R.A.; Askin, D.; Volante, R.P.; Reider, P.J. *Tetrahedron Lett.* 1995, 36, 2195. b) Vankar, Y.; Kumaravel, G. *Tetrahedron Lett.* 1984, 25, 233.
- 7. Moon, H.-S.; Eisenberg, S. W. E.; Wilson, M. E.; Schore, N. E.; Kurth, M. J. J. Org. Chem. 1994, 59, 6504.
- Tamura, Y.; Mizutani, M.; Furukawa, Y.; Kawamura, S.; Yoshida, Z.; Yanagi, K.; Minobe, M. J. Am. Chem. Soc. 1984, 106, 1079.
- 9. Isoe, S.; Katsumura, S.; Okada, T.; Yamamoto, K. Tetrahedron Lett. 1987, 28, 5865.
- a) Stork, G.; Takahashi, T.; Kawamoto, I.; Suzuki, T. J. Am. Chem. Soc. 1978, 100, 8272. b) Jacobson,
 R. M.; Lahm, G. P.; Clader, J. W. J. Org. Chem. 1980, 45, 395.
- a) For a review; d'Angelo, J.; Desmaële, D.; Dumas, F.; Guingant, A. Tetrahedron: Asymmetry 1992, 3, 459. b) Revial, G.; Pfau, M. Org. Synth. 1991, 70, 35. c) d'Angelo, J.; Guingant, A. Tetrahedron Lett. 1988, 29, 2667.
- 12. For a mechanistic presentation: Hickmott, P.W. in *The Chemistry of Enamines*, Part 1; Rappoport, Z. Ed.; John Wiley & Sons: New York, 1994 pp. 843-871. The initial complex 15 may progress along the reaction coordinate through an aza-ene mechanism for concerted proton transfer, or via formation of the hetero-Diels-Alder dihydropyran with subsequent isomerization.
- For examples of aza-Wittig cyclizations: a) Williams, D. R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1988, 110, 1923. b) White, J.D.; Cammack, J.H.; Sakuma, K. J. Am. Chem. Soc. 1989, 111, 8970.
 c) Tanner, D.; Almario, A.; Högberg, T. Tetrahedron 1995, 51, 6061. d) Molina, P.; Fresneda, P.M., Almendros, P. Heterocycles, 1993, 36, 2255.
- 14. Characterization of the hemi-aminal 4 is provided as follows: $R_f = 0.15$ in 10% EtOAc/hexanes; $[\alpha]_D^{22} 60.0^\circ$ (c = 2.6, PhH); IR v_{max} 2942, 1645(m), 1475, 1367, 1228, 1073 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 4.45 (m, 1H), 4.43 (m, 1H), 3.03 (t, J = 6.6 Hz, 1H), 2.97 (d, J = 7.8 Hz, 1H), 2.04-2.30 (m, 4H), 1.93 (dd, J = 13.0 Hz, 5.3 Hz, 1H), 1.72-1.84 (m, 2H), 1.64-1.72 (m, 2H), 1.54-1.62 (m, 2H), 1.40-1.52 (m, 2H), 1.3-1.40 (m, 2H), 1.24 (s, 3H), 0.72 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆) δ 144.7, 97.6, 91.1, 73.9, 48.8, 42.7, 39.1, 39.0, 37.9, 36.3, 31.6, 26.5, 24.4, 23.2, 22.1, 18.8; MS (CI/NH₃), *m/z* (rel. int.) 247(9), 232(3); HRMS (CI/NH₃) calculated for C₁₆H₂₅NO 247.1936, found 247.1943.