DOI: 10.1002/ejoc.200800681

Synthetic and Theoretical Investigations on the Construction of Oxanorbornenes by a Michael Addition and Intramolecular Diels–Alder Furan Reaction

Mamta Dadwal,^[a] Manoj K. Kesharwani,^[b] Vaishalee Danayak,^[b] Bishwajit Ganguly,^{*[b]} Shaikh M. Mobin,^[c] Rajendran Muruganantham,^[a] and Irishi N. N. Namboothiri^{*[a]}

Keywords: Diels-Alder reaction / Michael addition / Oxanorbornene / B3LYP / Ab initio calculations

The conjugate addition of nucleophiles such as allylmercaptan, allyl- and homoallylmalonate and diallylamine to β -furyl enones and acrylate, provides the Michael adducts in good yield. A facile intramolecular Diels–Alder reaction between the unsaturated tether and the furan diene ensues when these adducts are heated in a solvent such as toluene or xylene to afford the cycloadducts in good yield and excellent stereoselectivity in most cases. The structure and stereochemistry of these cycloadducts were confirmed by extensive

Introduction

Intramolecular reactions are superior to their intermolecular counterparts both in terms of substrate reactivity and product selectivity. Whereas the proximal disposition of functional groups that take part in cycloaddition/cyclization provides entropic advantages, the geometric constraints associated with the substrate offer a high degree of regioand stereoselectivity. Intramolecular Diels-Alder (IMDA) reactions have received great attention, as the two bonds formed simultaneously result in two new rings making it an excellent strategy for the synthesis of polycycles including natural products.^[1,2] Although various diene components have been employed in IMDA reactions, the furan diene has figured prominently in the literature because of its reactivity and the cleavage options available for the product oxanorbornene.^[3,4] However, the requirement of multi-step reactions to obtain suitable precursors is a major impediment to this otherwise attractive synthetic strategy.

Bombay, Mumbai 400076, India

WILLEY InterScience

- [b] Central Salt & Marine Chemicals Research Institute (CSIR), Bhavnagar, Gujarat 364002, India E-mail: ganguly@csmcri.org
- [c] National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology, Bombay, Mumbai 400076, India Fax: +91-22-2576-7152 E-mail: irishi@iitb.ac.in
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

NMR experiments and X-ray crystallography. Quantum chemical calculations on the transition state and product geometries suggest that the formation of the cycloadducts, in which the newly formed ring is *exo*-fused to the oxanorbornene framework, is favored over the *endo*-fused product due to less strain in the former and its transition state.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Considerable effort has also been made by using computational methods toward accurate predictions of the stereochemical outcome of many IMDA reactions.^[5] Theoretical approaches, including simple FMO models and quantum chemical calculations of transition states and possible intermediates of these reactions, have been considered to explain the regio- and stereoselective aspects of the reaction.^[5] In some cases, secondary orbital interactions have been invoked to explain the stereoselectivity observed.^[6] Recently, the pseudo-intramolecular Diels–Alder reaction between a 2-substituted furan and an *N*-maleimide has been analyzed with a DFT method.^[7]

Recently, we reported a strategy involving the Michael addition and intramolecular Diels-Alder reaction of the furan diene (IMDAF) for the synthesis of oxanorbornenes fused to five- and six-membered rings with conjugated nitroalkenes as the key Michael acceptors.^[8] The Michael adducts arising from the addition of various C- and heteroatom-centered nucleophiles to nitroalkenes underwent facile IMDAF reactions in a highly regio- and stereoselective fashion to afford the products in moderate to high yield. Herein, we show the development of this strategy as a fullfledged Michael addition/IMDAF reaction by employing other easily available Michael acceptors such as enones, enediones and acrylates. The products, possessing four contiguous chiral centers, are immediate precursors to fused and functionalized β , γ -enones and cyclohexenols.^[8] We also report our theoretical results on the various modes of cycloaddition of the Michael adducts, which show that ring strain can determine the stereoselectivity observed for the IMDA reactions.

[[]a] Department of Chemistry, Indian Institute of Technology,

Results and Discussion

Initially, we set out to construct a tetrahydrothiophene ring fused to an oxanorbornene framework by the Michael addition/IMDAF strategy. The requisite Michael acceptors, 2-furyl enones 1a-c, were prepared according to reported aldol condensation methods.^[9] These Michael acceptors were then treated with allylmercaptan (2) in the presence of a suitable base to afford Michael adducts 3 (Table 1). For instance, the triethylamine-mediated addition of allylmercaptan (2) to enone 1a provided Michael adduct 3a in 64% yield (Table 1, Entry 1). When 3a was heated in toluene at reflux for 4 d, an IMDAF reaction took place to afford adducts 4a and 5a in 67% total yield and an 86:14 ratio. We note that in both the isomers, the tetrahydrothiophene ring was exo-fused to the oxanorbornene framework. These isomers are epimeric at the chiral center attached to the S atom.

In a similar fashion, enone **1b** was subjected to the conjugate addition of allylmercaptan (**2**) to afford 1,4-adduct **3b** in comparable yield (63%, Table 1, Entry 2). Subsequently, **3b** was transformed into the IMDAF adducts **4b** and **5b** in 59% yield and an 87:13 ratio. Despite the fact that the IM-DAF reaction time was shorter (3 d), similar reaction conditions were suitable for Michael acceptor **1c** possessing two

activating (COMe) groups to deliver Michael adduct **3c**, and later, the IMDAF products **4c** and **5c**, in good yield and excellent diastereoselectivity (Table 1, Entry 3).

Encouraged by the simplicity and efficiency of our method in constructing the tricyclic skeleton possessing a fused and functionalized tetrahydrothiophene ring in a stereoselective manner, we felt that the enones 1a,b and acrylate 1d,^[10] containing the key furyl moiety at the β -position, would be suitable for constructing other carbo- and heterocycles fused to oxanorbornenes. We chose allylmalonate 6a and its homoallyl analog 6b as the Michael donors for the synthesis of precursors suitable for the IMDAF reaction (Table 2). Allyl and homoallyl Grignard reagents were not suitable for this purpose, as the olefinic moiety in the corresponding Michael adducts would not be sufficiently activated to undergo the IMDAF reaction. The conjugate addition of diethyl allylmalonate (6a) to enone 1a was carried out under solvent-free conditions mediated by KOH and benzyltriethylammonium chloride (TEBAC, Table 2, Entry 1). Michael adduct 7a, isolated in excellent yield (82%), underwent a smooth IMDAF reaction when heated in toluene for 1 d to afford cycloadducts 8a and 9a containing a cyclopentane skeleton in 73% yield and 83:17 selectivity. We also observed a similar high yield and selectivity when enone 1b was employed as the Michael acceptor

Table 1. Michael addition of allylmercaptan (2) to β -furyl enones 1a-c followed by the IMDAF reaction of the Michael adducts 3a-c.

		$ \begin{array}{c} $	$\xrightarrow{\text{Et}_{3}\text{N}}_{\text{'HF, 24 h}} \swarrow \qquad \qquad$	$\frac{\text{toluene}}{\text{reflux}} \xrightarrow{R^2 \text{OC}} \overset{0}{H} \xrightarrow{R^2} \overset{0}{H}$	+ H S R^{1} COR^{2} S	
Entry	1	R^1 , R^2	Yield ^[a] of 3	IMDAF time	Yield ^[a] of $4 + 5$	4/5
$ \begin{array}{c} 1\\ 2\\ 3 \end{array} $	a b c	H, Me H, Ph COMe, Me	64 % 63 % 59 %	4 d 4 d 3 d	67% 59% 51%	86:14 87:13 87:13 ^[b]

[a] Isolated yield after purification by silica gel column chromatography. [b] The minor isomer 5c could not be isolated in pure form.

Table 2. Michael addition of allyl- and homoallylmalonates $6^{[a]}$ to β -furyl enones **1a**,**b** and acrylate **1d** followed by an IMDAF reaction of the Michael adducts **7**.

				$ + \frac{KOH}{TEBAC}, $	$\overrightarrow{r.t.} \bigcirc \bigcup_{E}^{n} \underset{COR}{\overset{(n)}{\underset{E}{\underset{E}{\overset{(n)}{\underset{E}{\overset{(n)}{\underset{E}{\overset{(n)}{\underset{E}{\overset{(n)}{\underset{E}{\overset{(n)}{\underset{E}{\underset{E}{\overset{(n)}{\underset{E}{\underset{E}{\overset{(n)}{\underset{E}{\underset{E}{\overset{(n)}{\underset{E}{\underset{E}{\underset{E}{\overset{(n)}{\underset{E}{\underset{E}{\underset{E}{\overset{(n)}{\underset{E}{\underset{E}{\underset{E}{\underset{E}{\underset{E}{\underset{E}{\underset{E}{$	$\frac{\text{vent}}{\text{lux}} \operatorname{ROC} \xrightarrow{\text{O}}_{\text{H}_{E}} \stackrel{0}{\overset{(1)}{\underset{\text{E}}{\underset{\text{ROC}}{\overset{(1)}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{ROC}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{\text{ROC}}{\underset{\text{ROC}}{\underset{\text{E}}{\underset{\text{ROC}}{\underset{ROC}}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}}{\underset{ROC}}{\underset{ROC}}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}{\underset{ROC}}}{\underset{ROC}}}{\underset{ROC}}}}}}}}}}}$	Z _e) _n Te	
Entry	1	R	6 , <i>n</i>	MA time	Product, yield ^[b]	IMDAF solvent and time	Yield ^[b] of 8 + 9	8/9
1	a	Me	6a , 1	10 h	7a , 82%	toluene, 1 d	73%	83:17
2	b	Ph	6a , 1	8 h	7b , 77%	toluene, 1 d	87%	82:18
3	d	OEt	6a , 1	72 h	7c, 38%	toluene, 1.5 d	77%	84:16
4	a	Me	6b , 2	16 h	7d , 75%	xylene, 7 d	41 % ^[c]	100:0
5	b	Ph	6b , 2	15 h	7e , 69%	xylene, 5 d	43% ^[d]	93:7
6	d	OEt	6b , 2	106 h	7f , 45%	xylene, 7 d	_[e]	_

[a] 6: $E = CO_2Et$. [b] Isolated yield after purification by silica gel column chromatography. [c] 40% of Michael adduct 7d was recovered. [d] 35% of Michael adduct 7e was recovered. [e] 38% of 7f plus intractable material was recovered.

(Table 2, Entry 2). Although the yield of Michael adduct 7c was low (38%) when acrylate 1d was treated with allylmalonate 6a, 7c subsequently underwent an IMDAF reaction to provide 8c and 9c in high yield (77%) and selectivity (84:16, Table 2, Entry 3).

We subsequently used substrates 1a,b and 1d to construct a cyclohexane skeleton fused to oxanorbornene (Table 2, Entries 4-6). Thus, whereas the 1,4-addition of homoallylmalonate 6b to enones 1a,b proceeded well (75 and 69% yield, respectively, Table 2, Entries 4 and 5), the corresponding reaction of **6b** with acrylate **1d** provided adduct 7f only in moderate yield (45%, Table 2, Entry 6). Nevertheless, we subjected these Michael adducts to the IMDAF reaction by refluxing them in xylene for 5-7 d (Table 2, Entries 4-6). As anticipated, these reactions remained incomplete even after such a prolonged reaction time, and considerable amounts of Michael adducts were recovered. However, the selectivities in these reactions were noteworthy. Whereas we observed 100% selectivity when 7d was subjected to the IMDAF reaction (Table 2, Entry 4), the reaction of 7e also exhibited excellent selectivity (Table 2, Entry 5).

Having constructed the tetrahydrothiophene, cyclopentane and cyclohexane rings, we investigated the synthesis of a pyrrolidine ring by our Michael/IMDAF strategy. Unfortunately, our attempted Michael addition of diallylamine (10) to enones 1a,b under a variety of conditions provided either no product or a complex mixture. However, we succeeded in adding diallylamine (10) to (2-furyl)acrylate 1d under *n*-butyllithium-mediated conditions in 79% yield (Table 3, Entry 1). Michael adduct 11d underwent a facile IMDAF reaction when refluxed in toluene for 2 d to afford adducts 12d and 13d in a combined yield of 89% and a 23:77 ratio. Analogously, furylidenemalonate 1e^[11] provided Michael adduct 11e, which was refluxed without purification in toluene for 4 d to obtain pyrrolidines 12e and 13e in lower yield (73%), but better selectivity (18:82, Table 3, Entry 2). We note that in contrast to the predominance of exo-cis isomers 4 and 8 over exo-trans isomers 5 and 9 in the case of tetrahydrothiophenes 4,5 (Table 1) and cyclopentanes 8,9 (Table 2), respectively, we obtained exo-trans isomers 13 as the major products in the case of pyrrolidines **12,13** (Table 3, and see also the discussion of the NMR and computational results below).

All our attempts to add allyl alcohol to enones and acrylates under a variety of conditions met with failure. Therefore, we could not generate a tetrahydrofuran ring by our Michael/IMDAF strategy. In another attempt to synthesize a seven-membered ring fused to oxanorbornene, we carried out the Michael addition of diallyl malonate (14) to 4-(2furyl)but-3-en-2-one (1a), but the subsequent cycloaddition of Michael adduct 15 to the desired IMDAF adduct 16 did not proceed, even under forcing conditions (refluxing xylene or mesitylene, Scheme 1).

Scheme 1.

Structure and Stereochemistry

If we consider the two modes of the IMDAF reaction, eight cycloadducts (18–25) are theoretically possible; four cycloadducts (18–21) would result from C2–C4' and C5–C5' bonding (path A), and the other four (22–25) would derive from C2–C5' and C5–C4' bonding (path B, Scheme 2). Whereas path A provides fused or "*ortho*" products, path B leads to bridged or "*meta*" products. However, path B appeared geometrically unfavorable as shown in Figure 1. In this path, severe strain is expected if the reacting centers in the Michael adduct that are relatively far apart have to come closer together. Therefore, we excluded path B and the associated cycloadducts 22–25 from further analysis.

We carried out extensive NMR studies to establish the structure and stereochemistry of the cycloadducts. At the outset, we chose the isomers 4b/5b as representative examples, and we correctly assigned the protons with the assistance of a ¹H-¹H COSY experiment. Further analysis of the

Table 3. Michael addition of diallylamine $(10)^{[a]}$ to β -furylacrylate 1d and furylidenemalonate 1e followed by an IMDAF reaction of Michael adducts 11.

		$\frac{R^{1}}{10} R^{2} \frac{nBuL}{-78 °C}$ RHN 4 h	i, THF $C \to 0^{\circ}C - r.t.$ O R^{1} R^{2} R^{2}	toluene reflux R^1 N R^2 N H $R12$	+ H R^{1} R^{2} R^{2} R 13	
Entry	1	R^1, R^2	Product, yield ^[b]	IMDAF time	Yield ^[b] of $12 + 13$	12/13
1 2	d e	H, CO ₂ Et CO ₂ Et, CO ₂ Et	11d, 79% 11e, - ^[c]	2 d 4 d	89 % 73 %	23:77 18:82

[a] 10: R = allyl. [b] Isolated yield after purification by silica gel column chromatography. [c] Crude Michael adduct 11e was used for the next (IMDAF) step.

6-exo-cis-**22**

6-exo-trans-23

6-endo-cis-24

Scheme 2.

Figure 1. Two modes of cycloaddition of the Michael adduct.

¹H-¹H couplings in **4b** and **5b** suggested that the newly formed ring was exo-fused to the oxanorbornene moiety, as in the previously reported cycloadducts obtained from the Michael-initiated IMDAF reaction of nitro compounds.^[8] We observed in 4b and 5b that out of the two geminal protons H-7 α and H-7 β , only H-7 β coupled with H-6 (J = 4.4and 4.5 Hz, respectively, in 4b and 5b, Table 4, Entries 1 and 2). We observed no coupling between H-6 and H-7 α due to a dihedral angle of ca. 90° between the two protons. Whereas the coupling for H-7 α with H-7 α was moderately strong (J = 7.3 and 7.7 Hz, respectively, in **4b** and **5b**), that between H-7 β and H-7a was weak (J = 2.6 Hz in both 4b and 5b, Table 4, Entries 4 and 5). Subsequently, we analyzed the 2D-NOESY data for the two isomers, which showed a medium (in 4b) and weak (in 5b) NOE between H-6 and H-7 β (Table 4, Entry 2), but no NOE (in **4b**) or a weak NOE (in **5b**) between H-6 and H-7 α (Table 4, Entry 1). We observed no NOE between H-7 β and H-7a for either 4b or **5b** (Table 4, Entry 5).

After establishing that the newly formed ring was *exo*fused to the oxanorbornene framework, we addressed the stereochemistry at position 3. The analysis of the ¹H and ¹H-¹H COSY NMR spectra did not divulge much information due to (i) the small difference in the coupling of H-3 with the H-9 and H-9' protons (Table 4, Entries 9 and 10) and (ii) the absence of any other couplings for H-3. However, weak and medium NOEs for H-4 with H-9 and H-9', respectively, in **5b** suggested that the benzoyl group was α oriented in **5b** (Table 4, Entries 12 and 13). This was further supported by the absence of any NOE for H-4 with H-9 or H-9' in **4b**, which was indicative of the β -orientation of the

Table 4. Comparison of ¹H NMR, ¹H-¹H 2D-COSY and ¹H-¹H 2D-NOESY characteristics of isomers **4b** and **5b**.

6-endo-trans-25

	PhOC 9 H	$\begin{array}{c c} & {}^{8}O \overset{H}{\to} & H \\ & 5 & 6 & H \\ & 4 & 7a & 7 \\ & 4 & 7a & 7 \\ & 4 & 7a & 7 \\ & 7a & $	$ \begin{array}{c} \beta \\ H^{\beta} \\ H^{\alpha} \\ H^{\alpha} \\ H^{\alpha} \\ H^{3} \\ PhOC \end{array} $	$ \begin{array}{c} $	
Entry	$^{1}\mathrm{H}\text{-}^{1}\mathrm{H}$	4	lb	5	ib
		<i>J</i> [Hz]	NOE ^[a]	<i>J</i> [Hz]	NOE ^[a]
1	6-7α	0.0	_	0.0	W
2	6-7β	4.4	Μ	4.5	W
3	7α-7β	11.7	S	11.7	S
4	7α-7a	7.3	Μ	7.7	S
5	7β-7a	2.6	_	2.6	_
6	7a-1α	7.7	М	10.6	_
7	7a-1β	10.6	М	10.5	_
8	1α-1β	10.6	S	10.9	S
9	3-9	18.3	W	17.2	Μ
10	3-9'	8.8	W	9.2	Μ
11	3-4	_	_	_	_
12	4-9	_	_	_	W
13	4-9'	-	-	-	М

[a] S = Strong; M = Medium; W = Weak.

benzoyl group in **4b** (Table 4, Entries 12 and 13). These results agreed well with those obtained for corresponding nitro compounds.^[8] Finally, we unambiguously established the structure and stereochemistry by single-crystal X-ray analysis of analog **8b** (Figure 2). For instance, a dihedral angle of 168.6° for C1–C7a–C3a–C4 in **8b** confirmed that the five-membered ring was *exo*-fused to the oxanorbornene, and a dihedral angle of 24.6° for O8–C3a–C3–C9 confirmed the pseudo-equatorial orientation of the substituent at C-3 (numbering as in **4b**,**5b**, Table 4).

Unlike in the case of tetrahydrothiophenes **4**,**5** and cyclopentanes **8**,**9**, we could not independently analyze the stereochemistry at C-3 in pyrrolidines **12**,**13** (see Table 3) by 2D-NMR experiments or X-ray crystallography. Whereas the 2D-NOESY spectra of **12d**,**e** and **13d**,**e** showed no characteristic NOEs, all these samples were liquids, and attempts to prepare solid derivatives suitable for single-crystal X-ray analysis were unsuccessful. Finally, a careful analysis of the ¹H NMR chemical shifts of H-3 in *exo-cis*

Figure 2. Single-crystal X-ray structure of 8b.

isomers 4 and 8 and *exo-trans* isomers 5 and 9 suggested that H-3 is considerably deshielded in *exo-cis* isomers as compared to *exo-trans* isomers (Table 5, Entries 1–6). We extended this key feature to the stereochemical analysis of **12d,e** and **13d,e**. Thus, since H-3 was deshielded in the minor products **12d,e** (Table 5, Entries 7 and 8), we assigned the *exo-cis* stereochemistry to **12d,e**. We further corroborated this assignment with results from high-level quantum chemical calculations (vide infra), which predicted the preference for *exo-trans* isomer **13** over *exo-cis* isomer **12** in the case of pyrrolidines **12,13**.

Table 5. Comparison of the ¹H NMR chemical shifts of H-3 in tetrahydrothiphenes **4**,**5**, cyclopentanes **8**,**9** and pyrrolidines **12**,**13**.

	H E 4 H 3 F e 	$\begin{array}{c} O H H^{\beta} \\ 5 & 7a H^{\beta} \\ 7a & H^{\alpha} \\ 3a & H^{\alpha} H^{\alpha} \\ X H^{\alpha} H^{\alpha} H^{\alpha} \\ H \\ ko-cis- \\ 4, -8, -12 \end{array}$	$H = \begin{array}{c} 0 & H & H^{\beta} \\ 5 & 4 & 7a \\ 3 & 7a \\ 3 & X_{H}H^{\alpha} \\ E \\ exo-trans- \\ -5, -9, -13 \end{array}$	β Iα
Entry	X	Е	δ of H-3	signal [ppm]
	-		exo-cis-	exo-trans-
1	S	CH ₂ COCH ₃	4a : 4.22	5a : 3.97
2	S	CH ₂ COPh	4b : 4.45	5b : 4.20
3	S	$CH(COCH_3)_2$	4c : 4.50	5c: –
4	$C(CO_2Et)_2$	CH ₂ COCH ₃	8a: 3.90	9a : 3.45
5	$C(CO_2Et)_2$	CH ₂ COPh	8b : 4.00	9b : 3.47–3.67
6	$C(CO_2Et)_2$	CH ₂ CO ₂ Et	8c: 3.90	9c : 3.43
7	N-allyl	CH_2CO_2Et	12d: 3.64	13d: 3.27-3.30
8	N-allyl	$CH(CO_2Et)_2$	12e: 3.64	13e : 3.22–3.29

The structural and stereochemical assignment of **8d**, **8e** and **9e** were complicated by the overlapping peaks in their ¹H NMR spectra. For instance, since the H-1a, H-1e, H-2a, H-2e, H-8a, H-8\beta protons (Figure 3) appeared in the narrow range of $\delta = 1.30-1.90$ ppm, we could not independently assign the stereochemistry of ring fusion between the oxanorbornene framework and the six-membered ring. The absence of any appreciable scalar coupling or NOE interaction for H-4 with protons other than H-10 and H-10' also made the stereochemical assignment at C-4 extremely diffi-

cult. Therefore, we unambiguously established the structure and stereochemistry of one representative compound (8e) by single-crystal X-ray analysis (Figure 4). Whereas a dihedral angle of 174.5° for C5–C4a–C8a–C1 confirmed that the six-membered ring is *exo*-fused to the oxanorbornene, a dihedral angle of 61.4° for O9–C4a–C4–C10 confirmed the equatorial orientation of the substituent at C-4 in 8e.

Figure 3. Stereochemistry of 8d,e and 9d,e.

Figure 4. Single-crystal X-ray structure of 8e.

Computational Results

In order to probe the selectivities observed during the intramolecular cycloadditions, we examined computationally the formation of all the cycloadducts 18-21 by path A (Figure 1 and Scheme 3) for X = S, N-allyl and C(CO₂- Me_{2} .^[12,13] We performed the calculations with E = CH₂CHO in this study for simplicity. We calculated the relative energies of the four possible reaction products (18–21) and their transition states at the RHF/3-21G*[14] and B3LYP/6-31G*//RHF/3-21G*^[15] levels of theory (Scheme 3). The calculated results, summarized in Table 6, clearly show that exo isomers 18,19 were preferred over endo isomers 20,21 in all cases. The relative energies of products 18-21 predict the formation of exo-cis isomers 18 for X = S and $C(CO_2Me)_2$ at both levels of theory (Table 6, Entries 1-3, 8 and 9). In order to examine the effect of dif-

Scheme 3.

Table 6. RHF/3-21G*- and B3LYP/6-31G*//RHF/3-21G*-calculated relative energies of the products 18–21 and their transition states in kcalmol⁻¹.

Entry	Х	Е	Theory	Product			Transition state				
2			level	exo-cis-18	exo-trans-19	endo-cis-20	endo-trans-21	exo-cis	exo-trans	endo-cis	endo-trans
1	S	CH ₂ CHO	RHF ^[a]	0.0	5.6	15.4	11.4	0.0	3.0	10.6	7.7
2			$B/R^{[b]}$	0.0	2.9	11.5	8.6	0.0	0.9	8.9	6.4
3			B3 ^[c]	0.0	3.0	12.1	8.5	0.0	1.1	9.7	6.7
4	N-allyl	CH ₂ CHO	RHF	0.0	0.8	14.0	13.7	2.8	0.0	12.9	7.3
5	•		B/R	1.3	0.0	13.5	14.6	5.1	0.0	11.5	8.4
6		$CHZ_2^{[d]}$	RHF	3.3	0.0	19.3	16.4	3.8	0.0	16.4	11.4
7			B/R	4.6	0.0	18.1	16.1	6.5	0.0	16.0	13.3
8	$CZ_2^{[d]}$	CH ₂ CHO	RHF	0.0	2.3	11.0	12.3	0.0	1.0	7.0	9.5
9			B/R	0.0	1.3	9.9	10.9	1.6	0.0	8.9	9.7

[a] Relative energies at the RHF/3-21G* level. [b] Relative energies at the B3LYP/6-31G* level. [c] B3LYP/6-31+G*-optimized relative energies. [d] $Z = CO_2Me$.

fuse functions, when a heteroatom such as S is present in the system, we performed calculations at the B3LYP/6- $31+G^*$ level for X = S (Table 6, Entry 3). The calculated relative energy differences for transition state and ground state geometries were similar to results obtained at the RHF/3-21G* and B3LYP/6-31G**//RHF/3-21G* levels. Since the larger and smaller basis sets gave similar results, this justified the general use of the smaller basis set.

Unlike in the case of X = S and $C(CO_2Me)_2$, where the exo-cis isomer 18 was predicted and experimentally observed as the major product (Table 6, Entries 1–3, 8 and 9), our calculations favored the *exo-trans* isomer 19 for X =N-allyl at the B3LYP/6-31G* level (Table 6, Entry 5). To examine the discrepancy between the results for 19 from the two methods, we performed additional calculations with E = $CH(CO_2Me)_2$ (Table 6, Entries 6 and 7). The calculated results show that the exo-trans configuration was preferred over the exo-cis configuration at both levels of theory. Extending the study to transition state energy calculations, the results show that the formation of exo-cis isomers 18 was favored when X = S and $C(CO_2Me)_2$ (Table 6, Entries 1–3, 8 and 9), whereas the exo-trans isomer 19 was favored for X = N-allyl (Table 6, Entry 4–7). However, the B3LYP/6- $31G^*//RHF/3-21G^*$ result for X = C(CO₂Me)₂ showed the preferential formation of the exo-trans transition state. The formation of the major *exo-cis* isomers for X = S, C(CO₂-Me)₂ and *exo-trans* for N-allyl agreed well with the experimentally observed products (Tables 1, 2, and 3). The reaction energies calculated for these IMDAF reactions were exergonic for the *exo* products; however, *endo* products were generally endergonic (Table 7). The transition state geometries for the *exo* and *endo* isomers indicated a concerted reaction mechanism; however, the extent of bond formation was slightly asymmetrical (Table S1).

Table 7. RHF/3-21G*- and B3LYP/6-31G*//RHF/3-21G*-calculated reaction energies of various IMDAF reactions in kcalmol⁻¹.

Entry	X	Е	Theory	Reaction energy				
			level	exo-cis	exo-trans	endo-cis	endo-trans	
1	S	CH ₂ CHO	RHF ^[a]	-16.5	-10.9	-1.2	-5.1	
2			$B/R^{[b]}$	-3.4	-0.5	+8.2	+5.2	
3	N-allyl	CH ₂ CHO	RHF	-12.2	-11.4	+1.8	+1.5	
4			B/R	-2.2	-3.5	+10.0	+11.1	
5		CHZ ₂ ^[c]	RHF	-13.2	-16.5	+2.8	-0.1	
6			B/R	-0.8	-5.4	+12.7	+8.8	
7	$CZ_2^{[c]}$	CH ₂ CHO	RHF	-15.6	-13.3	-4.6	-3.3	
8			B/R	-4.4	-3.2	+5.5	+6.5	

[a] Reaction energies at the RHF/3-21G* level. [b] Reaction energies at the B3LYP/6-31G* level. [c] $Z = CO_2Me$.

The activation energies are higher for these IMDAF reactions. For the preferred *exo-cis* isomer (X = S), the activation energy calculated at the B3LYP/6-31+G* level was 28.9 kca1mol⁻¹. The incorporation of activation entropy at 110 °C enhanced the activation free energy to 34.4 kca1mol⁻¹. These results suggest that the negative activation entropy (-14.3 eu) was much lower in this case,

which led to the formation of the 7-oxanorbornene ring. In comparison, for the intermolecular DA reaction of butadiene and ethylene, the calculated activation entropy was -40.6 eu, and the activation free energy at the experimental temperature of 165 °C was 42.6 kcal mol⁻¹.^[7] The large activation free energy for butadiene and ethylene is due to the large activation entropy associated with this reaction.

The calculated results suggest that the formation of exo isomers was both thermodynamically and kinetically preferred over that of the *endo* isomers. Therefore, even if there was a retro-Diels-Alder reaction, one can envisage that the products formed would be as predicted and observed. The formation of the exo isomer as the major product from the IMDAF reaction appeared to result from the difference in strain induced in the ring systems. To examine this, we took the stable *exo-cis-***18** and *endo-trans-***21** isomers for X = Sas model systems (Table 6, Entry 1). The 7-oxanorbornene rings formed in these isomers were isolated from the calculated geometries. Substituents were replaced by hydrogen atoms without perturbing the geometry of the 7-oxanorbornane rings (Figure 5). The energies calculated for the 7oxanorbornene rings derived from the X = S product, and transition state geometries suggest that the newly formed norbornene ring in the exo isomer was much more stable than that in the endo form at both the RHF/3-21G* and B3LYP/6-31+G* levels of theory (Table 8). It appears that ring strain contributed predominantly towards the formation of the exo isomers in these cases.

Figure 5. 7-Oxanorbornene ring.

Table 8. RHF/3-21G*- and B3LYP/6-31+G*-calculated energy differences [kcalmol⁻¹] for 7-oxanorbornene rings derived from **18** and **21** (X = S) and transition state geometries.

Entry	Configuration	Theory level	Product	Transition state
1	exo-cis	RHF ^[a]	0.0	0.0
2		B/R ^[b]	0.0	0.0
3	endo-trans	RHF	6.6	4.3
4		B/R	5.9	3.9

[a] Relative energies at the RHF/3-21G* level. [b] Relative energies at the B3LYP/6-31+G* level.

Further, we found the subtle difference in the stereochemistry of the products with X = S, CO₂Me versus those with X = N-allyl interesting. Whereas the Michael adducts with X = S and CO₂Me provided *exo-cis* isomers, those with X = N-allyl gave *exo-trans* isomers. The difference in the stereochemistry presumably arose from the torsional effect in these systems.^[16] Examining the torsion angles in the ground state geometries of the *exo-cis* isomer (τ_1 = O1–C2– C3–C6) and of the *exo-trans* isomer (τ_2 = O1–C2–C3–H7) for X = S and N-allyl suggested that τ_1 (29.5°) was more staggered than τ_2 (17.6°) in the case of X = S (Figure 6). However, the values were reversed for X = N-allyl, as τ_1 = 29.4° and τ_2 = 32.4°, respectively (Figure 6).

Figure 6. *exo* products for X = S and N-allyl.

Conclusions

The synthesis of oxanorbornenes fused to five- and sixmembered carbocycles and heterocycles was carried out in good yield and high stereoselectivity from readily available β -furyl enones, an enedione and an acrylate. The protocol involved the Michael addition of nucleophiles possessing an unsaturated tether to the β -furyl α , β -unsaturated carbonyl compounds followed by an intramolecular Diels-Alder reaction between the furan diene and the olefinic moiety. We rationalized the high stereoselectivity observed in these cycloadditions through quantum chemical calculations. These calculations revealed that the exo-fused cycloadduct was kinetically and thermodynamically favored over its endofused isomer due to the difference in the strain for the formation of 7-oxanorbornene rings in the transition states and products. The dependence of the cis or trans stereochemistry upon different substituents in the isomers arose from a torsional effect.

Experimental Section

General: Melting points were recorded with a Thermonik melting point apparatus and are uncorrected. IR spectra were recorded with an Impact 400/Nicolet or Perkin-Elmer Spectrum One FT spectrometer. NMR spectra (1H, 13C, 1H-1H COSY and 1H-1H NOESY) were recorded with TMS as the internal standard with an AMX-400 (Varian Mercury Plus OXFORD, broad band, auto switchable and inverse probe) or VXR-300S spectrometer. The coupling constants (J values) are given in Hz. Mass spectra (low and high resolution) were recorded at 60-70 eV with a Micromass Q-TOF mass spectrometer under ESI mode. X-ray data were collected with a Nonius MACH 3 diffractometer equipped with graphite-monochromated Mo- K_{α} radiation. The structures were solved by direct methods with SHELXS97 and refined by full-matrix least-squares against F^2 with SHELXL97 software. CCDC-693540 (for 8b) and -693541 (for 8e) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Michael acceptors 1a-e were prepared according to literature methods.[9-11]

Computational Methodology: All calculations were performed at the RHF/3-21G* level of theory with the JAGUAR program.^[12] Complete vibrational analyses were performed to characterize the transition state and ground state geometries. In addition, single

point B3LYP/6-31G* calculations^[13] with RHF/3-21G*-optimized geometries were performed to estimate the energies of the transition states and ground states of these IMDAF reactions. To examine the basis set dependence on the energetics of the transition states and ground states, the *S*-substituted derivative (X = S) was optimized with the 6-31+G* basis set at the B3LYP level.

General Procedure for the Michael Addition of Allylmercaptan (2) to 2-Furyl Enones 1a–c: To a stirred solution of allylmercaptan (2, 0.62 mL, 1.1 mmol) in THF (5 mL) at 0 °C under nitrogen was added Et₃N (0.01 mL, 0.1 mmol) followed by a solution of 1a, 1b or 1c (1 mmol) in THF (5 mL). After the addition was complete, the reaction mixture was stirred at reflux for 24 h. The reaction mixture was then diluted with water (5 mL) and acidified with HCl (10%, 10 mL). The aqueous layer was extracted with ethyl acetate (3 × 15 mL). The combined organic layers were then washed with brine (20 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. The crude residue was then purified by silica gel chromatography with ethyl acetate/*n*-hexane (1:50 to 1:25) as the eluent to afford pure 3a, 3b or 3c.

4-(Allylthio)-4-(furan-2-yl)butan-2-one (3a): Light yellow oil. Yield 64% (135 mg). IR (neat): $\tilde{v} = 2917$ (w), 1721 (s), 1361 (m), 1151 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.15$ (s, 3 H), 3.04 (ABqd, J = 17.1, 6.8 Hz, 2 H), 3.01–3.10 (m, 2 H), 4.38 (t, J = 7.3 Hz, 1 H), 5.10–5.17 (m, 2 H), 5.70–5.84 (m, 1 H), 6.17 (d, J = 3.4 Hz, 1 H), 6.30 (dd, J = 3.4, 2.0 Hz, 1 H), 7.35 (d, J = 2.0 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.5$, 34.4, 36.1, 47.0, 107.1, 110.3, 117.6, 134.0, 142.1, 153.5, 205.1 ppm. MS (ESI, Ar): m/z (%) = 233 (100) [M + Na]⁺. HRMS (ESI, Ar): calcd. for C₁₁H₁₄O₂NaS [M + Na]⁺ 233.0612; found 233.0619.

3-(Allylthio)-3-(furan-2-yl)-1-phenylpropan-1-one (3b): Light yellow oil. Yield 63% (172 mg). IR (neat): $\tilde{v} = 2912$ (w), 1688 (s), 1448 (w), 1353 (w), 1229 (w) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.09-3.13$ (unresolved m, 2 H), 3.60 (ABqd, J = 17.2, 6.6 Hz, 2 H), 4.61 (dd, J = 7.7, 6.6 Hz, 1 H), 5.08–5.17 (m, 2 H), 5.70–5.84 (m, 1 H), 6.20 (d, J = 3.3 Hz, 1 H), 6.27 (dd, J = 3.3, 1.8 Hz, 1 H), 7.33 (d, J = 1.8 Hz, 1 H), 7.41–7.95 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 34.4$, 36.3, 42.3, 107.0, 110.2, 117.5, 128.1, 128.6, 133.3, 134.0, 136.5, 142.0, 153.7, 196.3 ppm. MS (ESI, Ar): m/z (%) = 295 (100) [M + Na]⁺, 105 (12). HRMS (ESI, Ar): calcd. for C₁₆H₁₆O₂NaS [M + Na]⁺ 295.0769; found 295.0756.

3-[(Allylthio)(furan-2-yl)methyl]pentane-2,4-dione (3c): Light yellow oil. Yield 59% (149 mg). IR (neat): $\tilde{v} = 3055$ (m), 2984 (m), 2922 (m), 1734 (s), 1703 (s), 1423 (m), 1358 (m), 1266 (s), 740 (s) cm^{-1} . ¹H NMR (300 MHz, CDCl₃): δ = 2.03 (s, 3 H, keto form), 2.17 (s, 6 H, enol form), 2.31 (s, 3 H, keto form), 2.98-3.14 (m, 2 H, keto form), 3.20–3.30 (m, 2 H, enol form), 4.47 (ABq, J = 12.0 Hz, 2 H, keto form), 4.93 (s, 1 H, enol form), 5.08-5.22 (m, 2 H, keto and enol forms), 5.66-5.82 (m, 1 H, keto form), 5.83-5.96 (m, 1 H, enol form), 6.18 (d, J = 3.7 Hz, 1 H, keto form), 6.27–6.29 (m, 1 H, enol form), 6.30 (dd, J = 3.7, 2.0 Hz, 1 H, keto form), 6.34 (dd, J = 3.7, 2.0 Hz, 1 H, enol form), 7.35–7.36 (m, 1 H, keto and enol forms), 17.28 (br. s, 1 H, enol form) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 29.3 (q, keto form), 34.2 (t, keto form), 39.9 (d, keto form), 71.4 (d, keto form), 108.2 (d, keto form), 110.4 (d, keto form), 118.1 (t, keto form), 133.3 (d, keto form), 142.4 (d, keto form), 151.3 (s, keto form), 200.7 (s, keto form), 29.2 (q, enol form), 35.3 (t, enol form), 38.8 (d, enol form), 107.6 (d, enol form), 110.1 (s, enol form), 110.5 (d, enol form), 118.0 (t, enol form), 134.0 (d, enol form), 142.1 (d, enol form), 153.7 (s, enol form), 200.9 (s, enol form) ppm. MS (ESI, Ar): m/z (%) = 275 (55) [M + Na]⁺, 227 (100), 153 (15). HRMS (ESI, Ar): calcd. for $C_{13}H_{16}O_3NaS$ [M + Na]⁺ 275.0718; found 275.0709.

General Procedure for the Michael Addition of Diethyl Allylmalonate (6a) and Diethyl Homoallylmalonate (6b) to Enones 1a,b and Acrylate 1d: To a stirred mixture of 1a, 1b or 1d (1 mmol) and diethyl allylmalonate (6a, 600 mg, 3 mmol) or diethyl homoallylmalonate (6b, 642 mg, 3 mmol) was added benzyltriethylammonium chloride (TEBAC, 14 mg, 0.06 mmol) followed by powdered KOH (3.3 mg, 0.06 mmol). The mixture was stirred until the reaction was complete (as monitored by TLC, see also Table 2) and filtered. The filtrate was concentrated in vacuo. The crude mixture was then purified by silica gel chromatography with ethyl acetate/n-hexane (1:10 to 1:5) as the eluent to afford pure 7a–f.

Diethyl 2-Allyl-2-[1-(furan-2-yl)-3-oxobutyl]malonate (7a): Light yellow oil. Yield 82% (275 mg). IR (neat): $\tilde{v} = 3055$ (w), 2985 (m), 1724 (s), 1266 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.24$ (t, J = 7.3 Hz, 3 H), 1.29 (t, J = 7.3 Hz, 3 H), 2.06 (s, 3 H), 2.53 (ABqd, J = 14.7, 7.3 Hz, 2 H), 3.00 (dd, J = 17.4, 2.8 Hz, 1 H), 3.14 (dd, J = 17.4, 10.5 Hz, 1 H), 4.08 (dd, J = 10.5, 2.8 Hz, 1 H), 4.11–4.27 (m, 4 H), 5.05–5.09 (m, 2 H), 5.71–5.82 (m, 1 H), 6.12 (d, J = 2.9 Hz, 1 H), 6.25 (dd, J = 2.9, 1.8 Hz, 1 H), 7.27 (d, J = 1.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.7, 13.8, 29.7, 37.4, 38.2, 44.4, 60.4, 61.1 (2 C), 108.3, 110.0, 118.7, 132.5, 141.4, 152.4, 169.5, 169.8, 205.6 ppm. MS (ESI, Ar): <math>m/z$ (%) = 359 (100) [M + Na]⁺. HRMS (ESI, Ar): calcd. for C₁₈H₂₄O₆Na [M + Na]⁺ 359.1471; found 359.1475.

Diethyl 2-Allyl-2-[1-(furan-2-yl)-3-oxo-3-phenylpropyl]malonate (7b): Colorless oil. Yield 77% (307 mg). IR (neat): $\hat{v} = 3058$ (w), 2984 (w), 1728 (s), 1688 (m), 1266 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.23$ (t, J = 7.0 Hz, 3 H), 1.33 (t, J = 7.0 Hz, 3 H), 2.59 (ABqd, J = 14.4, 7.2 Hz, 2 H), 3.53 (dd, J = 17.6, 2.3 Hz, 1 H), 3.78 (dd, J = 17.6, 10.5 Hz, 1 H), 4.14–4.20 (m, 1 H), 4.22–4.38 (m, 4 H), 5.11 (m, 2 H), 5.81 (m, 1 H), 6.14 (d, J = 3.0 Hz, 1 H), 6.22 (dd, J = 3.0, 1.4 Hz, 1 H), 7.25 (d, J = 1.4 Hz, 1 H). 7.40–7.60 (m, 3 H), 7.92–7.94 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$ (2 C), 38.0, 38.7, 40.1, 61.0, 61.5 (2 C), 108.7, 110.2, 119.0, 128.1, 128.6, 133.0 (×2), 136.9, 141.7, 152.7, 170.1, 170.2, 197.5 ppm. MS (ESI, Ar): m/z (%) = 421 (72) [M + Na]⁺, 199 (62). HRMS (ESI, Ar): calcd. for C₂₃H₂₆O₆Na [M + Na]⁺ 421.1627; found 421.1622.

Triethyl 2-(Furan-2-yl)hex-5-ene-1,3,3-tricarboxylate (7c): Light yellow oil. Yield 38% (139 mg). IR (neat): $\tilde{v} = 3079$ (m), 2984 (s), 2939 (s), 2907 (m), 1729 (br., s), 1445 (s), 1266 (s) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7.3 Hz, 3 H), 1.25 (t, J = 7.3 Hz, 3 H), 1.30 (t, J = 7.3 Hz, 3 H), 2.52 (dd, J = 14.3, 7.7 Hz, the low-field half is further split into t, J = 1.3 Hz, 2 H), 2.93–2.99 (m, 2 H), 3.98–4.02 (m, 1 H), 4.03 (q, J = 7.3 Hz, 2 H), 4.17 (q, J = 7.3 Hz, 2 H), 4.24 (q, J = 7.3 Hz, 2 H), 5.05–5.11 (m, 2 H), 5.70–5.86 (m, 1 H), 6.14 (dd, J = 3.1, 0.7 Hz, 1 H), 6.26 (dd, J = 3.1, 1.8 Hz, 1 H), 7.29 (dd, J = 1.8, 0.7 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.9$ (2 C), 14.0, 35.8, 38.4, 38.6, 60.2, 60.5, 61.2, 61.3, 108.4, 110.0, 118.8, 132.6, 141.7, 152.2, 169.4, 169.7, 171.5 ppm. MS (ESI, Ar): *m/z* (%) = 367 (2) [M + H]⁺, 321 (100), 303 (80), 275 (12), 229 (38), 167 (60). HRMS (ESI, Ar): calcd. for C₁₉H₂₇O₇ [M + H]⁺ 367.1757; found 367.1771.

Diethyl 2-(But-3-enyl)-2-[1-(furan-2-yl)-3-oxobutyl]malonate (7d): Light yellow oil. Yield 75% (263 mg). IR (neat): $\tilde{v} = 2982$ (w), 1728 (s), 1365 (w), 1228 (w) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.26$ (t, J = 7.1 Hz, 3 H), 1.29 (t, J = 7.1 Hz, 3 H), 1.68–1.79 (m, 1 H), 1.88–2.02 (m, 2 H), 2.07 (s, 3 H), 2.09–2.16 (m, 1 H), 2.97 (dd, J = 17.4, 2.7 Hz, 1 H), 3.14 (dd, J = 17.4, 10.5 Hz, 1 H), 4.10 (dd, J = 10.5, 2.7 Hz, 1 H), 4.16–4.27 (m, 4 H), 4.93–5.02 (m, 2 H), 5.68–5.78 (m, 1 H), 6.12 (d, J = 3.2 Hz, 1 H), 6.25 (dd, J = 3.2, 1.8 Hz, 1 H), 7.26 (d, J = 1.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃):
$$\begin{split} \delta &= 14.2 \ (2 \ C), \ 29.0, \ 30.2, \ 33.3, \ 37.9, \ 44.8, \ 60.5, \ 61.4, \ 61.6, \ 108.5, \\ 110.4, \ 115.1, \ 137.7, \ 141.7, \ 152.8, \ 170.2, \ 170.6, \ 206.2 \ \text{ppm. MS} \ (\text{ESI,} \\ \text{Ar}): \ m/z \ (\%) &= \ 373 \ (100) \ [\text{M} + \text{Na}]^+, \ 137 \ (10). \ \text{HRMS} \ (\text{ESI, Ar}): \\ \text{calcd. for } C_{19}\text{H}_{26}\text{O}_6\text{Na} \ [\text{M} + \text{Na}]^+ \ 373.1627; \ found \ 373.1620. \end{split}$$

Diethyl 2-(But-3-enyl)-2-[1-(furan-2-yl)-3-oxo-3-phenylpropyl]malonate (7e): Light yellow oil. Yield 69% (285 mg). IR (neat): \tilde{v} = 2981 (s), 1732 (s), 1693 (m), 1449 (m), 1015 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.25 (t, J = 7.1 Hz, 3 H), 1.33 (t, J = 7.1 Hz, 3 H), 1.77-1.82 (m, 1 H), 1.95-2.05 (m, 2 H), 2.10-2.17 (m, 1 H), 3.50 (dd, *J* = 17.4, 2.5 Hz, 1 H), 3.76 (dd, *J* = 17.4, 11.0 Hz, 1 H), 4.10 (dd, J = 11.0, 2.5 Hz, 1 H), 4.18–4.35 (m, 4 H), 4.93 (dd, J = 10.1, 1.8 Hz, 1 H), 5.02 (dd, J = 17.0, 1.8 Hz, 1 H), 5.70-5.80 (m, 1 H), 6.13 (d, J = 3.2 Hz, 1 H), 6.22 (dd, J = 3.2, 1.8 Hz, 1 H), 7.24 (d, J = 1.8 Hz, 1 H), 7.41–7.45 (m, 2 H), 7.51–7.55 (m, 1 H), 7.93–7.95 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.0 (2 C), 28.8, 33.3, 37.9, 39.9, 60.5, 61.2, 61.4, 108.3, 110.1, 114.9, 128.0, 128.4, 132.9, 136.8, 137.5, 141.5, 152.6, 170.2, 170.6, 197.5 ppm. MS (ESI, Ar): m/z (%) = 435 (9) [M + Na]⁺, 199 (100). HRMS (ESI, Ar): calcd. for $C_{24}H_{28}O_6Na [M + Na]^+ 435.1784$; found 435.1804.

Triethyl 2-(Furan-2-yl)hept-6-ene-1,3,3-tricarboxylate (7f): Light yellow oil. Yield 45% (172 mg). IR (neat): $\tilde{v} = 2982$ (w), 1732 (s), 1021 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7.1 Hz, 3 H), 1.26 (t, J = 7.1 Hz, 3 H), 1.29 (t, J = 7.1 Hz, 3 H), 1.67–2.14 (m, 6 H), 2.92–2.94 (m, 1 H), 4.04 (q, J = 7.1 Hz, 2 H), 4.22 (two overlapped ABq, J = 7.1 Hz, 4 H), 4.93–5.02 (m, 2 H), 5.68–5.78 (m, 1 H), 6.13 (d, J = 3.2 Hz, 1 H), 6.27 (dd, J = 3.2, 1.8 Hz, 1 H), 7.29 (d, J = 1.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.2$ (2 C), 14.3, 29.0, 33.5, 36.2, 39.3, 60.5, 60.6, 61.5, 61.6, 108.5, 110.3, 115.1, 137.7, 141.9, 152.6, 170.0, 170.6, 172.0 ppm. MS (ESI, Ar): m/z (%) = 403 (100) [M + Na]⁺ HRMS (ESI, Ar): calcd. for C₂₀H₂₈O₇Na [M + Na]⁺ 403.1733; found 403.1741.

General Procedure for the Michael Addition of Diallylamine (10) to Acrylates 1d,e: To a stirred mixture of diallylamine (10, 97 mg, 1 mmol) in THF (5 mL) at -78 °C under nitrogen was added nBuLi (0.63 mL, 1.6 M solution in hexanes, 1 mmol) dropwise over 20 min. After the addition was complete, the reaction mixture was brought slowly to 0 °C and stirred for another 30 min at the same temperature. The reaction mixture was cooled to -78 °C, and a solution of 1d (166 mg, 1 mmol) or 1e (238 mg, 1 mmol) in THF (5 mL) was added dropwise to the reaction mixture. After the addition was complete, the reaction mixture was stirred at -78 °C for another 4 h. The reaction mixture was then quenched with saturated aqueous NH₄Cl. The aqueous layer was extracted with ethyl acetate $(3 \times 15 \text{ mL})$. The combined organic layers were then washed with brine (20 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. The crude residue was then purified by silica gel chromatography with ethyl acetate/n-hexane (1:25) as the eluent to afford pure 11d or 11e.

Ethyl 3-(Diallylamino)-3-(furan-2-yl)propanoate (11d): Light yellow oil. Yield 79% (209 mg). IR (neat): $\tilde{v} = 3078$ (w), 2980 (s), 2938 (m), 2816 (m), 1738 (s), 1288 (m), 1165 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.24$ (t, J = 7.3 Hz, 3 H), 2.76–2.80 (m, 2 H), 2.81 (ABq, J = 14.7, high-field half and low-field half were further split into d, J = 6.9 and 8.7 Hz, respectively, 1 H), 2.90 (dd, J = 14.7, 8.7 Hz, 1 H), 3.24–3.29 (m, 2 H), 4.09–4.16 (m, 2 H), 4.45 (t, J = 7.8 Hz, 1 H), 5.10–5.19 (m, 4 H), 5.71–5.81 (m, 2 H), 6.13 (d, J = 3.0 Hz, 1 H), 6.32 (dd, J = 3.0, 1.8 Hz, 1 H), 7.37 (d, J = 1.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.9$, 36.4, 53.2 (2 C), 60.0, 107.4, 109.5, 116.6, 136.6, 141.5, 153.0, 170.8 ppm. MS (ESI, Ar): m/z (%) = 264 (100) [M + H]⁺, 167 (22), 125 (15),

97 (15). HRMS (ESI, Ar): calcd. for $C_{15}H_{22}NO_3 [M + H]^+$ 264.1600; found 264.1593.

Diallyl 2-[1-(Furan-2-yl)-3-oxobutyl]malonate (15): To a stirred mixture of 1a (136 mg, 1 mmol) and diallyl malonate (14, 276 mg, 1.5 mmol) in THF (10 mL) was added DBU (0.075 mL, 76 mg, 0.5 mmol). The reaction mixture was stirred for 6 h. The reaction mixture was then diluted with water and acidified with HCl (10%, 10 mL). The aqueous layer was extracted with ethyl acetate $(3 \times 15 \text{ mL})$. The combined organic layers were then washed with brine (15 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. The crude residue was then purified by silica gel chromatography with ethyl acetate/n-hexane (1:20) as the eluent to afford pure **15**. Light yellow oil. Yield 72% (232 mg). IR (neat): $\tilde{v} = 3058$ (m), 2988 (m), 2950 (m), 1733 (s), 1267 (s), 1153 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 2.11 (s, 3 H), 2.98 (ABq, J = 17.2, highfield half and low-field half were further split into d, J = 5.1 and 8.4 Hz, respectively, 2 H), 3.87 (d, J = 7.7 Hz, 1 H), 4.13 (ddd, J =8.4, 7.7, 5.1 Hz, 1 H), 4.53 (dt, J = 5.9, 1.5 Hz, 2 H), 4.62 (dt, J = 5.9, 1.5 Hz, 2 H), 5.18-5.33 (m, 4 H), 5.73-5.93 (m, 2 H), 6.11 (dd, J = 3.3, 0.7 Hz, 1 H), 6.25 (dd, J = 3.3, 1.8 Hz, 1 H), 7.28 (dd, J= 1.8, 0.7 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 30.1, 34.0, 44.4, 54.9, 66.2 (2 C), 107.1, 110.3, 118.8 (2 C), 131.4 (2 C), 141.7, 153.4, 167.3, 167.5, 205.7 ppm. MS (ESI, Ar): m/z (%) = 343 (100) [M + Na]⁺, 263 (4), 205 (6). HRMS (ESI, Ar): calcd. for $C_{17}H_{20}O_6Na [M + Na]^+ 343.1158$; found 343.1158.

General Procedure for the IMDAF Reaction of Michael Adducts 3, 7 and 11: A solution of the Michael adduct 3, 7 or 11 (1 mmol) in dry toluene or xylene (10 mL) was refluxed for the specified time (see Tables 1, 2, and 3). The reaction mixture was then cooled to room temperature and concentrated in vacuo. The crude residue was purified, and the two isomers, if any, were separated by silica gel column chromatography with ethyl acetate/*n*-hexane (1:10 to 1:5) as the eluent.

Compounds 4a and 5a

4a: Colorless solid. Yield 58% (122 mg). M.p. 62 °C. $R_{\rm f} = 0.32$ (EtOAc/*n*-hexane, 1:4). IR (KBr): $\tilde{v} = 3012$ (m), 2937 (m), 2873 (m), 1712 (s), 1384 (s), 1312 (m), 1164 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.51$ (dd, J = 11.7, 7.3 Hz, 1 H), 1.79 (ddd, J = 11.7, 4.8, 2.6 Hz, 1 H), 2.15 (s, 3 H), 2.31 (dddd, J = 10.4, 7.7, 7.3, 2.6 Hz, 1 H), 2.75 (dd collapsed to t, J = 10.4 Hz, 1 H), 2.85 (dd, J = 18.3, 8.8 Hz, 1 H), 3.01 (dd, J = 10.4, 7.7 Hz, 1 H), 3.08 (dd, J = 18.3, 5.2 Hz, 1 H), 4.22 (unresolved dd, J = 8.8, 5.2 Hz, 1 H), 5.03 (dd, J = 4.8, 1.5 Hz, 1 H), 6.30 (d, J = 5.8 Hz, 1 H), 6.40 (dd, J = 5.8, 1.5 Hz, 1 H) ppm. These data were confirmed by a ¹H-¹H COSY experiment (see also Table S2). ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.1, 34.7, 36.6, 41.0, 46.4, 48.2, 79.7, 100.4, 136.0, 137.5, 206.9$ ppm. MS (ESI, Ar): m/z (%) = 233 (82) [M + Na]⁺, 193 (98), 151 (100), 135 (22). HRMS (ESI, Ar): calcd. for C₁₁H₁₄O₂NaS [M + Na]⁺ 233.0612; found 233.0617.

5a: Light yellow oil. Yield 9% (19 mg). $R_{\rm f} = 0.23$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 2924$ (s), 2855 (m), 1709 (s), 1368 (m), 1321 (m), 1167 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.51$ (dd, J = 11.3, 7.3 Hz, 1 H), 1.77 (ddd, J = 11.3, 4.4, 2.6 Hz, 1 H), 2.23 (s, 3 H), 2.29 (dddd, J = 11.0, 7.7, 7.3, 2.6 Hz, 1 H), 2.73 (dd collapsed to t, J = 11.0 Hz, 1 H), 2.86 (dd, J = 17.2, 9.9 Hz, 1 H), 3.05 (dd, J = 11.0, 7.7 Hz, 1 H), 3.13 (dd, J = 17.2, 5.1 Hz, 1 H), 3.97 (dd, J = 9.9, 5.1 Hz, 1 H), 5.04 (dd, J = 4.4, 1.6 Hz, 1 H), 6.28 (d, J = 5.8 Hz, 1 H), 6.46 (dd, J = 5.8, 1.6 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S3). ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.3, 34.5, 36.7, 42.2, 47.3, 49.6, 79.5, 101.8, 133.5, 138.1, 205.6$ ppm. MS (ESI, Ar): *m/z*

(%) = 233 (100) [M + Na]⁺, 193 (12), 151 (70). HRMS (ESI, Ar): calcd. for $C_{11}H_{14}O_2NaS$ [M + Na]⁺ 233.0612; found 233.0608.

Compounds 4b and 5b

4b: Colorless solid. Yield 51% (139 mg). M.p. 73 °C. $R_{\rm f} = 0.27$ (EtOAc/*n*-hexane, 1:4). IR (KBr): $\tilde{v} = 3056$ (w), 2938 (w), 1683 (s), 1591 (m), 1321 (m), 1268 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.53 (dd, J = 11.7, 7.3 Hz, 1 H), 1.82 (ddd, J = 11.7, 4.4, 2.6 Hz, 1 H), 2.38 (dddd, J = 10.6, 7.7, 7.3, 2.6 Hz, 1 H), 2.78 (dd collapsed to t, J = 10.6 Hz, 1 H), 3.07 (dd, J = 10.6, 7.7 Hz, 1 H), 3.51 (ABq, J = 18.3 Hz, high-field and low-field halves were further split into d, J = 8.8 and 4.8 Hz, respectively, 2 H), 4.45 (dd, J = 8.8, 4.8 Hz, 1 H), 5.06 (dd, J = 4.4, 1.6 Hz, 1 H), 6.39 (ABq, J = 5.9 Hz, the low-field half was further split into d, J = 1.6 Hz, 2 H), 7.41–7.44 (m, 2 H), 7.46-7.58 (m, 1 H), 7.97-7.99 (m, 2 H) ppm. These data were confirmed by ¹H-¹H COSY and NOESY experiments (see also Table S4). ¹³C NMR (75 MHz, CDCl₃): δ = 34.5, 36.5, 41.2, 41.9, 48.0, 79.5, 100.3, 127.9, 128.3, 132.9, 135.8, 136.2, 137.4, 197.8 ppm. MS (ESI, Ar): m/z (%) = 295 (100) [M + Na]⁺, 255 (28), 105 (25). HRMS (ESI, Ar): calcd. for $C_{16}H_{16}O_2NaS$ [M + Na]⁺ 295.0769; found 295.0775.

5b: Colorless solid. Yield 8% (22 mg). M.p. 130 °C. $R_{\rm f} = 0.14$ (EtOAc/*n*-hexane, 1:4). IR (KBr): $\tilde{v} = 3020$ (w), 2920 (w), 1673 (s), 1593 (m), 1446 (m), 1211 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.53 \text{ (dd, } J = 11.7, 7.7 \text{ Hz}, 1 \text{ H}), 1.80 \text{ (ddd, } J = 11.7, 4.4, 2.6 \text{ Hz},$ 1 H), 2.35 (dddd collapsed to ddd, J = 10.8, 7.7, 2.6 Hz, 1 H), 2.75 (dd collapsed to t, J = 10.8 Hz, 1 H), 3.06 (dd, J = 10.8, 7.7 Hz, 1 H), 3.55 (ABq, J = 17.2 Hz, high-field and low-field halves were further split into d, J = 9.2 and 5.3 Hz, respectively, 2 H), 4.20 (dd, J = 9.2, 5.3 Hz, 1 H), 5.05 (dd, J = 4.4, 1.8 Hz, 1 H), 6.35 (d, J =5.9 Hz, 1 H), 6.46 (dd, J = 5.9, 1.8 Hz, 1 H), 7.45–7.50 (m, 2 H), 7.56-7.61 (m, 1 H), 7.98-7.99 (m, 2 H) ppm. These data were confirmed by ¹H-¹H COSY and NOESY experiments (see also Table S5). ¹³C NMR (75 MHz, CDCl₃): δ = 34.5, 36.8, 42.5, 44.7, 47.4, 79.5, 101.9, 128.1, 128.7, 133.4, 133.7, 136.5, 137.9, 197.0 ppm. MS (ESI, Ar): *m*/*z* (%) = 295 (100) [M + Na]⁺, 255 (4), 135 (10), 105 (25), 77 (4). HRMS (ESI, Ar): calcd. for C₁₆H₁₆O₂NaS [M + Na]⁺ 295.0769; found 295.0770.

Compound 4c: Colorless solid. Yield 44% (111 mg). M.p. 109 °C. $R_{\rm f} = 0.27$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 2938$ (m), 1725 (s), 1694 (m), 1250 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.46$ (dd, J = 11.7, 7.3 Hz, 1 H), 1.75 (ddd, J = 11.7, 4.4, 2.6 Hz, 1 H), 2.25 (s, 6 H), 2.27–2.38 (m, 1 H), 2.70 (dd collapsed to t, J =10.6 Hz, 1 H), 2.96 (dd, J = 10.6, 7.3 Hz, 1 H), 4.29 (d, J = 11.2 Hz, 1 H), 4.50 (d, J = 11.2 Hz, 1 H), 5.02 (dd, J = 4.4, 1.6 Hz, 1 H), 6.27 (unresolved br. s, 2 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S6). ¹³C NMR (75 MHz, CDCl₃): $\delta = 29.5$, 31.4, 34.1, 36.4, 45.3, 49.4, 71.5, 79.9, 99.3, 135.6, 137.0, 200.9, 202.1 ppm. MS (ESI, Ar): m/z (%) = 275 (4) [M + Na]⁺, 193 (100). HRMS (ESI, Ar): calcd. for C₁₃H₁₆O₃NaS [M + Na]⁺ 275.0718; found 275.0725. The minor isomer **5c** could not be isolated in pure form.

Compounds 8a and 9a

8a: Light yellow oil. Yield 61% (206 mg). $R_{\rm f} = 0.29$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 3056$ (m), 2986 (m), 1725 (br., s), 1266 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.25$ (two overlapped t, J = 7.3 Hz, 6 H), 1.45 (dd, J = 11.4, 7.7 Hz, 1 H), 1.70 (ddd, J = 11.4, 4.4, 3.3 Hz, 1 H), 1.79 (dddd, J = 9.9, 8.1, 7.7, 3.3 Hz, 1 H), 2.12 (s, 3 H), 2.36 (ABq, J = 13.2 Hz, the low-field and high-field halves were further split into d, J = 9.9 and 8.1 Hz, respectively, 2 H), 2.55 (dd, J = 17.2, 4.8 Hz, 1 H), 2.80 (dd, J = 17.2, 10.3 Hz, 1 H), 3.90 (dd, J = 10.3, 4.8 Hz, 1 H), 4.10–4.28 (m, 4 H), 4.93 (dd,

J = 4.4, 1.8 Hz, 1 H), 6.16 (d, *J* = 5.9 Hz, 1 H), 6.40 (dd, *J* = 5.9, 1.8 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S7). ¹³C NMR (100 MHz, CDCl₃): δ = 13.8 (2 C), 30.1, 33.0, 38.5, 39.4, 40.2, 40.9, 61.1, 61.5, 65.1, 79.3, 98.1, 134.2, 137.2, 169.7, 171.8, 206.3 ppm. MS (ESI, Ar): *m/z* (%) = 359 (100) [M + Na]⁺, 273 (8), 189 (10), 159 (18). HRMS (ESI, Ar): calcd. for C₁₈H₂₄O₆Na [M + Na]⁺ 359.1471; found 359.1469.

9a: Light yellow oil. Yield 12% (41 mg). $R_{\rm f} = 0.13$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 3057$ (m), 2986 (m), 1727 (m), 1266 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.26$ (two overlapped t, J = 7.3 Hz, 6 H), 1.42 (dd, J = 11.4, 7.7 Hz, 1 H), 1.68 (ddd, J = 11.4, 4.4, 3.3 Hz, 1 H), 1.99 (dd, J = 13.2, 11.4 Hz, 1 H), 2.02–2.20 (m, 1 H), 2.21 (s, 3 H), 2.53 (dd, J = 13.2, 7.0 Hz, 1 H), 4.12–4.23 (m, 4 H), 4.98 (dd, J = 4.4, 1.5 Hz, 1 H), 6.24 (ABq, J = 5.9 Hz, the high-field half was further split into d, J = 1.5 Hz, 2 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S8). ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$ (2 C), 29.7, 32.3, 39.2, 41.9, 43.0, 43.2, 61.4 (2 C), 66.9, 79.8, 99.6, 134.3, 135.6, 170.9, 171.2, 206.4 ppm. MS (ESI, Ar): m/z (%) = 359 (100) [M + Na]⁺, 273 (53), 189 (22), 159 (11), 61 (8). HRMS (ESI, Ar): calcd. for C₁₈H₂₄O₆Na [M + Na]⁺ 359.1471; found 359.1467.

Compounds 8b and 9b

8b: Colorless solid. Yield 71% (283 mg). M.p. 105 °C. $R_{\rm f} = 0.33$ (EtOAc/*n*-hexane, 1:4). IR (KBr): $\tilde{v} = 3057$ (w), 2985 (w), 1726 (br., s), 1266 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.19$ (t, J =7.1 Hz, 3 H), 1.26 (t, J = 7.1 Hz, 3 H), 1.46 (dd, J = 11.7, 7.8 Hz, 1 H), 1.72 (ddd collapsed to dt, J = 11.7, 4.4 Hz, 1 H), 1.86 (dddd collapsed to ddd, J = 8.8, 7.8, 4.4 Hz, 1 H), 2.40 (ABqd, J = 13.2, 8.8 Hz, 2 H), 3.11 (dd, J = 17.8, 4.9 Hz, 1 H), 3.39 (dd, J = 17.8, 10.0 Hz, 1 H), 4.00 (dd, J = 10.0, 4.9 Hz, 1 H), 4.21 (m, 4 H), 4.92 (dd, J = 4.4, 1.5 Hz, 1 H), 6.15 (dd, J = 5.9, 1.5 Hz, 1 H), 6.46 (d, J)J = 5.9 Hz, 1 H), 7.40–7.45 (m, 2 H), 7.50–7.55 (m, 1 H), 7.93– 7.96 (m, 2 H) ppm. These data were confirmed by ¹H-¹H COSY and NOESY experiments (see also Table S9). ¹³C NMR (100 MHz, $CDCl_3$: $\delta = 14.0 (2 C), 33.4, 36.0, 39.0, 39.9, 41.1, 61.3, 61.7, 65.4,$ 79.5, 98.5, 128.1, 128.4, 132.8, 134.7, 137.0, 137.1, 170.2, 172.1, 197.9 ppm. MS (ESI, Ar): m/z (%) = 421 (100) [M + Na]⁺, 335 (50), 263 (20), 261 (54). HRMS (ESI, Ar): calcd. for C₂₃H₂₆O₆Na [M + Na]⁺ 421.1627; found 421.1638. Selected X-ray data: $C_{23}H_{26}O_6$, M = 398.44, orthorhombic, $P2_12_12_1$, a = 8.3315(6) Å, b= 13.9919(14) Å, c = 18.2911(15) Å, V = 2132.3(3) Å³, Z = 4, $D_{\text{calcd.}} = 1.241 \text{ g cm}^{-3}, \ \mu = 0.089 \text{ mm}^{-1}, \text{ size } = 0.40 \times 0.35 \times$ 0.30 mm, GOF = 0.922. Reflections collected: unique 9669/3730 [R(int) = 0.0325]. Final R indices $[I > 2\sigma(I)]$: $R_1 = 0.0488$, $wR_2 =$ 0.1118; R indices (all data): $R_1 = 0.1069$, $wR_2 = 0.1335$ (see also Table S17).

9b: Light yellow oil. Yield 16% (64 mg). $R_{\rm f} = 0.16$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 3055$ (m), 2985 (w), 1725 (br., s), 1686 (m), 1265 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.23$ (t, J = 7.3 Hz, 6 H), 1.43 (dd, J = 11.2, 7.8 Hz, 1 H), 1.72 (ddd collapsed to dt, J = 11.2, 4.4 Hz, 1 H), 2.02–2.06 (m, 2 H), 2.21–2.29 (m, 1 H), 2.57 (dd, J = 12.9, 6.6 Hz, 1 H), 3.47–3.67 (m, 2 H), 4.10–4.25 (m, 4 H), 4.99 (dd, J = 4.4, 1.5 Hz, 1 H), 6.21 (dd, J = 5.9, 1.5 Hz, 1 H), 6.23 (ABq, J = 5.9 Hz, 1 H), 7.44–7.49 (m, 2 H), 7.54–7.59 (m, 1 H), 8.00–8.02 (m, 2 H) ppm. These data were confirmed by ¹H-¹H COSY and NOESY experiments (see also Table S10). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.1$, 29.7, 32.4, 38.0, 39.4, 42.0, 43.1, 61.5 (2 C), 67.0, 79.9, 99.8, 128.2, 128.7, 133.2, 134.8, 135.4, 136.8, 171.0, 171.5, 197.6 ppm. MS (ESI, Ar): m/z (%) = 421 (100) [M + Na]⁺, 335 (30), 261 (12). HRMS (ESI, Ar): calcd. for C₂₃H₂₆O₆Na [M + Na]⁺ 421.1627; found 421.1643.

Compounds 8c and 9c

8c: Colorless oil. Yield 65% (238 mg). $R_{\rm f} = 0.29$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 3056$ (m), 2986 (m), 1729 (br., s), 1266 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24$ (three overlapped t, J = 7.3 Hz, 9 H), 1.44 (dd, J = 11.4, 7.7 Hz, 1 H), 1.70 (ddd, J = 11.4, 4.4, 3.3 Hz, 1 H), 1.76–1.85 (m, 1 H), 2.35–2.39 (m, 2 H), 2.53–2.56 (m, 2 H), 3.90 (dd, J = 9.2, 6.6 Hz, 1 H), 4.06–4.28 (three overlapped q, J = 7.3 Hz, 6 H), 4.97 (dd, J = 4.4, 1.5 Hz, 1 H), 6.19 (dd, J = 5.9, 1.5 Hz, 1 H), 6.41 (d, J = 5.9 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S11). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.8$ (2 C), 13.9, 31.7, 32.9, 38.5, 40.2, 40.9, 60.1, 61.1, 61.5, 65.2, 79.4, 97.9, 134.5, 136.9, 169.4, 171.7, 171.8 ppm. MS (ESI, Ar): m/z (%) = 389 (100) [M + Na]⁺, 303 (24), 229 (9). HRMS (ESI, Ar): calcd. for C₁₉H₂₆O₇Na [M + Na]⁺ 389.1576; found 389.1581.

9c: Light yellow oil. Yield 12% (45 mg). $R_{\rm f} = 0.13$ (EtOAc/n-hexane, 1:4). IR (neat): $\tilde{v} = 3055$ (m), 2985 (w), 1729 (br., s), 1266 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.26 (three overlapped t, J = 7.0 Hz, 9 H), 1.42 (dd, J = 11.4, 7.7 Hz, 1 H), 1.67 (ddd collapsed to dt, J = 11.4, 4.3 Hz, 1 H), 1.97 (dd, J = 12.8, 11.4 Hz, 1 H), 2.17–2.27 (dddd, J = 11.4, 7.7, 7.0, 4.3 Hz, 1 H), 2.53 (dd, J = 12.8, 7.0 Hz, 1 H), 2.80 (ABq, J = 16.5 Hz, the high-field and lowfield halves were further split to d, J = 9.9 and 5.5 Hz, respectively, 2 H), 3.43 (dd, J = 9.9, 5.5 Hz, 1 H), 4.18 (three overlapped q, J =7.0 Hz, 6 H), 4.98 (dd, J = 4.3, 1.8 Hz, 1 H), 6.25 (dd, J = 5.9, 1.8 Hz, 1 H), 6.35 (d, J = 5.9 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S12). ¹³C NMR (75 MHz, CDCl₃): δ = 14.0 (2 C), 14.2, 32.4, 34.0, 39.3, 42.6, 43.0, 60.7 (2 C), 61.5, 66.9, 79.8, 99.6, 134.3, 135.5, 170.8, 171.1, 171.7 ppm. MS (ESI, Ar): *m*/*z* (%) = 389 (100) [M + Na]⁺, 303 (94), 229 (73), 201 (25). HRMS (ESI, Ar): calcd. for C₁₉H₂₆O₇Na [M + Na]⁺ 389.1576; found 389.1577.

Compound 8d: Light yellow oil. Yield 41% (145 mg). $R_{\rm f} = 0.39$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 2926$ (w), 1732 (s), 1254 (s), 1098 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.26$ (t, J = 7.3 Hz, 6 H), 1.36 (ddd, J = 11.7, 4.4, 2.0 Hz, 1 H), 1.45–1.57 (m, 3 H), 1.79–1.93 (m, 2 H), 2.12 (s, 3 H), 2.37–2.43 (m, 1 H), 3.06–3.09 (m, 2 H), 3.50 (dd, J = 5.9, 3.9 Hz, 1 H), 4.07–4.28 (m, 4 H), 4.86 (dd, J = 4.4, 1.5 Hz, 1 H), 5.86 (d, J = 5.9 Hz, 1 H), 6.25 (dd, J = 5.9, 1.5 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 28.0, 29.8, 30.3, 32.8, 35.2, 36.2, 36.8, 43.9, 57.2, 61.0, 61.8, 78.7, 89.1, 136.4, 137.5, 170.1, 172.1, 208.1 ppm. MS (ESI, Ar): m/z (%) = 373 (100) [M + Na]⁺, 287 (10), 241 (38), 215 (50), 195 (30). HRMS (ESI, Ar): calcd. for C₁₉H₂₆O₆Na [M + Na]⁺ 373.1627; found 373.1632.

Compounds 8e and 9e

8e: Colorless solid. Yield 40% (166 mg). M.p. 99 °C. $R_{\rm f} = 0.37$ (EtOAc/*n*-hexane, 1:4). IR (neat): $\tilde{v} = 2979$ (w), 2928 (w), 1732 (s), 1688 (m), 1449 (m), 1254 (m), 1096 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.09$ (t, J = 7.0 Hz, 3 H), 1.31 (t, J = 7.0 Hz, 3 H), 1.39 (ddd, J = 11.0, 4.4, 2.6 Hz, 1 H), 1.47–1.63 (m, 2 H), 1.65–1.70 (m, 1 H), 1.88–1.92 (m, 2 H), 2.41–2.48 (m, 1 H), 3.63–3.65 (m, 2 H), 3.79 (dd, J = 5.9, 3.7 Hz, 1 H), 3.96–4.14 (m, 2 H), 4.27 (q, J = 7.0 Hz, 2 H), 4.87 (dd, J = 4.4, 1.5 Hz, 1 H), 5.91 (d, J = 5.5 Hz, 1 H), 6.21 (dd, J = 5.5, 1.5 Hz, 1 H), 7.40–7.46 (m, 2 H), 7.51–7.56 (m, 1 H), 8.00–8.02 (m, 2 H) ppm. These data were confirmed by ¹H-¹H COSY experiment. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.9$, 14.1, 27.9, 32.8, 35.2, 36.1, 36.8, 38.9, 57.2, 60.9, 61.6, 78.6, 89.2, 128.2, 128.4, 132.9, 136.4, 137.0, 137.3, 170.1, 171.9, 199.1 ppm. MS (ESI, Ar): m/z (%) = 413 (2) [M + H]⁺, 395 (100). HRMS (ESI, Ar): calcd. for C₂₄H₂₉O₆ [M + H]⁺ 413.1964; found

413.1971. Selected X-ray data: $C_{24}H_{28}O_6$: M = 412.46, triclinic, $P\bar{1}$, a = 8.9557(3) Å, b = 9.8870(4) Å, c = 13.4143(5) Å, V = 1070.23(7) Å³, Z = 2, $D_{calcd.} = 1.280$ g cm⁻³, $\mu = 0.091$ mm⁻¹, size = $0.23 \times 0.18 \times 0.16$ mm, GOF = 1.047. Reflections collected: unique 9289/3766 [R(int)] = 0.0206. Final R indices [$I > 2\sigma(I)$]: $R_1 = 0.0379$, $wR_2 = 0.0930$; R indices (all data): $R_1 = 0.0565$, $wR_2 = 0.0984$ (see also Table S17).

9e: Light yellow oil. Yield 3% (13 mg). $R_{\rm f} = 0.23$ (EtOAc/*n*-hexane, 1:4) IR (neat): $\tilde{v} = 2929$ (s), 1732 (s), 1260 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7.0 Hz, 3 H), 1.17 (t, J = 7.0 Hz, 3 H), 1.22–1.55 (m, 2 H), 1.56–1.65 (m, 2 H), 1.87–1.94 (m, 1 H), 2.02–2.13 (m, 1 H), 2.43–2.49 (m, 1 H), 3.18 (dd, J = 18.5, 5.9 Hz, 1 H), 3.49 (dd, J = 18.5, 4.4 Hz, 1 H), 3.96–4.00 (m, 1 H), 4.01–4.22 (two overlapped q, J = 7.0 Hz, 4 H), 4.81 (dd, J = 4.4, 1.8 Hz, 1 H), 6.11 (d, J = 5.9 Hz, 1 H), 6.31 (dd, J = 5.9, 1.8 Hz, 1 H), 7.43–7.48 (m, 2 H), 7.53–7.55 (m, 1 H), 7.97–8.01 (m, 2 H) ppm. These data were confirmed by ¹H-¹H COSY experiment. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$, 14.1, 26.8, 27.9, 33.2, 35.2, 35.5, 39.3, 57.2, 61.7 (2 C), 78.1, 90.3, 128.2, 128.8, 133.2, 135.8, 137.1, 137.7, 170.4, 171.9, 197.2 ppm. MS (ESI, Ar): *m/z* (%) = 413 (2) [M + H]⁺, 395 (100). HRMS (ESI, Ar): calcd. for C₂₄H₂₉O₆ [M + H]⁺ 413.1964; found 413.1957.

Compounds 12d and 13d

12d: Light yellow oil. Yield 20% (53 mg). $R_f = 0.19$ (EtOAc/n-hexane, 1:5). IR (KBr): $\tilde{v} = 3076$ (w), 2980 (w), 2938 (w), 2867 (w), 1735 (s), 1180 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.25 (t, J = 7.3 Hz, 3 H), 1.48 (dd, J = 11.7, 7.8 Hz, 1 H), 1.72 (ddd collapsed to dt, J = 11.7, 4.4 Hz, 1 H), 2.06 (dtd, J = 10.7, 7.8, 4.4 Hz, 1 H), 2.64–2.66 (m, 2 H), 2.83 (dd, J = 10.7, 7.8 Hz, 1 H), 2.90 (dd collapsed to t, J = 10.7 Hz, 1 H), 3.15 (dd, J = 14.1, 7.3 Hz, 1 H), 3.43 (ddt, J = 13.7, 5.9, 1.5 Hz, 1 H), 3.64 (dd collapsed to t, J =6.8 Hz, 1 H), 4.13 (q, J = 7.3 Hz, 2 H), 5.05 (dd, J = 4.4, 1.5 Hz, 1 H), 5.13 (d, J = 10.2 Hz, 1 H), 5.21 (dd, J = 17.1, 1.5 Hz, 1 H), 5.85-5.98 (m, 1 H), 6.26 (dd, J = 5.9, 1.5 Hz, 1 H), 6.40 (d, J =5.9 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S13). ¹³C NMR (100 MHz, CDCl₃): δ = 14.0, 29.5, 32.4, 34.1, 41.1, 56.4, 57.2, 59.1, 60.1, 79.2, 97.9, 117.0, 135.3, 135.5, 172.0 ppm. MS (ESI, Ar): m/z (%) = 264 (100) [M + H]⁺, 167 (10), 125 (9), 95 (6). HRMS (ESI, Ar): calcd. for C₁₅H₂₂NO₃ [M + H]⁺ 264.1600; found 264.1599.

13d: Light yellow oil. Yield 69% (182 mg). $R_{\rm f} = 0.37$ (EtOAc/nhexane, 1:5). IR (neat): $\tilde{\nu}$ = 3055 (m), 2984 (m), 1730 (s), 1266 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.26 (t, J = 7.3 Hz, 3 H), 1.32 (dd, J = 11.5, 7.5 Hz, 1 H), 1.68 (ddd, J = 11.5, 4.4, 2.8 Hz, 1 H), 1.98-2.08 (m, 1 H), 2.17 (dd, J = 10.3, 8.4 Hz, 1 H), 2.71(ABq, J = 15.8 Hz, the high-field and low-field halves were further split into d, J = 8.4 and 5.1 Hz, respectively, 1 H), 3.14 (dd, J =13.6, 7.3 Hz, 1 H), 3.23-3.25 (m, 1 H), 3.27-3.30 (m, 1 H), 3.43 (ddt, J = 13.6, 5.9, 1.5 Hz, 1 H), 4.16 (q, J = 7.3 Hz, 2 H), 4.98 (dd, J = 4.4, 1.7 Hz, 1 H), 5.12 (dd, J = 10.3, 0.7 Hz, 1 H), 5.21(dd, J = 17.2, 1.5 Hz, 1 H), 5.84-5.96 (m, 1 H), 6.30 (dd, J = 5.9, 1 H), 6.30 (dd, J = 5.9, 1 H), 5.84-5.96 (m, 1 H), 5.84-1.7 Hz, 1 H), 6.41 (d, J = 5.9 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S14). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 13.7, 29.1, 37.7, 41.0, 57.0, 57.9, 59.8, 60.6,$ 78.9, 98.7, 116.6, 133.6, 135.1, 135.3, 170.6 ppm. MS (ESI, Ar): m/z (%) = 264 (100) [M + H]⁺, 167 (40), 125 (80), 97 (69), 95 (54), 81 (25). HRMS (ESI, Ar): calcd. for $C_{15}H_{22}NO_3$ [M + H]⁺ 264.1600; found 264.1605.

Compounds 12e and 13e

12e: Light yellow oil. Yield 13% (44 mg). $R_{\rm f} = 0.19$ (EtOAc/*n*-hexane, 1:5). IR (neat): $\tilde{v} = 3077$ (w), 2926 (w), 1734 (s), 1180 (m)

cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ = 1.25 (two overlapped t, J = 6.9 Hz, 6 H), 1.47 (dd, J = 11.6, 7.9 Hz, 1 H), 1.70 (ddd, J = 11.6, 4.4, 3.0 Hz, 1 H), 2.07 (dddd, J = 9.5, 7.9, 7.3, 3.0 Hz, 1 H), 2.63–2.66 (m, 2 H), 2.83 (dd, J = 10.6, 7.3 Hz, 1 H), 2.90 (dd, J = 10.6, 9.5 Hz, 1 H), 3.15 (dd, J = 13.9, 7.3 Hz, 1 H), 3.43 (ddt, J = 13.9, 5.5, 1.5 Hz, 1 H), 3.64 (ABq, J = 6.6 Hz, 1 H), 4.12 (two overlapped q, J = 6.9 Hz, 4 H), 5.05 (dd, J = 4.4, 1.5 Hz, 1 H), 5.16 (dq, J = 17.2, 1.5 Hz, 1 H), 5.85–5.98 (m, 1 H), 6.26 (dd, J = 5.9, 1.5 Hz, 1 H), 6.39 (d, J = 5.9 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S15). ¹³C NMR (75 MHz, CDCl₃): δ = 14.3, 32.7, 34.3, 41.3, 56.6, 57.5, 59.3, 60.5, 79.4, 98.2, 117.3, 135.5 (2 C), 135.7, 172.3 ppm. MS (ESI, Ar): *m/z* (%) = 264 [M – CO₂Et + H]⁺, (100), 167 (22), 125 (25), 95 (18). HRMS (ESI, Ar): calcd. for C₁₅H₂₂NO₃ [M – CO₂Et + H]⁺ 264.1600; found 264.1591.

13e: Light yellow oil. Yield 60% (202 mg). $R_{\rm f} = 0.35$ (EtOAc/nhexane, 1:5). IR (neat): $\tilde{v} = 3054$ (m), 2986 (m), 1730 (m), 1266 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.26 (t, J = 7.0 Hz, 6 H), 1.32 (dd, J = 11.4, 7.5 Hz, 1 H), 1.68 (ddd, J = 11.4, 4.4, 2.9 Hz, 1 H), 2.03 (dddd, J = 13.6, 10.6, 7.5, 2.9 Hz, 1 H), 2.16 (dd, J =10.6, 8.4 Hz, 1 H), 2.60 (ABq, J = 8.4 Hz, 1 H), 2.74 (dd, J = 15.4, 5.1 Hz, 1 H), 3.13 (dd, J = 13.6, 7.3 Hz, 1 H), 3.22–3.29 (m, 2 H), 3.43 (ddt, J = 13.6, 5.9, 1.6 Hz, 1 H), 4.16 (q, J = 7.0 Hz, 4 H), 4.99 (dd, J = 4.4, 1.5 Hz, 1 H), 5.09–5.21 (m, 1 H), 5.82–5.96 (m, 1 H), 6.29 (dd, J = 5.9, 1.5 Hz, 1 H), 6.41 (d, J = 5.9 Hz, 1 H) ppm. These data were confirmed by ¹H-¹H COSY experiment (see also Table S16). ¹³C NMR (75 MHz, CDCl₃): δ = 14.2, 29.6, 38.3, 41.6, 57.6, 58.5, 60.4, 61.1, 79.5, 99.2, 117.2, 134.1, 135.6, 135.8, 171.3 ppm. MS (ESI, Ar): m/z (%) = 264 (100) [M - CO₂Et + H]⁺, 167 (3), 125 (5). HRMS (ESI, Ar): calcd. for C₁₅H₂₂NO₃ [M - $CO_2Et + H]^+$) 264.1600; found 264.1602.

Supporting Information (see footnote on the first page of this article): NMR spectroscopic data tables, copies of NMR spectra for all new compounds, RHF/3-21G*- and B3LYP/6-31+G*-calculated coordinates of products and transition states.

Acknowledgments

I. N. N. thanks the Department of Science and Technology, India for financial assistance and the Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology Bombay, for selected NMR spectroscopic data. M. D. thanks the Council of Scientific and Industrial Research, India, and M. K. K. thanks the Department of Atomic Energy-Board of Research in Nuclear Sciences for a research fellowship.

ber, Intramolecular Diels-Alder and Alder Ene Reactions, Springer-Verlag, Berlin, **1984**; p) A. G. Fallis, Can. J. Chem. **1984**, 62, 183–234; q) W. R. Roush, in Comprehensive Organic Synthesis (Eds: B. M. Trost, I. Fleming, L. A. Paquette), Pergamon, Oxford, **1991**, vol. 5, p. 513–550; r) D. Craig, "Stereoselective Synthesis" in Methods of Organic Chemistry (Houben-Weyl) (Eds: G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann), 4th ed., Thieme, Stuttgart, **1995**, vol. E21c, pp. 2872–2904.

- [2] Selected reviews on Type-2 IMDA: a) B. R. Bear, S. M. Sparks, K. J. Shea, Angew. Chem. Int. Ed. 2001, 40, 820–849; b) R. Keese, W. Luef, in Topics in Stereochemistry (Eds: E. L. Eliel, S. H. Wilen), Wiley, New York, 1991, vol. 20, p. 231; c) P. M. Warner, Chem. Rev. 1989, 89, 1067–1093; d) W. T. Borden, Chem. Rev. 1989, 89, 1095–1109.
- [3] Selected reviews: a) B. H. Lipshutz, Chem. Rev. 1986, 86, 795–819; b) B. A. Keay, I. R. Hunt, Adv. Cycloaddition 1999, 6, 173–210; c) C. O. Kappe, S. S. Murphree, A. Padwa, Tetrahedron 1997, 53, 14179–14233; d) L. M. Harwood, A. C. Brickwood, V. Morrison, J. Robertson, S. Swallow, J. Heterocycl. Chem. 1999, 36, 1391–1408; e) F. I. Zubkov, E. V. Nikitina, A. V. Varlamov, Russ. Chem. Rev. 2005, 74, 639–669.
- Selected recent articles on IMDAF: a) A. Padwa, H. Zhang, J. [4] Org. Chem. 2007, 72, 2570-2582; b) H.-J. Wu, C.-F. Liu, Z. Wang, H.-C. Lin, Tetrahedron Lett. 2007, 48, 6192-6194; c) S. M. Sparks, C.-L. Chen, S. F. Martin, Tetrahedron 2007, 63, 8619-8635; d) M. Karaarslan, E. Gokturk, A. Demircan, J. Chem. Res. 2007, 117-120; e) P. S. Sarang, A. A. Yadav, P. S. Patil, U. M. Krishna, G. K. Trivedi, M. M. Salunkhe, Synthesis 2007, 1091-1095; f) M. E. Jung, S.-J. Min, Tetrahedron 2007, 63, 3682-3701; g) V. V. Kouznetsov, U. M. Cruz, F. I. Zubkov, E. V. Nikitina, Synthesis 2007, 375-384; h) R. Pedrosa, S. Sayalero, M. Vicente, B. Casado, J. Org. Chem. 2005, 70, 7273-7278; i) H. Bruyere, C. Dos Reis, S. Samaritani, S. Ballereau, J. Royer, Synthesis 2006, 1673-1681; j) S. K. Maurya, S. Hotha, Tetrahedron Lett. 2006, 47, 3307-3310; k) A. D. Mance, K. Jakopcic, Mol. Diversity 2005, 9, 229-231; 1) K. M. Muller, B. A. Keay, Synlett 2008, 1236-1238; m) E. S. Krygowski, K. Murphy-Benenato, M. D. Shair, Angew. Chem. Int. Ed. 2008, 47, 1680-1684.
- [5] a) T. N. Cayzer, L. S.-M. Wong, P. Turner, M. N. Paddon-Row, M. S. Sherburn, Chem. Eur. J. 2002, 8, 739-750; b) D. J. Tantillo, K. N. Houk, M. E. Jung, J. Org. Chem. 2001, 66, 1938-1940; c) M. K. Diederich, F.-G. Klarner, B. R. Beno, K. N. Houk, H. Senderowitz, W. C. Still, J. Am. Chem. Soc. 1997, 119, 10255-10259; d) F. K. Brown, U. C. Singh, P. A. Kollman, L. Raimondi, K. N. Houk, C. W. Bock, J. Org. Chem. 1992, 57, 4862-4869; e) L. Raimondi, F. K. Brown, J. Gonzalez, K. N. Houk, J. Am. Chem. Soc. 1992, 114, 4796-4804; f) F. K. Brown, K. N. Houk, Tetrahedron Lett. 1985, 26, 2297–2300; g) O. Arjona, R. Medel, J. Plumet, R. Herrera, H. A. Jimenez-Vazquez, J. Tamariz, J. Org. Chem. 2004, 69, 2348-2354; h) L. R. Domingo, J. F. Sanz-Cervera, R. M. Williams, M. T. Picher, J. A. Marco, J. Org. Chem. 1997, 62, 1662-1667; i) J. Limanto, J. A. Tallarico, J. R. Porter, K. S. Khuong, K. N. Houk, M. L. Snapper, J. Am. Chem. Soc. 2002, 124, 14748-14758; j) L. R. Domingo, R. J. Zaragoza, R. M. Williams, J. Org. Chem. 2003, 68, 2895-2902; k) M.-D. Su, Organometallics 2004, 23, 2507-2509; 1) K. S. Khuong, C. M. Beaudry, D. Trauner, K. N. Houk, J. Am. Chem. Soc. 2005, 127, 3688-3689; m) T. N. Cayzer, M. N. Paddon-Row, D. Moran, A. D. Payne, M. S. Sherburn, P. Turner, J. Org. Chem. 2005, 70, 5561-5570; n) M. N. Paddon-Row, D. Moran, G. A. Jones, M. S. Sherburn, J. Org. Chem. 2005, 70, 10841-10853; o) A. Padwa, K. R. Crawford, C. S. Straub, S. N. Pieniazek, K. N. Houk, J. Org. Chem. 2006, 71, 5432–5439; p) E. L. Pearson, L. C. H. Kwan, C. I. Turner, G. A. Jones, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, J. Org. Chem. 2006, 71, 6099-6109; q) H. Rabaa, B. Engels, T. Hupp, A. Stephen, K. Hashmi, Int. J. Quantum Chem. 2007, 107, 359–365.

^[1] Selected reviews on Type-1 IMDA: a) A. Deagostino, C. Prandi, C. Zavattaro, P. Venturello, Eur. J. Org. Chem. 2006, 2463-2483; b) K.-i. Takao, R. Munakata, K.-i. Tadano, Chem. Rev. 2005, 105, 4779-4807; c) G. R. Heintzelman, I. R. Meigh, Y. R. Mahajan, S. M. Weinreb, Org. React. 2005, 65, 141-599; d) L. F. Tietze, N. Rackelmann, Pure Appl. Chem. 2004, 76, 1967-1983; e) A. Padwa, Pure Appl. Chem. 2004, 76, 1933-1952; f) I. Omae, Coord. Chem. Rev. 2004, 248, 995-1023; g) A. G. Fallis, Acc. Chem. Res. 1999, 32, 464-474; h) J. A. Marshall, Chemtracts: Org. Chem. 1992, 5, 111; i) S. C. Hirst, A. D. Hamilton, J. Rebek Jr, Chemtracts: Org. Chem. 1991, 4, 146; j) W. R. Roush, Advances in Cycloaddition (Ed.: D. P. Curran), JAI Press, Greenwich, CT, 1990, vol. 2, pp. 91-146; k) M. E. Jung, Synlett 1990, 186-190; l) D. Craig, Chem. Soc. Rev. 1987, 16, 187-238; m) E. Ciganek, Org. React. 1984, 32, 1; n) G. Brieger, J. N. Bennett, Chem. Rev. 1980, 80, 63-97; o) D. F. Ta-

- [6] C.-C. Liao, C.-S. Chu, T.-H. Lee, P. D. Rao, S. Ko, L.-D. Song, H.-C. Shiao, J. Org. Chem. 1999, 64, 4102–4110.
- [7] L. R. Domingo, M. J. Aurell, M. Arnó, J. A. Sáez, J. Org. Chem. 2007, 72, 4220–4227.
- [8] I. N. N. Namboothiri, M. Ganesh, S. M. Mobin, M. Cojocaru, J. Org. Chem. 2005, 70, 2235–2243.
- [9] 1a: a) J. M. Chong, L. Shen, N. J. Taylor, J. Am. Chem. Soc. 2000, 122, 1822–1823; 1b: b) S. Rajagopalan, P. V. A. Raman, Org. Synth., Coll. Vol. 1955, 3, 425; 1c: c) C. F. H. Allen, F. W. Spangler, Org. Synth., Coll. Vol. 1955, 3, 377.
- [10] R. Antonioletti, P. Bovicelli, S. Malancona, *Tetrahedron* 2002, 58, 589–596.
- [11] a) L. Sader-Bakaouni, O. Charton, N. Kunesch, F. Tillequin, *Tetrahedron* 1998, 54, 1773–1782; b) T. Heiner, S. I. Kozhushkov, M. Noltemeyer, T. Haumann, R. Boese, A. de Meijere, *Tetrahedron* 1996, 52, 12185–12196; c) S. Woo, B. A. Keay, *Tetrahedron: Asymmetry* 1994, 5, 1411–1414.

- [12] a) JAGUAR, ed. 5.5, Schrodinger Inc., Portland, OR, 2004; b) W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, *Ab initio Molecular Orbital Theory*, Wiley-Interscience, New York, 1986.
- [13] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; b) C. Lee,
 W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- [14] a) For a recent prediction of the regio- and steroselectivities in Diels-Alder reactions based on RHF/3-21G* results, see ref.^[5g]; b) G. O. Jones, V. A. Guner, K. N. Houk, *J. Phys. Chem.* A 2006, 110, 1216–1224.
- [15] A. Padwa, J. D. Ginn, S. K. Bur, C. K. Eidell, S. M. Lynch, J. Org. Chem. 2002, 67, 3412–3424.
- [16] For a recent example of stereoselectivity control by torsional steering in an IMDA reaction, see: R. G. Iafe, K. N. Houk, Org. Lett. 2006, 8, 3469–3472.

Received: July 9, 2008 Published Online: November 18, 2008