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The Ferrier rearrangement, which is widely used in carbohydrate chemistry, is generally performed under
acidic conditions to give an o anomer with high stereoselectivity. We have found that 3-O-mesyl-p-gly-
cals 2-4 were smoothly reacted with alcohols in the presence of triethylamine. The present reaction was
shown to proceed under kinetic control to give ~1.3:1.0 mixture of o and B anomers, indicating that a

kinetic anomeric effect does not operate.
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Reaction of glycals with nucleophiles in the presence of a Le-
wis acid or protic acid gives an allylic rearrangement product
having the double bond at the 2,3-position and new substituents
at the anomeric center. This reaction has been widely used and
is known as the Ferrier rearrangement.! In general, the reaction
proceeds with high stereo- and regioselectivity."® An acid cata-
lyst accelerates the departure of a leaving group at C-3 to gener-
ate the delocalized carbenium ion, followed by nucleophilic
addition reactions. The last step should be reversible to give
the thermodynamically more stable o anomer as a major prod-
uct. For example, reaction of p-glucal 1 (Fig. 1) and methanol
in the presence of BF;-OEt, gave a 7:1 equilibrium mixture of
o and B anomers.'® Even under kinetic control, C-glycosidation
is typical,? and o anomers predominate over B anomers. If I,
DDQ,* or iodonium dicolline perchlorate (IDCP)° are used as
the catalyst, the reaction is thought to be mildly acidic or non-
acidic, and the o anomer again becomes the major product.
Without catalyst, for example, reaction of 1 with methanol gave
the oo anomer as the major product,® probably as a result of ano-
merization due to the acetic acid generated during the reaction.
Thus the Ferrier rearrangement is performed under acidic, some-
times neutral conditions, but not under basic conditions.
However, there is one exception, in which treatment of 4,6-O-
benzylidene-3-0-mesyl-p-allal (4) with methanolic sodium meth-
oxide afforded methyl 4,6-0-benzylidene-B-p-2-enopyranoside 8a
in 91% yield.” However, this reaction was carried out only to
confirm the generation of unstable mesylate 4, and the product
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was neither isolated nor were the reaction conditions de-
scribed.” In this paper, we report that the Ferrier rearrangement
of 3-O-mesyl derivatives 2-4 proceeds under slightly basic condi-
tions (pH ~10), as judged from UNIV pH paper (ADVANTEC®), to
give in good yield a mixture of o and B anomers with the o ano-
mer predominating. Although the reaction of the mesylates with
methanol in the presence of triethylamine was shown to be kinet-
ically controlled, we found that anomerization occurs at least par-
tially in the presence of I, or DDQ.

Treatment of 3-0O-acetyl-4,6-O-benzylidene-p-glucal (5) with
MeOH in the presence of BFs-Et,0 or I, gave zones with low R; val-
ues on TLC, suggesting partial debenzylidenation. Then, the leaving
group at C-3 was changed to the more reactive mesyloxy group, of
which isolation failed similar to its 3-epimer.”

After addition of 1.5 equiv of MsCl to a solution of 4,6-0O-benzyl-
idene-p-glucal (6) in CH,Cl, in the presence of 4 equiv of EtsN,
4 equiv of MeOH was added and warmed at 40 °C for 2 h to give a
1.3:1.0 mixture of o and B anomers of the methyl 2-enopyranoside
in 88% yield. On TLC, their spots completely overlapped, and their
separation was not achieved.* We isolated the  anomer by applica-
tion of the fact that LiAlH4 reduction of the oo anomer to 3-deoxy-glycal
was much faster than that of the p anomer.® As shown in Table 1,
ethanol, 2-propanol, and tert-butyl alcohol similarly reacted, from

 The following reaction gave a 3:2 mixture of methyl o- and B-p-2-enopyranoside.
Compound 7 (23.4 mg, 100 umol) was treated with MsCl (17.1 mg, 11.5 pumol) in
CHxCl, (3 mL) in the presence of EtsN (41 mg, 406 pmol) for 5 min at room
temperature. After addition of 0.1 M NaOMe (500 pLL), the mixture was warmed at 40
°C for 2 h. These conditions, however, were not applied to acetate 10 because of
deacetylation.

* Separation of both o and § anomers was not achieved in the literature reports.
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Figure 1.

which o and B anomers of 2-enopyranosides generated by the latter
two alcohols were separated by column chromatography.

Similar reaction of 4,6-0-benzylidene-p-allal (4) with methanol
gave the same results, indicating that the reaction proceeds via a
cationic intermediate similar to that of the Ferrier rearrangement.

Di-O-acetyl-p-glucal 10 is readily prepared from commercially
available per-0-acetyl-p-glucal.® Therefore, if the Ferrier rearrange-
ment of 2 proceeds under basic conditions, it would be useful be-
cause the reaction should be kinetically controlled and used for
acid-sensitive acceptors. It is noteworthy that the acetoxy group
is apparently able to stabilize a cationic intermediate via neighbor-
ing-group participation as shown in Figure 2, which serves to con-
trol the stereoselectivity.!1°

The Ferrier rearrangement of the diacetate 2 with methanol
was examined in the presence of several bases. When strong
bases (DMAP and DBU) and a large amount of EtsN were em-
ployed, the reactions became complicated because of the base
sensitivity of the acetoxy group. Four equivalents of EtsN gave
satisfactory results, and deacetylation was not observed by the

Table 1
0-Glycosidation of 4,6-0-benzylidene-3-0O-mesyl-p-glucal using triethylamine

Figure 2. Possible intermediates of Ferrier rearrangement.

use of 8 equiv of Et3N. Stereoselectivity was lower compared to
the conventional Ferrier rearrangement, and the ratios of o and
B anomers generated from 2 were almost the same as those from
the benzylidene derivatives 3 (Table 2, entry 1). Mesylate 2
smoothly reacted with alcohols and thiols to give a mixture of
o and B anomers in high yields, but stereoselectivities were again
low (Table 2). Although UNIV pH paper suggests that the reaction
medium was slightly basic (pH ~10), distinct basicity is not clear
because of the nonaqueous solvent and the molar ratio of MsCl
(1.5 equiv) and Et3N (4 equiv). Anomerization of the 2-enopyrano-
side readily occurs under acidic conditions because a cationic
intermediate is stabilized by the oxygen atom (0O-5) and the dou-
ble bond. However, if the reaction medium is neutral or basic, the
O- and S-glycosides are stable and avoid anomerization. When a
1.3:1.0 mixture of o anomer 12a and B anomer 11a was treated
with EtsN in methanol, the ratio was unchanged. However, as
shown in Table 3, similar treatment of the mixture in the pres-
ence of the catalyst caused partial anomerization. Even in the
presence of DDQ, referred to as a nonacidic catalyst,* anomeriza-
tion partially occurred.

O
"% Q MsCl, Et,N Ph/v Ph™\ 0 R’
R _ > B3 _ Acceptor o) Q
0, —
2 CH2C12, 0 C, 5 min. 40 OC 2 h. R2
6R'= OH,R?=H 3R"=OMs,R?=H 8a~d R'= OR,R?= H
1_ 2 _ 4R = 2 _ a~
7R'=H, R*=OH R'=H R"=0Ms 9a~d R'= H R?=OR
Entry Acceptor® Glycal Products Yield® (%) o ratio©
TRe TR
1 MeOH %o P 88 1.3:1.0
6 8a, 9a
P\ O 5 Ph/T
2 EtOH OHO = 94 1.8:1.0
6 8b, 9b
N PW%)W
3 2-PrOH (o] 93 2.0:1.0
HO = Oi-Pr
6 8¢, 9¢
P\~ . Ph~"\"O
4 tert-BuOH %o e o 89 22:1.0
= Ot-Bu
(3 8d, 9d
TR "W g
O
5 MeOH = — OMe 91 1.3:1.0
7 8a, 9a

@ 4 equiv of acceptor was employed.
b Isolated yield.
¢ Determined by 'H NMR.
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Table 2

0- and S-glycosidation of 10
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OAc OAc OAc
AcaOS %/O\ MsCl, Et;N ACO/§§ :O Acceptor ACO/@(R1
— —_—
CH,Cl,, 0°C,5 min. | MsO = 40°C, 2 h. —\,
R
10 2
1a~k R'= Nu,R?=H
12a~k R'=H, R® = Nu
Entry Acceptor Products Basic conditions? Lit.”
AcO o
1 MeOH AcO 1.3:1.0 (88%) 5.7:1.0
_ o 3:1. 7:1,
11a, 12a
AcO o
2 EtOH AcO 1.4:1.0 (90%) 9.0:1.0"
_ OFt 411 .0:1.
11b, 12b
AcO o
3 iso-PrOH AcO 1.2:1.0 (89%) 8.0:1.0°
_ . 2:1. % 0:1.
11c, 12¢
AcO o
4 tert-BuOH AcO 0.8:1.0 (92%) 10.0:1.0"
_ S 8:1. % .0:1.
11d, 12d
OH AcO
5 ©/ Aco%W /© 1.6:1.0 (94%) 10.0:1.0"
= O
1le, 12¢
AcO 0
6 ©/\OH AcO _ o 1.2:1.0 (82%) 10.5:1.0"
11f, 12f
AcO o
7 \/\OH AcO — O/\/ 1.5:1.0 (93%) 7.0:1.012
11g, 12¢g
OH AcO
8 O/ Acoﬂ /O 1.2:1.0 (95%) 6.7:1.03
= (0]
11h, 12h
SH AcO
= S
11i, 12i
AcO 0
10 ~gH AcO — N 1.2:1.0 (87%) 6.7:1.0'
115, 12j
AcO
11 ACO%N /© 1.4:1.0 (93%) 8.0:1.0'
== S

e

11k, 12k

a

b Examples: ou:p ratio.

ou:B ratio and yield are shown in parentheses.

Low stereoselectivity observed under kinetically controlled con-

dition suggests that the kinetic anomeric effect does not operate

with these examples.

In conclusion, we found that 3-O-mesylates 2-4 were suitable
substrates for a kinetically controlled Ferrier rearrangement. The

present reactions apply, not only to acid-sensitive 4,6-O-
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benzylidene derivatives 3 and 4, but also to base-sensitive acetyl
derivative 2. This reaction should proceed via a cationic interme-
diate at least in the cases of 4,6-0O-benzylidene derivatives 3 and
4. Neighboring-group participation of the acetoxy group should
not be operative, because the same o/f ratios were obtained in
the reactions of 2 and 3. Thus, the high stereoselectivity ob-
served in conventional O- and S-Ferrier rearrangement should
be caused by anomerization. Low stereoselectivity observed
herewith is a drawback for a synthetic method, but should have
an advantage for using compounds 2-4 as substrates for combi-
natorial chemistry.

1. Experimental
1.1. General methods

Melting points are uncorrected. Optical rotations were deter-
mined with a Horiba High Sensitive Polarimeter (SEPA-200). Most
of the reactions were monitored by TLC using silica gel coated on
glass. Products were purified by flash column chromatography
and recrystallized if necessary. NMR spectra were measured on a
Bruker AVANCE 400 instrument (400 MHz/'H, 100 MHz/'3C) with
TMS as an internal standard. Some signals were assigned by the
use of COSY, HMQC, HMBC, and/or NOESY. IR spectra were re-
corded for KBr pellets on a Perkin-Elmer Spectrum One FTIR spec-
trometer. Silica gel {C-60 (Kanto) and 40-63 pm (E. Merck)} was
used for column chromatography.

1.2. Ferrier rearrangement of 4,6-0-benzylidene-p-glucal (6)

1.2.1. Methyl 4,6-0-benzylidene-2,3-dideoxy-p-erythro-hex-2-
enopyranoside (8a and 9a)

To a solution of 6 (20 mg, 85 pmol) in 1 mL of CH,Cl, were
added Et3N (47 pL, 342 pumol) and MsCl (10 pL, 128 pmol) at
0°C. After 5 min, MeOH (14 pL, 342 umol) was added, and the
solution was heated with stirring for 2 h at 40 °C. The reaction mix-
ture was washed with satd NH4Cl and satd NaCl, and dried. The fil-
trate was evaporated, and the residue was purified by column
chromatography with 4:1 n-hexane-acetone, to give a 1.0:1.3 mix-
ture of 8a and 9a'® (18.6 mg, 88%).

Although ethyl pB-glycoside 9b is a new compound, we could not
separate 8b and 9b.

1.2.2. 2-Propyl 4,6-0-benzylidene-2,3-dideoxy-p-erythro-hex-2-
enopyranoside (8c and 9c¢)

Compound 6 (20 mg, 85 umol) was treated under the same
conditions employed for the preparation of 8a and 9a using 2-
PrOH (26 pL, 342 pmol) instead of MeOH to give a 1.0:2.0 mix-
ture of 8c and 9c¢ (22 mg, 93%). This mixture was separated by
column chromatography, eluting with toluene.

Physical data for 8c: 100-102 °C (EtOH); [o]%’ 41.7 (c 1.4, CHCls);
IR: v 2980, 2872, 1458, 1400, 1379. '"H NMR (CDCl3): 67.51-7.34 (m,

Table 3

Anomerization of glycoside in the presence of catalyst

Entry catalyst ou:f ratio
12 EtsN 1.3:1.0
22 BF5-OEt, ' 6.6:1.0
32 FeCl;'® 5.1:1.0
42 I3 54:1.0
52 DDQ* 4.8:1.0
6° BF;-OEt,°® 5.9:1.0
7 BiCl;'” 6.0:1.0

@ Starting material is 1.3:1.0 mixture of 11a and 12a.
b Starting material is 1.4:1.0 mixture of 11k and 12k.

5H, Ph), 6.10 (br d, 1H, Jo5 10.3 Hz, H-3), 5.66 (ddd, 1H, J15 1.4, 2.4
1.1 Hz, H-2), 5.60 (s, 1H, PhCH), 5.40 (dd, 1H, J; > 1.3 Hz, H-1), 4.35
(dd, 1H, J45 10.2 Hz, H-4), 4.28 (dd, 1H, Jeage 10.2 Hz, J5ge 4.5 Hz,
H-6e), 4.05-4.02 (m, 1H, 2-Pr), 4.02 (dd, 1H, Jss. 10.3 Hz, H-6a),
3.77 (ddd, 1H, H-5), 1.26 (d, 3H, ] 6.2 Hz, 2-Pr), 1.21 (d, 3H, ] 6.2 Hz,
2-Pr). 3C NMR (CDCl3): & 137.8, 129.6, 128.8, 126.6(phenyl),
131.1(C-3), 129.6(C-2), 102.5 (PhCH), 97.7(C-1), 75.5(C-4), 71.4 (2-
Pr), 70.9(C-5), 69.6(C-6), 24.1, 22.6 (2-Pr). Anal. Calcd for C;gHz004:
C, 69.54, H, 7.30. Found: C, 69.75, H, 7.52.

Compound 9c is known.'® '"H NMR (CDCl5): 6 7.50-7.34 (m, 5H,
Ph), 6.10 (br d, 1H, J,310.3 Hz, H-3), 5.68 (ddd, 1H, J;> 2.5 Hz, J24
1.2 Hz, H-2), 5.56 (s, 1H, PhCH), 5.09 (m, 1H, H-1), 4.27 (dd, 1H,
Jeage 10.1Hz, Jsge 4.6, H-6e), 4.12 (dd, 1H, J45 10.0 Hz, H-4),
3.98-3.94 (m, 2H, H-5, 2-Pr), 4.02 (dd, 1H, Jsg. 10.3 Hz, H-6a),
1.24 (d, 3H, J 6.2 Hz, 2-Pr), 1.18 (d, 3H, ] 6.2 Hz, 2-Pr).

1.2.3. tert-Butyl 4,6-0-benzylidene-2,3-dideoxy-p-erythro-hex-
2-enopyranoside (8d and 9d)

Similar treatment of 6 (50 mg, 214 pmol) with tert-butanol gave
a 1.0:2.2 mixture of 8d and 9d (55 mg, 89%). The mixture was sep-
arated by column chromatography, eluting with toluene.

Physical data of B anomer 8d: 112-115 °C (EtOH); [oc]zD5 50.6 (c
1.1, CHCl5); IR: v 2953, 2860, 1500, 1476, 1459. 'H NMR (CDCls):
§ 7.50-7.34 (m, 5H, Ph), 6.07 (br d, 1H, Jo5 10.2 Hz, H-3), 5.59 (s,
1H, PhCH), 5.53 (dd, 1H, J1» 1.2 Hz, H-2), 5.50 (dd, 1H, J;5 1.3 Hz,
H-1), 4.37 (dd, 1H, J54 1.6 Hz, J45 8.4 Hz, H-4), 4.24 (dd, 1H, Jea6c
10.2 Hz, J56e 4.5, H-6e), 3.96 (dd, 1H, Jss, 10.3 Hz, H-6a), 3.96
(ddd, 1H, H-5), 1.30 (s, 9H, t-Bu). '3C NMR (CDCl3): § 137.8,
129.5, 128.7, 126.6 (phenyl), 130.8 (C-3), 130.6 (C-2), 102.5
(PhC), 94.0 (C-1), 76.4 (t-CMe3), 75.4 (C-4), 71.1 (C-5), 69.6 (C-6),
29.1 (t-C(CH3)3). Anal. Calcd for C17H,,04: C, 70.32, H, 7.64. Found:
C, 70.58, H, 7.79.

Physical data of 9d: 55-57 °C (EtOH); [«)%’ 86.4 (c 1.0, CHCl5);
IR: v 2983, 2926, 1497, 1461, 1450. 'H NMR (CDCl5): § 7.51-7.35
(m, 5H, Ph), 6.09 (br d, 1H, J>5 10.2 Hz, H-3), 5.63 (ddd, 1H, J;
2.1Hz, Jo4 1.3Hz, H-2), 557 (s, 1H, PhCH), 5.30 (dd, 1H, J5
0.8 Hz, H-1), 4.25 (dd, 1H, Jsage 10.3 Hz, Jss. 4.6, H-6e), 4.10
(ddd, 1H, J34 3.1Hz, J45 89Hz, H-4), 3.96 (ddd, 1H, Jsga
10.3 Hz, H5), 3.96 (dd, 1H, H-6a), 1.29 (s, 9H, t-Bu). '3C NMR
(CDCl3): & 138.0, 128.9, 129.8, 126.8 (phenyl), 130.3(C-3),
129.6(C-2), 102.6 (PhC), 90.2 (C-1), 75.7 (t-CMes3), 75.6 (C-4),
70.0 (C-6), 64.0 (C-5), 29.3 (t-C(CH3)3). Anal. Calcd for
Ci7H2504: C, 70.32, H, 7.64. Found: C, 70.53, H, 7.86.

1.3. Typical procedure for Ferrier rearrangement of 4,6-di-O-
acetyl-p-glucal (10)

To a solution of 10 (10 mg, 20 mg, 30 mg or 100 mg) in 1M
CH,Cl, were added Et3N (4 equiv) and MsCl (1.5 equiv) at 0 °C.
After 5 min, MeOH (4 equiv) was added, and the solution was
heated with stirring for 2 h at 40 °C. The reaction mixture was
washed with satd NH4Cl and satd NaCl, and dried. The filtrate
was evaporated, and a residue was purified by flash column chro-
matography with 4:1 hexane-acetone to give a 1.3:1.0 mixture of
11a and 12a. For details see Table 2.

1.3.1. 4-Methylphenyl 4,6-di-0-acetyl-2,3-dideoxy-p-p-erythro-
1-thio-hex-2-enopyranoside (11i)

"H NMR (CDCl5): 6 7.44, 7.13 (each d, 2H, J 8.1, -Ph), 5.96
(ddd, 1H, J12 1.8 Hz, J53 10.2 Hz, J,4 0.7 Hz, H-2), 5.80 (dd, 1H,
J3.4 2.4 Hz, H-3), 5.59 (br d, 1H, H-1), 5.18 (ddd, 1H, J45 9.2 Hz,
H-4), 4.30-4.28(m, 2H, H-6), 4.10 (ddd, 1H, Js¢ 4.7 Hz, 4.6, H-
5), 2.36 (s, 3H, -PhMe), 2.13, 2.11 (each s, 3H, OAc). For details
see Table 2.
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1.3.2. 4-Methylphenyl 4,6-di-0-acetyl-2,3-dideoxy-a-p-erythro-
1-thio-hex-2-enopyranoside (12i)

"H NMR (CDCl5): & 7.46, 7.14 (each d, 2H, J 8.1 Hz, Ph), 6.07
(ddd, 1H, J;» 1.9 Hz, 5 10.1Hz, Jo4 1.2 Hz, H-2), 5.87 (dd, 1H,
Js4 1.5 Hz, H-3), 5.70 (br d, 1H, H-1), 5.39 (ddd, 1H, J45 9.5 Hz,
H-4), 450 (m, 1H, H-5), 4.28-4.13 (m, 2H, H-6), 2.35 (s, 3H,
-PhCH3), 2.13, 2.11 (each s, 3H, —-OAc). For details see Table 2.

1.3.3. Ethyl 4,6-di-0-acetyl-2,3-dideoxy-p-p-erythro-1-thio-hex-
2-enopyranoside (11j)

TH NMR (CDCls): 6 5.93 (dd, 1H, J;» 1.3 Hz, J,53 10.3 Hz, H-2),
5.88 (br d, 1H, H-3), 5.41 (d, 1H, H-1), 5.29 (dd, 1H, J45 6.6 Hz,
H-4), 4.27-4.19 (m, 2H, H-6), 3.87-3.83 (m, 1H, H-5), 2.71 (q, 2H,
J 42 Hz, -SCH,CH3) 2.15, 2.11 (each s, 3H, -0OAc), 1.29 (t, 3H,
-SCH,CH3). For details see Table 2.

1.3.4. Ethyl 4,6-di-0-acetyl-2,3-dideoxy-a-p-erythro-1-thio-
hex-2-enopyranoside (12j)

'H NMR (CDCls): 6 5.94 (br d, 1H, J»3 10.1 Hz, H-2), 5.78 (br d,
1H, H-3), 5.58 (br s, 1H, H-1), 5.37 (d, 1H, J45 9.1 Hz, H-4), 4.32
(m, 1H, H-5), 4.27 (dd, 1H, Js¢ 5.2 Hz, J¢¢ 11.9 Hz, H-6), 4.18 (d,
1H, H-6'), 2.71 (q, 2H, J 4.2 Hz, -SCH,CH3), 2.12, 2.11 (each s, 3H,
-0Ac), 1.34 (t, 3H, -SCH,CH3). For details see Table 2.

1.3.5. Phenyl 4,6-di-0-acetyl-2,3-dideoxy-p-p-erythro-1-thio-
hex-2-enopyranoside (11k)

"TH NMR (CDCl3): 8 7.55-7.29 (m, 5H, -SPh), 5.96 (ddd, 1H, J; ,
1.8 Hz, Jo3 10.2 Hz, J,4 2.4 Hz, H-2), 5.82 (dd, 1H, J34 2.4 Hz, H-3),
5.64 (br d, 1H, H-1), 5.20 (ddd, 1H, J45 7.5 Hz, H-4), 3.92 (m, 1H,
H-5), 4.28 (m, 2H, H-6), 2.10, 2.07 (each s, 3H, -OAc). For details
see Table 2.

1.3.6. Phenyl 4,6-di-0-acetyl-2,3-dideoxy-a-p-erythro-1-thio-
hex-2-enopyranoside (12Kk)

TH NMR (CDCls): § 7.56-7.29 (m, 5H, -SPh), 6.06 (ddd, 1H, J;»
1.2 HZ, _12'3 10.1 HZ,]2'4 1.9 HZ, H—Z), 5.87 (dd, 1H, ]3'4 1.9 HZ, H—3),
5.76 (br d, 1H, H-1), 5.38 (ddd, 1H, J45 9.4 Hz, H-4), 4.47 (m, 1H,
H-5), 4.29 (dd, 1H, Js¢ 5.9 Hz, Jse 12.1 Hz, H-6), 418 (d, 1H, Js¢
2.8 Hz, H-6'), 2.11, 2.04 (each s, 3H, —OAc). For details see Table 2.

1.4. Anomerization of 11a and 12a by promoter used for the
Ferrier rearrangement

A mixture of 11a and 12a (1.3:1.0) (30 mg, 130.3 pumol) in
MeCN (650 pL)-MeOH (6 mg, 196 pmol) was stirred in the pres-
ence of promoter (BF;-Et,0, FeCls, I,, DDQ, 0.1 equiv). After 1 h, a
product ratio was determined by 'H NMR spectroscopy. A 1.4:1.0
mixture of 11k and 12k (30 mg, 92 pumol) was treated similarly.
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