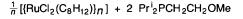
DAI TOI

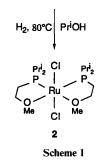
Synthesis and reactivity of cationic vinylidene and allenylidene ruthenium(II) complexes containing the phosphinoether $Pr_2^iPCH_2CH_2OMe$ as chelating ligand †

Marta Martín, Olaf Gevert and Helmut Werner*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

An efficient method for the preparation of the chelate complex $[RuCl_2(\kappa^2 P, O-Pr_1^i_2PCH_2CH_2OMe)_2]$ 2, using $[{RuCl_2(C_8H_{12})}_n]$ 1 as starting material, has been developed. Compound 2 reacts with terminal alkynes $HC \equiv CR$ (R = Ph, C₆H₄Me-p or C₆H₄C $\equiv CH$ -m) in the presence of Ag(O₃SCF₃) to give the octahedral cationic vinylidene complexes [RuCl(=C=CHR)($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)₂][O₃SCF₃] **4-6** in 70–80% yield. The parent derivative 3 (R = H) has been prepared analogously but is stable only under an acetylene atmosphere. Crystal structural analysis of 4 (R = Ph) confirms a *cis* arrangement of the chloro and vinylidene ligands. Treatment of 4 with basic Al₂O₃ produces, by deprotonation, a mixture of two isomers [RuCl(C=CPh)($\kappa^2 P$, O-Prⁱ, PCH₂CH₂OMe), **7**, **8** with the alkynyl and chloro ligands in either *cis* or *trans* disposition. Compounds 7, 8 easily react by partial cleavage of the chelate bonds to give the corresponding dicarbonyl derivatives $[RuCl(C=CPh)(CO)_2(\kappa P-Pr^i_2PCH_2CH_2OMe)_2]$ 9, 10. The isomeric mixture can be completely converted into the thermodynamically preferred species 9 with the two CO and the alkynyl and chloro ligands cis disposed. The neutral vinylidene complexes [RuX₂(=C=CHPh)(κP -Prⁱ₂PCH₂CH₂OMe)($\kappa^2 P$, *O*-Prⁱ₂PCH₂CH₂OMe)] (X = CN, I or Br) were obtained from 4 and KCN, NaI and LiBr, respectively. The reaction of 2 with propargylic alcohols HC=CCR(Ph)OH in the presence of Ag(O₃SCF₃), followed by treatment with acidic Al₂O₃, afforded the cationic allenylidene compounds [RuCl{=C=C=C(Ph)R}($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)₂]- $[O_3SCF_3]$ (R = Ph or C₆H₄Me-o) in moderate yields. The crystal structure where R = Ph has been determined and reveals an almost linear Ru=C=C=C chain with one of the methoxy groups trans to the allenylidene ligand. While the $R = C_6 H_4 Me_{-0}$ derivative reacts with CO to give the cationic carbonyl compound [RuCl(CO)($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)₂][O₃SCF₃], the reaction of **4** with CO gives a mixture of this complex, 9/10, and trans, trans, trans-[RuCl₂(CO)₂(KP-Prⁱ₂PCH₂CH₂OMe)₂]. The latter is formed quantitatively from 2 and carbon monoxide.


Recently, we have been interested in the synthesis and reactivity of transition-metal complexes containing phosphino-ethers, -amines and -esters as ligands. The characteristic feature of these ligands is that they behave as hemilabile chelating units and even under mild conditions are able to create a free coordination site to which a reactive substrate can be added. When this substrate was a terminal alkyne we could prepare a variety of neutral vinylidenemetal compounds with rhodium(I)² and iridium(I)³ as well as with ruthenium(II)⁴ and osmium(II).⁵


As a continuation of this work we describe in this paper the preparation of a variety of *cationic* vinylidene and allenylidene ruthenium complexes with the bulky phosphinoether $Pr_2^iP-CH_2CH_2OMe$ as a supporting ligand. A new and highly efficient method for the synthesis of the starting material $[RuCl_2(\kappa^2 P, O-Pr_2^iPCH_2CH_2OMe)_2]$ is also reported.

Results and Discussion

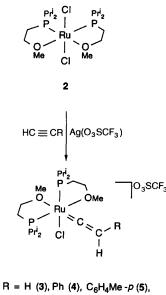
A new route to the chelate complex 2

While we had used in our initial studies either RuCl₃(aq) or $[RuCl_2(PPh_3)_3]$ as starting material for the preparation of 2,^{4a} we discovered more recently that the polymeric cyclooctadiene derivative $[{RuCl_2(C_8H_{12})}_n]$ 1 is a more appropriate precursor. Treatment of a suspension of 1 in PrⁱOH with 2 equivalents of the bifunctional phosphine Prⁱ₂PCH₂CH₂OMe under hydrogen for 1 h at 80 °C leads to a red solution from which the chelate complex 2 (Scheme 1) can be isolated as a

bright red solid in 75% yield. It should be mentioned that in the absence of hydrogen the reaction is considerably slower, requiring 12 h to be completed. In contrast to 1 the related iridium compound [{IrCl(C_8H_{14})_2}] reacts with Prⁱ₂PCH₂-CH₂OMe, even at room temperature, not to afford the expected chelate complex [{IrCl($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)}] or [Ir($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)_2]Cl but to give the C-H activation product [IrCl(H)($\kappa^2 P, C$ -CH₂OCH₂CH₂PPrⁱ₂)-($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)] instead.^{3c}

Preparation of cationic vinylidene ruthenium(II) complexes

At room temperature and in the absence of UV light compound 2 is rather inert toward alk-1-ynes.^{4a} However, in the presence of silver triflate Ag(O₃SCF₃) it smoothly reacts with HC=CR (R = H, Ph, C₆H₄Me-*p* or C₆H₄C=CH-*m*) to give the triflates


[†] Vinylidene Transition-metal Complexes. Part 39.¹

of the cationic vinylideneruthenium(II) complexes 4-6 in 70-80% yield (Scheme 2). The parent derivative 3 is stable only under an acetylene atmosphere and cannot be isolated as a solid. It was therefore characterized by ¹H and ³¹P NMR spectroscopy. The most typical feature of the ¹H NMR spectrum of 3 is the triplet for the = CH_2 protons at δ 3.69 which, according to the cationic nature of the species, appears at lower field if compared with that of the neutral compound $[RuCl_2(=C=CH_2)(\kappa P-Pr^i_2PCH_2CO_2Me)(\kappa^2 P, O-Pr^i_2PCH_2 CO_2Me)].^{4b}$

The analogous complexes 4-6, isolated as orange, only slightly air-sensitive solids, are significantly more stable than 3. The proposed structure with the cis disposed PPrⁱ₂ groups is supported by the ³¹P NMR spectra which at room temperature display typical AB patterns and show two doublets with a small P-P coupling constant of about 25 Hz. In contrast to the neutral ruthenium vinylidenes $[RuCl_2(=C=CHR)(\kappa P-Pr_2^iPY)(\kappa^2 P, O-Pr_2^iPY)(\kappa^2 P, O-Pr_2^iP$ $Pr_{2}^{i}PY$ (Y = CH₂CH₂OMe, CH₂CO₂Me, or CH₂CO₂Et),⁴ the cationic complexes 4-6 are not fluxional on the NMR timescale. Further characteristic features are the triplet resonance for the =CHR proton in the ¹H NMR spectra at ca. δ 5 and the low-field signals in the ¹³C NMR spectra at 8 355-360 and 117 which, in agreement with DEPT (distortionless enhancement of polarization transfer) measurements, are assigned to the α - and β -C carbon atoms of the vinylidene unit.

Molecular structure of compound 4

A single-crystal X-ray diffraction study of compound 4 confirms the structural proposal shown in Scheme 2. The ORTEP⁶ plot (Fig. 1) reveals that the ligand geometry around the metal centre is distorted octahedral with the two phosphorus atoms in cis position. The two phosphinoether ligands are co-ordinated in a κ^2 mode forming two fivemembered chelate rings with the ruthenium atom. The relatively small bond angles O(1)-Ru-P(1) [82.92(7)°] and O(2)-Ru-P(2) [80.67(7)°] (Table 1) are probably due to the ring strain in the RuPC₂O chelating system. The Ru-C(1)-C(2) unit is not exactly linear $[170.9(3)^{\circ}]$ with a Ru-C(1) distance [1.790(3) Å] that is certainly one of the shortest rutheniumvinylidene carbon bond lengths reported to date.4,7.8 In the cationic ruthenium complex $[Ru(C_5Me_5)(=C=CHPh) (PMe_2Ph)_2$ ⁺, which also contains C=CHPh as ligand, the corresponding Ru-C distance is 1.76(1) Å.9 The Ru-P bond lengths in 4 are in the range found for vinylidene compounds

 $C_6H_4C \equiv CH-m(6)$

Scheme 2

with cis P-Ru-P arrangements^{8,9} and deserve no further comment

Preparation of alkynylruthenium(11) derivatives

The acidic nature of the vinylidene proton in compound 4 becomes immediately evident upon treatment with basic alumina. At room temperature in dichloromethane--acetone a virtually spontaneous reaction occurs which affords a mixture of the two isomers 7 and 8 (Scheme 3). The same isomeric mixture of 7 and 8 is also obtained on treatment of 4 with a stoichiometric amount of Li(C=CPh) in tetrahydrofuran (thf) at 0 °C. Attempts to separate the two isomers by column chromatography or fractional crystallization failed.

The composition of the mixture of isomers 7 and 8 as determined by ¹H and ³¹P NMR spectroscopy is 2:1. Since the ³¹P NMR spectrum in [²H₈]toluene at -80 °C displays for the major isomer two well separated doublets which show a small P-P coupling of 32 Hz, we assume that 7 has the two phosphorus atoms in cis position. For the minor isomer 8 the spectrum shows only one signal for the two phosphorus atoms and thus, provided that the chloro and alkynyl ligands are trans to each other, two configurations, cis- and trans-P,P, seem to be possible. Owing to the X-ray structural analysis of

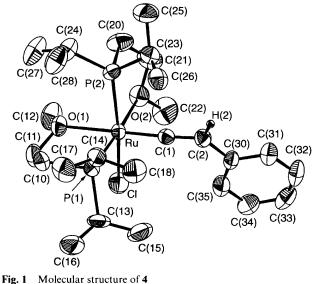
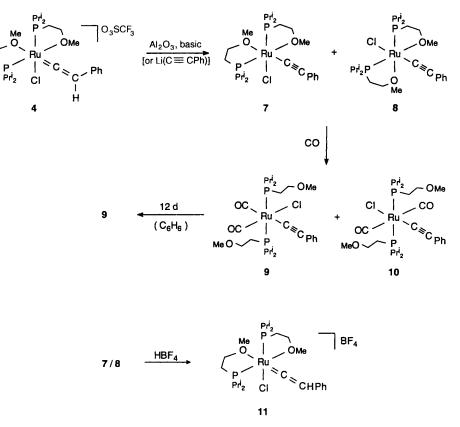



Table 1 Selected bond lengths (Å) and angles (°) for complex 4

Ru-C(1)	1.790(3)	P(1)-C(10)	1.836(4)
C(1) - C(2)	1.313(5)	C(10) - C(11)	1.504(6)
C(2)-C(30)	1.467(5)	O(1)-C(11)	1.450(5)
Ru-O(1)	2.236(2)	O(1)-C(12)	1.437(5)
Ru-O(2)	2.286(2)	P(2)-C(20)	1.834(4)
Ru-P(1)	2.272(1)	C(20)-C(21)	1.478(6)
Ru-P(2)	2.368(1)	O(2) - C(21)	1.434(5)
Ru–Cl	2.408(1)	O(2) - C(22)	1.434(5)
C(1)-Ru-O(1)	179.2(1)	P(2)-Ru-Cl	162.76(4)
C(1) - Ru - P(1)	97.5(1)	C(10) - P(1) - Ru	100.7(1)
C(1)-Ru-O(2)	88.8(1)	C(11)-C(10)-P(1)	112.2(3)
C(1)-Ru-P(2)	92.8(1)	O(1)-C(11)-C(10)	107.9(3)
C(1)-Ru-Cl	97.5(1)	C(11)–O(1)–Ru	114.2(2)
O(1)-Ru-P(1)	82.92(7)	C(12)-O(1)-C(11) 112.1(
O(1)-Ru-P(2)	87.72(7)	C(20)-P(2)-Ru 99.1(2)	
O(1)-Ru-O(2)	90.77(9)	C(21)-C(20)-P(2)	112.5(3)
O(1)-Ru-Cl	81.90(7)	C(2)-C(21)-C(20) 108.0(
O(2)-Ru-P(2)	80.67(7)	C(21)O(2)-Ru	114.7(2)
O(2)-Ru-Cl	85.72(8)	C(22)-O(2)-C(21)	110.2(3)
P(1) - Ru - P(2)	101.19(4)	C(2)-C(1)-Ru	170.9(3)
P(1)-Ru-O(2)	173.31(7)	C(1)-C(2)-C(30)	128.0(4)
P(1)-Ru-Cl	91.19(4)		

Scheme 3

[RuCl₂($\kappa^2 P$, *O*-Ph₂PCH₂CH₂OMe)₂], which proved that in the basal plane of the octahedron both the phosphorus and the oxygen atoms are *cis* disposed,¹⁰ and by comparison with the NMR data for **2**,^{4a} we favour a similar ligand arrangement for compound **8** (see Scheme 3). In agreement with the structural proposal for both isomers, the ¹H NMR spectrum of the mixture displays two signals at δ 4.06 and 3.16 for the protons of the inequivalent OCH₃ groups of **7** and one resonance at δ 3.55 for the OCH₃ protons of **8**. The IR spectrum of the solid shows two v(C=C) bands at 2000 and 2050 cm⁻¹, respectively. We note that in contrast to **7/8** in two related alkynyl(chloro)ruthenium(II) complexes, [RuCl(C=CPh)(dppm)₂] (dppm = Ph₂PCH₂CH₂PPh₂) and [RuCl(C=CPh)(dppe)₂] (dppe = Ph₂-PCH₂CH₂PPh₂) a *trans* position of Cl and C=CPh is preferred.^{11.12}

The hemilabile character of the P,O-chelating ligands in isomers 7/8 is illustrated by the reaction with carbon monoxide (Scheme 3). Under mild conditions (benzene, room temperature) a partial cleavage of the chelate bonds occurs which gives the corresponding alkynyl dicarbonyl derivatives 9/10 in moderate yield. The isomeric mixture of 9/10 can be completely converted into the thermodynamically preferred compound 9, if a solution of 9/10 in benzene is stirred for 12 d at 25 °C. Based on the observation of two co-stretching frequencies at 2020 and 1960 cm^{-1} in the IR spectrum of 9, and the *two* signals for the CO carbon atoms at δ 197.9 and 197.2 in the ¹³C NMR spectrum, we assume that the carbonyl ligands are cis disposed, one trans to Cl and the other trans to C_2 Ph. The appearance of one resonance in the ³¹P NMR spectrum of 9 for the two phosphorus atoms, which is consistent with a trans P-Ru-P arrangement, supports the structural proposal. The IR spectrum of the isomer 10 shows only one v(CO) band thus confirming the trans geometry of the $Ru(CO)_2$ unit. With regard to the reactivity of unsymmetrical five-membered RuPC₂O chelate rings, it should be mentioned that the tendency to cleave the Ru-O bond generally depends on the bonding capability of the oxygen-donor moiety. While not only

7 and 8 but also 2 and $[RuCl_2(\kappa^2 P, O-Ph_2PCH_2CH_2OMe)_2]$ react with CO to give the corresponding dicarbonyl derivatives,^{4a,13} the phosphinoester complex $[RuCl_2(\kappa^2 P, O-Pr_2PCH_2CO_2Me)_2]$ on treatment with carbon monoxide exclusively yields the monocarbonyl compound $[RuCl_2(CO)-(\kappa P-Pr_2PCH_2CO_2Me)(\kappa^2 P, O-Pr_2PCH_2CO_2Me)]$.^{4b}

The reaction of compound 4 with base to give 7/8 is reversible. If a solution of the two isomers in thf is treated with HBF₄·OEt₂ immediately a change from yellow to orange takes place and after partial removal of the solvent an orange solid 11 (Scheme 3) can be isolated. It has been identified by comparison of the ¹H and ³¹P NMR spectroscopic data with those of the corresponding triflate 4.

The results of ligand-displacement reactions of compound 4 are summarized in Scheme 4. Lithium bromide and NaI as well as KCN react with 4 in methanol or dichloromethane by substitution of the chloride and partial opening of one of the chelate bonds to give the neutral vinylideneruthenium complexes 12, 13 and 15 in good yield. Although a six-fold excess of LiBr was used, the isolated product contains beside the dibromo derivative 15 the mixed bromo(chloro)ruthenium(II) compound 16 as a minor component ($\approx 20\%$). Attempts to separate the two complexes failed. If the reaction mixture generated from 4 and NaI in methanol, containing 13 as the main species, is further heated under reflux for 3 h, phenylacetylene is eliminated and the diiodo complex 14 is formed. As expected, the ¹H and ³¹P NMR spectroscopic data for 14 are almost identical to those of the dichloro derivative 2.

Cationic allenylidene ruthenium complexes

The method first employed by Selegue¹⁴ and, in ruthenium chemistry, subsequently used by Dixneuf and others¹⁵ to prepare complexes with Ru=C=C=CRR' as a molecular unit, can also be applied to the synthesis of **17** and **18** (Scheme 5). While compound **2** is inert toward HC=CCPh(R)OH (R = Ph

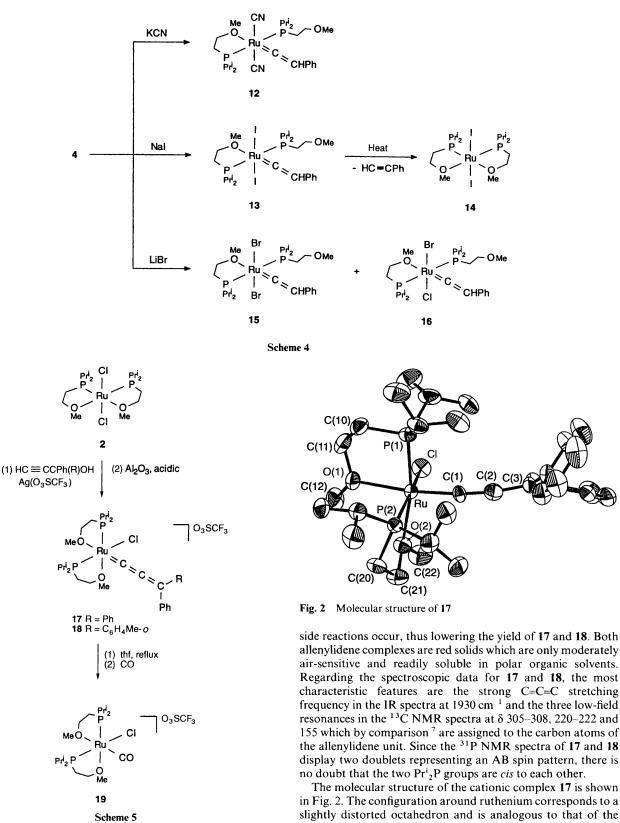
C(2) C(3)

vinylidene compound 4. The angles of the *trans* arranged units

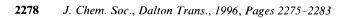
C(1)-Ru-O(1), P(1)-Ru-O(2) and P(2)-Ru-Cl are 172.1(2),

168.4(1) and 166.52(5)°, respectively. The distance Ru-C(1)

[1.829(6) Å] is almost the same as in the structurally related,


neutral allenylidenedichlororuthenium derivative [RuCl2(=C= $C=CPh_2)(\kappa P-Pr^{i}_2PCH_2CO_2Me)(\kappa^2 P, O-Pr^{i}_2PCH_2CO_2Me)]$

[1.84(1) Å]^{4b} and somewhat shorter than in cationic com-


plexes containing a trans ClRu=C=C=CRR' fragment.17 The

two carbon-carbon bond lengths in the Ru=C=C=C chain

(Table 2) are quite similar to those found in $[Ru(C_5H_5)-$ (=C=C=CPh₂)(PMe₃)₂]⁺¹⁴ as well as in other metal allenyl-

or C₆H₄Me-o), it slowly reacts in thf with these propargylic alcohols in the presence of silver triflate in the dark to give an orange-brown solution which possibly contains a CPh(R)OHsubstituted vinylidene ruthenium intermediate.16 If this solution is chromatographed on acidic alumina a red fraction is eluted from which the allenylidene complexes 17 and 18 are isolated in 30-40% yield. We assume that in contrast to the reaction of 2 with HC=CR (Scheme 2) which affords the vinylidene complexes 4-6 almost quantitatively, on treatment of 2 with HC=CCPh(R)OH and $Ag(O_3SCF_3)$ some unknown

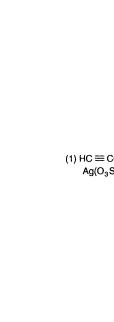
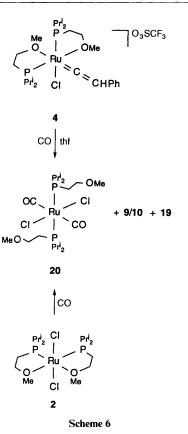



Table 2 Selected bond lengths (Å) and angles (°) for complex 17 1.829(6) 2.434(2) Ru-Cl Ru-C(1)1.259(9) 1.825(7) P(1)-C(10)C(1)-C(2)1.352(9) C(10)-C(11) 1.511(9) C(2)-C(3)C(3)-C(30) 1.484(8) O(1)-C(11) 1.437(7) C(3)-C(40) 1.466(8) O(1)-C(12) 1.448(7) 2.252(4) P(2)-C(20) 1.828(6) Ru-O(1)C(20)-C(21) 1.506(8) Ru-O(2)2.232(4) 1.432(7) Ru-P(1)2.282(2)O(2)-C(21) Ru-P(2)2.336(2) O(2)-C(22) 1.454(7) C(1)-Ru-O(1) C(10)-P(1)-Ru100.5(2) 172.1(2)112.2(4)C(1) - Ru - P(1)91.8(2) C(11)-C(10)-P(1)99.8(2) C(1)-Ru-O(2) O(1)-C(11)-C(10) 108.6(5) C(1) - Ru - P(2)94.9(2) C(11)-O(1)-Ru113.9(4) C(1)-Ru-Cl 91.3(2) C(12)-O(1)-C(11) 111.1(5) O(1) - Ru - P(1)82.8(1) C(20)-P(2)-Ru 100.0(2) O(1) - Ru - P(2)91.7(2) C(21)-C(20)-P(2) 112.9(4) 108.5(5) O(1)-Ru-O(2) 85.6(2) O(2)-C(21)-C(20) O(1)-Ru--Cl 83.2(1) C(21)-O(2)-Ru 119.3(3) O(2)-Ru-P(2)80.8(1) 110.3(5) C(22)-O(2)-C(21) C(2)-C(1)-Ru170.9(4) O(2)-Ru-Cl 86.3(1) 99.54(5) P(1)-Ru-P(2)C(1)-C(2)-C(3)171.8(6) P(1)-Ru-O(2)168.4(1) C(2)-C(3)-C(30) 119.4(5) P(1)-Ru-Cl92.20(5) C(2)-C(3)-C(40) 120.8(5) P(2)-Ru-Cl 166.52(5) C(30)-C(3)-C(40)119.8(5)

idenes^{17,18} and indicate that, besides the usual bonding formulation M=C=C=CRR', a second zwitterionic resonance structure M-C=C-CRR' with a positive charge at the metal and a negative charge at the γ -carbon atom has to be taken into consideration.

If the allenylidene complexes 17 and 18 are heated in thf under reflux and then treated with CO the cationic monocarbonylruthenium(II) compound 19 is formed in excellent yield. The 'fate' of the allenylidene fragment is unknown. We have recently found that in the co-ordination sphere of rhodium(I) two C_3 units can be coupled together to give a hexapentaene ligand,¹⁹ but we failed to detect such a species in the reaction mixture obtained from 17 (or 18), thf and CO. Finally, also the reaction of the cationic vinylidene complex 4 with CO was investigated (Scheme 6). Under mild conditions (thf, 25 °C) phenylacetylene is eliminated and a mixture of 19, the alkynylruthenium(II) derivatives 9, 10 (see Scheme 3) and the dicarbonyl dichloro compound 20 is formed. Complex 20 is prepared as the sole product if CO is passed through a solution of 2 in CH₂Cl₂ at room temperature. We note that under different conditions, in toluene as solvent, from 2 and CO instead of the *trans,trans,trans* isomer 20 the corresponding *cis,cis,trans* isomer (having only the Prⁱ₂P groups in *trans* disposition) has been obtained.^{4a}

Experimental

All reactions were carried out under an atmosphere of argon by using Schlenk-tube techniques. Solvents were dried by the usual procedures and distilled under argon prior to use. The starting materials [{RuCl₂(C_8H_{12})}_n],²⁰ Prⁱ₂PCH₂CH₂OMe,^{2a} and HC=CCPh(R)OH (R = Ph or C₆H₄Me-*o*)²¹ were prepared by published methods. The alkynes HC=CR (R = H, Ph, C₆H₄Me-*p* or C₆H₄C=CH-*m*) were commercial products from Aldrich and ABCR. The NMR spectra were recorded on Bruker AC 200 and AMX 400 instruments and the IR spectra on a Perkin-Elmer 1420 spectrometer. The ¹³C NMR signals were assigned by DEPT experiments [vt = virtual triplet; $N = {}^{3}J(PH) + {}^{5}J(PH)$ or ${}^{1}J(PC) + {}^{3}J(PC)$, respectively].

Preparations

[RuCl₂($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)₂] 2. A suspension of [{RuCl₂(C_8H_{12})}_n] (0.140 g, 0.50 mmol of ruthenium) in PrⁱOH (20 cm³) was treated with Prⁱ₂PCH₂CH₂OMe (0.19 cm³, 1.00 mmol) and stirred under hydrogen for 1 h at 80 °C. During this time a change from brown to dark red was observed. Upon cooling to room temperature the solvent was removed *in vacuo*, and the residue treated with pentane (10 cm³) to give a bright red microcrystalline solid, which was filtered off, washed repeatedly with pentane and dried *in vacuo*: yield 0.197 g (75%). The compound was identified by its ¹H and ³¹P NMR spectra.^{4a}

Reaction of complex 2 with acetylene and Ag(O₃SCF₃). Compound 2 (0.100 g, 0.19 mmol) was dissolved in (CD₃)₂CO (0.8 cm³) degassed under argon and transferred into an NMR tube. A stream of acetylene was passed through the solution for 5 min, and Ag(O₃SCF₃) (0.049 g, 0.19 mmol) was added. After 15 min at room temperature the ¹H and ³¹P NMR spectra showed the formation of $[RuCl(=C=CH_2)(\kappa^2 P, O-Pr_2^i)PCH_2$ - $CH_2OMe_{2}[O_3SCF_3]$ 3. In the absence of an acetylene atmosphere 3 decomposes, therefore we were unable to isolate it as a solid. NMR [(CD₃)₂CO]: $\delta_{\rm H}(200 \text{ MHz}) 4.20, 4.12, 3.87$, 3.70 (1 H each, all m, CH₂OCH₃), 3.69 [2 H, t, J(PH) 2.9, $=CH_2$], 3.75, 3.41 (3 H each, both s, OCH₃), 2.84, 2.63 (1 H each, both m, PCHCH₃ and PCH₂), 2.36 (2 H, m, PCHCH₃ and PCH₂), 2.30, 2.00 (signals partially covered by acetone resonance, m, PCHCH₃ and PCH₂), 1.90 (signal partially covered by acetylene resonance, m, PCHCH₃ and PCH₂) and 1.45–1.05 (24 H, m, PCHCH₃); δ_P(81 MHz) 69.8, 58.9 [both d, AB spin system, J(PP) 26.1 Hz]; $\delta_{F}(188.3 \text{ MHz}) - 78.6 \text{ (s)}$.

[RuCl(=C=CHPh)($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)₂][O₃SCF₃] 4. To a solution of compound 2 (0.262 g, 0.50 mmol) in acetone (10 cm³) were added HC=CPh (0.3 cm³, 2.50 mmol) and Ag(O₃SCF₃) (0.128 g, 0.50 mmol). After stirring for 2 h in the dark the precipitate (AgCl) was filtered off through Kieselgur and the filtrate concentrated to *ca*. 0.5 cm³. The precipitate was washed with diethyl ether to give an orange microcrystalline solid: yield 0.285 g (77%) (Found: C, 43.75; H, 6.25; S, 4.35. C₂₇H₄₈ClF₃O₅P₂RuS requires C, 43.8; H, 6.55; S, 4.35%). IR (KBr): v(C=C) 1610 and 1580 cm⁻¹. NMR (CDCl₃): δ_H(400 MHz) 7.3–7.0 (5 H, m, C₆H₅), 4.99 [1 H, t, J(PH) 3.4, =CH], 4.19, 4.12, 3.98, 3.73 (1 H each, all m, CH_2OCH_3), 3.84, 3.67 (3 H each, both s, OCH_3), 2.89, 2.56 (1 H each, both m, $PCHCH_3$ and PCH_2), 2.36, 2.29 (2 H each, both m, $PCHCH_3$ and PCH_2), 2.06, 1.97 (1 H each, both m, $PCHCH_3$ and PCH_2) and 1.5–1.2 (24 H, m, $PCHCH_3$); $\delta_C(100.6 \text{ MHz})$ 357.1 [dd, J(PC) 17.8, J(P'C) 15.3, Ru=C], 128.6, 128.4, 126.2 (all s, C_6H_5), 120.8 [q, J(CF) 321.0, CF_3SO_3], 117.4 (s, =CH), 72.4, 71.2 (both s, CH_2OCH_3), 62.8, 61.3 (both s, OCH_3), 36.9, 28.8 and 26.0 [all d, J(PC) 30.0, $PCHCH_3$], 25.1 [d, J(PC) 20.0, PCH_2 and $PCHCH_3$], 23.1 [d, J(PC) 20.0, PCH_2], 19.8, 19.5, 19.43, 19.41, 19.37, 19.24, 19.22, 18.87 (all s, $PCHCH_3$); $\delta_F(376.5 \text{ MHz}) - 78.6$ (s).

 $[RuCl(=C=CHC_6H_4Me-p)(\kappa^2P, O-Pr_2PCH_2CH_2OMe)_2][O_3-$ SCF₃] 5. This compound was prepared as described for 4, using 2 (0.262 g, 0.50 mmol) and HC= $C(C_6H_4Me-p)$ (0.32 cm³, 2.50 mmol) as starting materials. Orange solid: yield 0.301 g (80%) (Found: C, 44.55; H, 6.8; S, 4.15. C₂₈H₅₀ClF₃O₅P₂RuS requires C, 44.6; H, 6.7; S, 4.25%). IR (KBr): v(C=C) 1610 and 1580 cm⁻¹. NMR (CDCl₃): $\delta_{\rm H}$ (400 MHz) 7.11 (4 H, m, C₆H₄), 4.98 [1 H, t, J(PH) 3.4, =CH], 4.19, 4.11, 3.98, 3.74 (1 H each, all m, CH₂OCH₃), 3.80, 3.64 (3 H each, both s, OCH₃), 2.83, 2.52 (1 H each, both m, PCHCH₃ and PCH₂), 2.47, 2.24 (2 H each, both m, PCHCH₃ and PCH₂), 2.31 (3 H, s, C₆H₄CH₃), 2.02, 1.93 (1 H each, both m, PCHCH₃ and PCH₂) and 1.5-1.3 (24 H, m, PCHCH₃); δ_c(100.6 MHz) 358.9 [dd, J(PC) 18.4, J(P'C) 15.7, Ru=C], 136.0, 129.4, 126.2, 124.7 (all s, C₆H₄), 120.9 [q, J(CF) 321.0, CF₃SO₃], 117.3 (s, =CH), 72.4, 71.2 (both s, CH₂OCH₃), 62.9, 61.3 (both s, OCH₃), 37.0 [d, J(PC) 30.3, PCHCH₃], 28.8 [d, J(PC) 25.8, PCHCH₃], 26.1 [d, J(PC) 28.5, PCHCH₃], 25.2 [d, J(PC) 19.0, PCH₂ and PCHCH₃], 23.1 [d, J(PC) 23.9, PCH₂], 21.0 (s, C₆H₄CH₃), 19.9, 19.5, 19.47, 19.42, 19.37, 18.94, 18.89, 18.81 (all s, PCHCH₃); δ_p(162 MHz) 67.9, 56.4 [both d, AB spin system, J(PP) 24.6 Hz]; $\delta_F(376.5 \text{ MHz})$ -78.6 (s).

 $[RuCl(=C=CHC_6H_4C=CH-m)(\kappa^2P, O-Pr^{i}, PCH_2CH_2OMe),]$ [O₃SCF₃] 6. This compound was prepared as described for 4, using 2 (0.262 g, 0.50 mmol) and $C_6H_4(C\equiv CH)_2$ -m (0.252 g, 2.00 mmol) as starting materials, the reaction time being only 20 min. Orange solid: yield 0.263 g (69%) (Found: C, 45.35; H, 6.45; S, 4.0. C₂₉H₄₈ClF₃O₅P₂RuS requires C, 45.6; H, 6.35; S, 4.2%). IR (KBr): v(=CH) 3200, v(C=C) 2080, v(C=C) 1620 and 1575 cm⁻¹. NMR: $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 7.41–7.18 (4 H, m, C_6H_4), 5.06 [1 H, t, J(PH) 3.4, =CH], 4.18, 4.11, 4.05, 3.81 (1 H each, all m, CH₂OCH₃), 3.84, 3.64 (3 H each, both s, OCH₃), 3.13 (1 H, s, ≡CH), 2.87, 2.49, 2.41, 2.22, 2.02, 1.90 (1 H each, all m, PCHCH₃ and PCH₂), 2.34 (2 H, m, PCHCH₃ and PCH₂) and 1.5–1.25 (24 H, m, PCHCH₃); $\delta_{c}(100.6 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2})$ 356.2 [dd, J(PC) 18.1, J(P'C) 16.1, Ru=C], 130.2, 129.8, 129.5, 129.1, 127.6, 122.5 (all s, C₆H₄), 121.5 [q, J(CF) 320.9, CF₃SO₃], 117.2 (s, =CH), 83.7 and 77.5 (both s, C=CH and $C \equiv CH$), 72.9, 71.7 (both s, CH_2OCH_3), 63.1, 61.7 (both s, OCH₃), 37.1 [d, J(PC) 30.4, PCHCH₃], 29.5 [d, J(PC) 26.7, PCHCH₃], 26.7 [d, J(PC) 28.3, PCHCH₃], 25.7 [d, J(PC) 19.4, PCH₂ and PCHCH₃], 23.1 [d, J(PC) 24.0, PCH₂], 19.9, 19.5, 19.47, 19.44, 19.30, 19.28, 19.01, 18.91 (all s, PCHCH₃); δ_P(162 MHz, CD₂Cl₂) 67.9, 56.3 [both d, AB spin system, J(PP) 24.1 Hz]; $\delta_F(376.5 \text{ MHz}, \text{CDCl}_3) - 78.6 \text{ (s)}.$

[RuCl(C=CPh)($\kappa^2 P$, O-Prⁱ₂PCH₂CH₂OMe)₂] 7 and 8. A solution of compound 4 (0.148 g, 0.20 mmol) in dichloromethane (1 cm³) was chromatographed on Al₂O₃ (basic, activity grade III, column length 5 cm). With acetone a yellow fraction was eluted which was brought to dryness *in vacuo*. The residue was treated with hexane and the solution cooled to -78 °C to give a yellow solid which consists of the two isomers, 7 and 8, in the ratio 2:1; yield 0.094 g (80%) (Found: C, 52.65; H, 7.85. C₂₆H₄₇ClO₂P₂Ru requires C, 52.9; H, 8.05%). Compound 7:

IR (KBr) v(C=C) 2000 cm⁻¹. NMR ($C_6D_5CD_3$): $\delta_H(400 \text{ MHz}, -80 \text{ °C})$ 7.61–7.15 (5 H, m, C_6H_5), 3.51, 3.26, 2.96, 2.58 (1 H each, all m, CH_2OCH_3), 4.06, 3.16 (3 H each, both s, OCH₃), 1.99, 1.84, 1.73, 0.91 (1 H each, all m, PCHCH₃ and PCH₂), 1.49, 0.77 (2 H each, both m, PCHCH₃ and PCH₂) and 1.30–1.25 (24 H, m, PCHCH₃); $\delta_P(162 \text{ MHz}, -80 \text{ °C})$ 84.3, 64.9 [both d, AB spin system, J(PP) 32.1 Hz]. Compound 8: IR (KBr) v(C=C) 2050 cm⁻¹. NMR ($C_6D_5CD_3$): $\delta_H(400 \text{ MHz}, -80 \text{ °C})$ 7.61–7.15 (5 H, m, C_6H_5), 3.69 (4 H, m, CH₂OCH₃), 3.55 (6 H, s, OCH₃), 2.89, 2.80 (4 H each, both m, PCHCH₃ and PCH₂) and 1.30–1.25 (24 H, m, PCHCH₃); $\delta_P(162 \text{ MHz}, -80 \text{ °C})$ 79.8 (s).

Alternatively, a solution of compound 4 (0.111 g, 0.15 mmol) in tetrahydrofuran (4 cm³) was cooled at 0 °C and then a stoichiometric amount of Li(C=CPh) (0.016 g, 0.15 mmol) in tetrahydrofuran (3 cm³) was added dropwise (8 min). After stirring for 30 min the solution changed from orange to pale yellow. The cooling bath was removed and the solution brought to dryness *in vacuo*. The oily residue was extracted with hexane and the resulting solution concentrated to *ca*. 2 cm³ *in vacuo*. Upon cooling to -78 °C after some hours a yellow solid formed: yield 0.027 g (31%).

Reaction of complexes 7/8 with CO. In an NMR tube complexes 7/8 (0.118 g, 0.20 mmol) were dissolved in C₆D₆ (0.8 cm³). A stream of CO was passed through the solution for 30 min. The ¹H and ³¹P NMR spectra showed the formation of 9 and 10 in the ratio of 3:2. After 12 d at room temperature the NMR spectra showed only the isomer 9. The yellow solution was then transferred to a Schlenk tube and brought to dryness in vacuo. The oily residue was treated with hexane to give 9 as a yellow microcrystalline solid: yield 0.052 g (40%) (Found: C, 52.35; H, 7.75. C₂₈H₄₇ClO₄P₂Ru requires C, 52.05; H, 7.35%). IR (KBr): v(C=C) 2100, v(RuCO) 2020, 1960 cm⁻¹. NMR (C_6D_6) : $\delta_H(400 \text{ MHz})$ 7.55–6.96 (5 H, m, C_6H_5), 3.75 (4 H, m, CH₂OCH₃), 3.06 (6 H, s, OCH₃), 2.81 (4 H, m, PCHCH₃), 2.55, 2.45 (2 H each, both m, PCH₂), 1.32 [12 H, dvt, N 15.0, J(HH) 7.1, PCHCH₃] and 1.16 [12 H, dvt, N 14.1, J(HH) 7.1, PCHCH₃]; δ_c(100.6 MHz) 197.9 [t, J(PC) 10.9, RuCO], 197.2 [t, J(PC) 9.2, RuCO], 131.0, 129.0, 128.4, 125.6 (all s, C₆H₅), 112.6 (s, $\equiv CPh$), 111.9 [t, J(PC) 18.0, $RuC \equiv CPh$], 69.0 (s, CH₂OCH₃), 58.0 (s, OCH₃), 25.9 (vt, N 24.7, PCH₂), 25.3 (vt, N 24.0, PCHCH₃), 23.5 (vt, N 24.0, PCHCH₃), 18.8, 18.6 (both s, PCHCH₃); $\delta_P(162 \text{ MHz})$ 34.4 (s). Spectroscopic data for 10: IR (KBr) v(C=C) 2040, v(RuCO) 1980 cm⁻¹; NMR (C_6D_6): $\delta_{\text{H}}(400~\text{MHz})$ 7.55–6.96 (5 H, m, $C_6H_5),$ 2.69 (4 H, m, CH₂OCH₃), 3.08 (6 H, s, OCH₃), 2.81 (4 H, m, PCHCH₃), 2.55, 2.45 (2 H each, both m, PCH₂), 1.32 [12 H, dvt, N 15.0, J(HH) 7.1, PCHCH₃] and 1.16 [12 H, dvt, N 14.1, J(HH) 7.1 Hz, PCHC H_3]; $\delta_P(162 \text{ MHz}) 34.7 \text{ (s)}.$

[RuCl(=C=CHPh)($\kappa^2 P$, O-Pri₂PCH₂CH₂OMe)₂][BF₄] 11. A solution of complexes 7/8 (0.088 g, 0.15 mmol) in tetrahydrofuran (5 cm³) was treated with HBF₄·OEt₂ (26 μ l, 0.16 mmol). A change from yellow to orange occurred almost instantaneously. The solution was concentrated to *ca*. 0.5 cm³ *in vacuo*, and on addition of ether an orange precipitate was formed. It was filtered off and spectroscopically identified as 11 by comparing with the data for 4.

[Ru(CN)₂(=C=CHPh)($\kappa^2 P$, *O*-Prⁱ₂PCH₂CH₂OMe)₂] 12. A solution of compound 4 (0.370 g, 0.50 mmol) in methanol (10 cm³) was treated with KCN (0.065 g, 1.00 mmol). Upon stirring for 12 h the solvent was removed *in vacuo*. After recrystallization from dichloromethane-hexane an orange-yellow solid was obtained: yield 0.20 g (67%) (Found: C, 55.7; H, 7.65; N, 4.75. C₂₈H₄₈N₂O₂P₂Ru requires C, 55.35; H, 7.95; N, 4.6%). IR (KBr): v(CN) 2040, v(C=C) 1620 and 1585 cm⁻¹. NMR: δ_H(200 MHz, CDCl₃) 7.20–6.97 (5 H, m, C₆H₅), 4.73 [1 H, t, J(PH), 3.6, =CH], 3.67 (4 H, m, CH₂OCH₃), 3.18 (6 H,

s, OCH₃), 2.70 (4 H, m, PCHCH₃), 2.23 (4 H, m, PCH₂), 1.38, 1.31 [12 H each, both dvt, N 9.1, J(HH) 5.1, PCHCH₃]; $\delta_{\rm C}(100.6 \text{ MHz}, \text{CDCl}_3)$ 356.6 [dd, J(PC) = J(P'C) 14.8, Ru=C], 141.3 [dd, J(PC) = J(P'C) 13.0, CN], 129.7, 128.5, 125.4, 124.9 (all s, C₆H₅), 109.0 [dd, J(PC) = J(P'C) 4.0, =CH], 67.9 (s, CH₂OCH₃), 58.3 (s, OCH₃), 26.0 (vt, N 23.4, PCHCH₃), 22.7 (vt, N 20.9, PCH₂), 19.2, 19.0 (both s, PCHCH₃): $\delta_{\rm P}(162 \text{ MHz}, \text{CD}_2\text{Cl}_2, -70 \,^{\circ}\text{C})$ 44.9, 27.2 [both d, AB spin system, J(PP) 272.7 Hz].

[Rul₂(=C=CHPh)($\kappa^2 P, O$ -Prⁱ₂PCH₂CH₂OMe)₂] 13. To a solution of compound 4 (0.370 g, 0.50 mmol) in methanol (10 cm³) was added NaI (0.300 g, 2.00 mmol). After stirring at reflux for 1 h and cooling to room temperature the solvent was removed *in vacuo*. After recrystallization from dichloromethane–hexane a brown solid was obtained: yield 0.201 g (67%) (Found: C, 38.65; H, 5.90. C₂₆H₄₈I₂O₂P₂Ru requires C, 38.6; H, 6.0%). IR (KBr): v(C=C) 1620 and 1580 cm⁻¹. NMR: δ_H(200 MHz, CDCI₃) 7.3–6.8 (5 H, m, C₆H₅), 4.24 [1 H, t, J(PH) 3.6, =CH], 3.67 (4 H, m, CH₂OCH₃), 3.26 (4 H, m, PCHCH₃), 3.18 (6 H, s, OCH₃), 2.26 (4 H, m, PCH₂), 1.35 [12 H, dvt, N 13.2, J(HH) 6.6, PCHCH₃]; δ_P(162 MHz, C₆D₅CD₃, -70 °C) 18.9, 15.2 [both d, AB spin system, J(PP) 331.0 Hz].

If the reaction mixture described above was refluxed for 3 h red crystals of $[RuI_2(\kappa^2 P, O-Pri_2PCH_2CH_2OMe)_2]$ 14 were obtained (Found: C, 30.5; H, 6.1. $C_{18}H_{42}I_2O_2P_2Ru$ requires C, 30.55; H, 6.0%). NMR: $\delta_{H}(200 \text{ MHz}, C_6D_6)$ 3.57 (6 H, s, OCH₃), 3.50 (4 H, m, CH₂OCH₃), 3.14 (4 H, m, PCHCH₃), 2.24 (4 H, m, PCH₂), 1.30 [12 H, dvt, N 14.6, J(HH) 6.9, PCHCH₃] and 1.11 [12 H, dvt, N 11.7, J(HH) 4.4 Hz, PCHCH₃]; $\delta_{P}(81 \text{ MHz}, \text{CDCI}_3)$ 72.0 (s).

Reaction of complex 4 with LiBr. A solution of complex 4 (0.370 g, 0.50 mmol) in dichloromethane (15 cm³) was treated with LiBr (0.260 g, 3.00 mmol) and stirred for 26 h at room temperature. After the solvent was removed in vacuo a red oil was obtained which contained complexes 15 and 16 in the ratio of 4:1. Complex 15: NMR $\delta_{\rm H}(200 \text{ MHz}, C_6 D_6)$ 7.3–6.8 (5 H, m, C₆H₅), 4.43 [1 H, t, J(PH) 3.8, =CH], 3.73 (4 H, m, CH2OCH3), 3.24 (6 H, s, OCH3), 2.89 (4 H, m, PCHCH3), 2.07 (4 H, m, PCH₂), 1.36 [12 H, dvt, N 14.2, J(HH) 6.9, PCHCH₃] and 1.23 [12 H, dvt, N 13.5, J(HH) 6.6, PCHCH₃]; δ_P(162 MHz, C₆D₅CD₃, -70 °C) 24.9, 19.8 [both d, AB spin system, J(PP) 344 Hz]. Complex 16: NMR $\delta_{H}(200 \text{ MHz}, C_6D_6)$ 7.3-6.8 (5 H, m, C₆H₅), 4.36 [1 H, t, J(PH) 3.1, =CH], 3.67 (4 H, m, CH₂OCH₃), 3.26 (4 H, m, PCHCH₃), 3.26 (6 H, s, OCH₃), 2.26 (4 H, m, PCH₂), 1.35 [12 H, dvt, N 13.2, J(HH) 6.9, $PCHCH_3$] and 1.18 [12 H, dvt, N 13.5, J(HH) 6.6, $PCHCH_3$]; δ_P(162 MHz, C₆D₅CD₃, -70 °C) 25.3, 21.18 [both d, AB spin system, J(PP) 348 Hz].

 $[RuCl(=C=C=CPh_2)(\kappa^2 P, O-Pr_2^PCH_2CH_2OMe)_2][O_3SCF_3]$ 17. To a solution of compound 2 (0.262 g, 0.50 mmol) in

tetrahydrofuran (10 cm³) were added HC=CCPh₂OH (0.104 g, 0.50 mmol) and Ag(O₃SCF₃) (0.128 g, 0.50 mmol). After stirring for 15 h at room temperature in the dark the precipitate formed (AgCl) was filtered off through Kieselgur. The filtrate was concentrated to ca. 0.5 cm³ in vacuo, and the solution chromatographed on Al₂O₃ (acidic, activity grade I, column length 5 cm). With dichloromethane-acetone (4:1) a deep red fraction was eluted from which the solvent was removed in vacuo. The residue was washed with ether to give a red microcrystalline solid: yield 0.120 g (29%) (Found: C, 49.2; H, 6.4; S, 3.8. C₃₄H₅₂ClF₃O₅P₂RuS requires C, 49.3; H, 6.35; S, 3.85%). IR (KBr): v(C=C=C) 1930 cm⁻¹. NMR (CDCl₃): δ_{H} (400 MHz) 7.73-7.33 (10 H, m, C₆H₅), 4.28, 4.19, 4.09, 3.68 (1 H each, all m, CH_2OCH_3), 3.81, 3.71 (3 H each, both s, OCH_3), 2.75, 2.44, 2.30, 2.20, 2.13, 2.12, 2.01, 1.80 (1 H each, all m, PCHCH₃ and PCH₂) and 1.47-0.97 (24 H, m, PCHCH₃);

 $δ_{C}(100.6 \text{ MHz})$ 304.6 [dd, J(PC) = J(P'C) 18.5, Ru=C], 220.3 (s, Ru=C=C), 154.6 (s, Ru=C=C=C), 145.2, 130.9, 129.5, 129.2 (all s, C₆H₅), 120.9 [q, J(CF) 321.0, CF₃SO₃], 72.9, 71.9 (both s, CH₂OCH₃), 62.0, 61.6 (both s, OCH₃), 36.8 [d, J(PC) 29.0, PCHCH₃], 28.9 [d, J(PC) 25.0, PCHCH₃], 26.5 [d, J(PC) 27.0, PCHCH₃], 25.5 [d, J(PC) 23.0, PCH₂], 25.0 [d, J(PC) 19.0, PCHCH₃], 22.0, [d, J(PC), 22.0, PCH₂], 20.3, 19.2, 19.1, 19.0, 18.4, 18.1, 17.89, 17.82 (all s, PCHCH₃); $\delta_{P}(162 \text{ MHz})$ 70.3, 54.9 [both d, AB spin system, J(PP) 27.0 Hz]; $\delta_{F}(376.5 \text{ MHz})$ - 78.6 (s).

 $[RuCl{=C=C=CPh(C_6H_4Me-o)}(\kappa^2 P, O-Pr_2PCH_2CH_2OMe)_2]-$ [O₃SCF₃] 18. This compound was prepared as described for 17, using 2 (0.262 g, 0.50 mmol) and HC=CCPh(C_6H_4Me-o)OH $(0.46 \text{ cm}^3 \text{ of a } 1.2 \text{ mol } \text{dm}^{-3} \text{ solution in toluene) as starting}$ materials. Red solid: yield 0.160 g (38%) (Found: C, 49.85; H, 6.65; S, 3.75. C₃₅H₅₄ClF₃O₅P₂RuS requires: C, 49.9; H, 6.5; S, 3.8%). IR (KBr): v(C=C=C) 1930 cm⁻¹. NMR (CDCl₃): $\delta_{\rm H}$ (400 MHz) 7.8-7.15 (9 H, m, C₆H₅ and C₆H₄), 4.26, 4.18, 4.07, 3.67 (1 H each, all m, CH₂OCH₃), 3.78, 3.72 (3 H each, both s, OCH₃), 2.68, 2.44 (1 H each, both m, PCHCH₃ and PCH₂), 2.18 (4 H, m, PCHCH₃ and PCH₂), 1.97, 1.74 (1 H each, both m, PCHCH₃ and PCH₂), 2.09 (3 H, s, C₆H₄CH₃) and 1.34-1.02 (24 H, m, PCHCH₃); $\delta_{\rm C}$ (100.6 MHz) 308.3 [dd, J(PC) = J(P'C) 18.0 Hz, Ru=C], 222.0 (s, Ru=C=C), 155.0 (s, Ru=C=C=C), 145.0, 133.0, 130.0, 128.0, 126.0, 125.0 (all s, C₆H₄), 144.0, 131.0, 129.0, 128.6 (all s, C₆H₅), 120.9 [q, J(CF) 321.0, CF₃SO₃], 73.0, 71.9 (both s, CH₂OCH₃), 62.0, 61.6 (both s, OCH₃), 36.5 [d, J(PC) 29.0, PCHCH₃], 28.9 [d, J(PC) 25.0, PCHCH₃], 26.3 [d, J(PC) 27.6, PCHCH₃], 25.4 [d, J(PC) 23.0, PCH₂], 25.0 [d, J(PC) 19.9 Hz, PCHCH₃], 22.2 [d, J(PC) 23.0, PCH₂], 20.0, 19.8, 19.1, 19.0, 18.7, 18.5, 18.4, 18.2 (all s, C₆H₄CH₃ and PCHCH₃); δ_P(162 MHz) 69.8, 54.6 [both d, AB spin system, J(PP) 26.2 Hz]; $\delta_F(376.5 \text{ MHz}) - 78.6 \text{ (s)}$.

 $[RuCl(CO)(\kappa^2 P, O-Pr^i_2PCH_2CH_2OMe)_2][O_3SCF_3]$ 19. A solution of compound 18 (0.101 g, 0.12 mmol) in tetrahydrofuran (10 cm³) was heated under reflux for 13 h. A change from deep red to orange was observed. After cooling to room temperature a stream of CO was passed through the solution for 15 min. The solvent was then removed and the residue washed with ether to give a light orange microcrystalline solid: yield 0.066 g (80%) (Found: C, 36.0; H, 6.4; S, 4.85. $\begin{array}{l} C_{20}H_{42}ClF_{3}O_{6}P_{2}RuS \ requires \ C, \ 36.1; \ H, \ 6.35; \ S, \ 4.8\%). \ IR \\ (KBr): \nu(RuCO) \ 1960 \ cm \ ^1. \ NMR \ (CDCl_3): \ \delta_{H}(200 \ MHz) \ 4.33, \end{array}$ 4.22, 3.95, 3.79 (1 H each, all m, CH₂OCH₃), 4.00, 3.55 (3 H each, both s, OCH₃), 2.78 (2 H, m, PCHCH₃ and PCH₂), 2.39-2.02 (6 H, m, PCHCH₃ and PCH₂) and 1.6-1.2 (24 H, m, PCHCH₃); δ_c(50.3 MHz, CDCl₃) 200.6 [dd, J(PC) 17.8, J(P'C) 15.2, RuCO], 119.0 [q, J(CF) 320.0, CF₃SO₃], 74.6, 72.5 (both s, CH₂OCH₃), 63.4, 61.2 (both s, OCH₃), 36.6 [d, J(PC) 32.0, PCHCH₃], 28.2 [d, J(PC) 27.0, PCHCH₃], 26.7 [d, J(PC) 29.0, PCHCH₃], 25.1 [d, J(PC) 22.0, PCH₂], 24.6 [d, J(PC) 22.0, PCHCH₃], 21.3 [d, J(PC) 23.0, PCH₂], 19.9, 19.6, 19.3, 18.9, 18.8, 18.7, 18.4 (all s, PCHCH₃); $\delta_P(81 \text{ MHz})$ 79.4, 59.9 [both d, AB spin system, J(PP) 21.8 Hz]; $\delta_F(188.3 \text{ MHz}) - 78.6$ (s). Compound 19 was also obtained in ca. 80% yield if instead of 18 the related complex 17 was used as starting material.

trans,trans,trans-[RuCl₂(CO)₂(κ P-Prⁱ₂PCH₂CH₂OMe)₂] 20. A stream of CO was passed through a solution of compound 2 (0.105 g, 0.20 mmol) in dichloromethane (10 cm³) for 30 min at room temperature. The solvent was removed *in vacuo*, and the oily residue treated twice with hexane (5 cm³) to give a pale yellow microcrystalline solid: yield 0.104 g (90%) (Found: C, 41.35; H, 7.30. C₂₀H₄₂Cl₂O₄P₂Ru requires C, 41.40; H, 7.30%). IR (CH₂Cl₂): v(RuCO) 1980 cm⁻¹. NMR (CDCl₃): $\delta_{H}(200$ MHz) 3.75 (4 H, m, CH₂OCH₃), 3.35 (6 H, s, OCH₃), 2.61 (4 H, m, PCHCH₃), 2.47 (4 H, m, PCH₂), 1.41, 1.33 [12 H each, both dvt, N 15.3, J(HH) 7.7 Hz, PCHCH₃]; $\delta_{P}(81$ MHz) 30.5 (s).

	4	17
Formula	$C_{27}H_{48}ClF_{3}O_{5}P_{2}RuS$	C ₁₄ H ₅ ,ClF ₃ O ₅ P ₂ RuS
Μ	740.17	828.28
Crystal size/mm	$0.23 \times 0.30 \times 0.45$	$0.20 \times 0.30 \times 0.55$
Cell dimensions determination (reflections, θ range/°)	25, 10–15	25, 13–15
a/Å	9.158(3)	9.693(3)
b/Å	21.313(4)	23.362(5)
c/Å	17.464(7)	16.920(3)
$\beta/^{\circ}$	102.68(2)	91.300(3)
$U/Å^3$	3326(2)	3831(2)
$D_{\rm c}/{\rm g~cm^{-3}}$	1.478	1.436
μ/mm^{-1}	0.754	0.663
$2\theta_{max}/^{\circ}$	46	48
Total reflections scanned	5105	5739
No. unique reflections	4607	5405
No. observed reflections $[I > 2\sigma(I)]$	3798	4738
No. reflections used in refinement	4606	5404
R^{b}	0.0303	0.0577
wR2 ^c	0.0789	0.1663
Residual electron density/e Å ⁻³	0.326, -0.272	0.967, -0.989

^{*a*} Details in common: monoclinic; space group $P2_1/n$ (no. 14); Z = 4; Enraf-Nonius CAD4 diffractomer, Mo-K α radiation ($\lambda 0.709$ 30 Å), graphite monochromator; 20 ± 2 °C; $\omega - \theta$ scan. ^{*b*} $R = \Sigma |F_o - F_c|/\Sigma F_o$ [for $F_o > 4\sigma(F_o)$]. ^{*c*} $wR2 = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{\frac{1}{2}}$, $w^{-1} = \sigma^2(F_o)^2 + 0.041P^2 + 3.7566P$ (4) and $\sigma^2(F_o)^2 + 0.0981P^2 + 11.4222P$ (17) where $P = (F_o^2 + 2F_c^2)/3$.

Reaction of complex 4 with CO. A stream of CO was passed through a solution of complex 4 (0.185 g, 0.25 mmol) in tetrahydrofuran (10 cm³) at room temperature. The reaction was followed by IR and NMR spectroscopy. A mixture consisting of three major products (9/10 and 20) and small amounts of 19 resulted after 60 min.

Crystallography

Single crystals were grown by diffusion of pentane (in the case of complex 4) and ether (in the case of 17) into saturated solutions of the complexes in dichloromethane. They both appear as red prisms. Crystal data collection parameters are summarized in Table 3. Intensity data were corrected for Lorentz and polarization effects. For 17 an empirical absorption correction (ψ scans; minimum transmission 78.4%) was applied. Both structures were solved by direct methods (SHELXS 86).²² The refinement was performed on a 486 DX4/66 personal computer using SHELXL 93.23 In complex 4 C(16) was found to be disordered. The two alternative positions C(16) and C(16A) were located and refined anisotropically with an occupation factor of 0.5 for each. The position of the vinylidene hydrogen atom H(2) of 4 was taken from a Fourierdifference synthesis and refined isotropically. The three fluorine atoms F(1)-F(3) of the triflate anion of 17 were found to be disordered. The alternative positions were located and refined anisotropically, using the same thermal parameters for F(1)-F(3) and F(1A)-F(3A) with occupation factors of 0.7:0.3. Furthermore, C(17) was also disordered, and the alternative position C(17A) located and treated in the same way as for the fluorine atoms [occupation factor C(17): C(17A) = 0.64:0.36]. The positions of all other hydrogen atoms were calculated according to ideal geometry and refined by the riding method with the following C-H distances: 0.98 (CH aliphatic), 0.93 (CH aromatic), 0.97 (CH₂) and 0.96 Å (CH₃).

Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/20.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (SFB 347), the European Community (Network ERBCHRXCT 930147) for financial support and the Spanish Ministry of Education for a scholarship (to M. M., EX94 25143294). We also gratefully acknowledge support by Dr. W. Buchner and Mrs. M.-L. Schäfer (NMR spectra), Mrs. R. Schedl and Mr. C. P. Kneis (DTA measurements and elemental analyses), and Degussa AG (chemicals).

References

- 1 Part 38, B. Windmüller, J. Wolf and H. Werner, J. Organomet. Chem., 1995, 502, 147.
- 2 (a) H. Werner, A. Hampp, K. Peters, L. Walz and H. G. von Schnering, Z. Naturforsch., Teil B, 1990, 45, 1548; (b) H. Werner, A. Hampp and B. Windmüller, J. Organomet. Chem., 1992, 435, 169; (c) W. Wolfsberger, W. Burkart, S. Bauer, A. Hampp, J. Wolf and H. Werner, Z. Naturforsch., Teil B, 1994, 49, 1659.
- 3 (a) M. A. Esteruelas, A. M. López, L. A. Oro, A. Pérez, M. Schulz and H. Werner, Organometallics, 1993, 12, 1823; (b) P. Steinert and H. Werner, Organometallics, 1994, 13, 2677; (c) H. Werner, M. Schulz and B. Windmüller, Organometallics, 1995, 14, 3659.
- 4 (a) H. Werner, A. Stark, M. Schulz and J. Wolf, Organometallics, 1992, 11, 1126; (b) H. Werner, A. Stark, P. Steinert, C. Grünwald and J. Wolf, Chem. Ber., 1995, 128, 49.
- 5 H. Werner, B. Weber, O. Nürnberg and J. Wolf, Angew. Chem., 1992, 104, 1105; Angew. Chem., Int. Ed. Engl., 1992, 31, 1025;
 B. Weber, P. Steinert, B. Windmüller, J. Wolf and H. Werner, J. Chem. Soc., Chem. Commun., 1994, 2595.
- 6 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 7 M. I. Bruce and A. G. Swincer, Adv. Organomet. Chem., 1983, 22, 59;
 A. B. Antonova and A. A. Johannsson, Usp. Khim., 1989, 58, 1197;
 M. I. Bruce, Chem. Rev., 1991, 91, 197.
- 8 G. Albertin, S. Antoniutti, E. Bordignon, F. Cazzaro, S. Ianelli and G. Pelizzi, Organometallics, 1995, 14, 4114; M. P. Gamasa, J. Gimeno, B. M. Martin-Vaca, J. Borge, S. Garcia-Granda and E. Perez-Carreño, Organometallics, 1994, 13, 4045; D. Touchard, P. Haquette, N. Pirio, L. Toupet and P. H. Dixneuf, Organometallics, 1993, 12, 3132; J. R. Lomprey and J. P. Selegue, J. Am. Chem. Soc., 1992, 114, 5518; J. P. Selegue, B. A. Young and S. L. Logan, Organometallics, 1991, 10, 1972; D. C. Miller and R. J. Angelici, Organometallics, 1991, 10, 79.
- 9 R. Le Lagadec, E. Roman, L. Toupet, U. Müller and P. H. Dixneuf, Organometallics, 1994, 13, 5030.
- 10 E. Lindner, U. Schober, R. Fawzi, W. Hilber, U. Englert and P. Wegner, *Chem. Ber.*, 1987, **120**, 1621.
- 11 P. Haquette, N. Pirio, D. Touchard, L. Toupet and P. H. Dixneuf, J. Chem. Soc., Chem. Commun., 1993, 163.
- 12 C. W. Faulkner, S. L. Ingham, M. S. Khan, J. Lewis, N. J. Long and P. R. Raithby, J. Organomet. Chem., 1994, 482, 139.
- 13 E. Lindner and B. Karle, Chem. Ber., 1990, 123, 1469.
- 14 J. P. Selegue, Organometallics, 1982, 1, 217.

- 15 (a) D. Touchard, N. Pirio and P. H. Dixneuf, Organometallics, 1995, 14, 4920 and refs. therein; (b) V. Cadierno, M. P. Gamasa, J. Gimeno and E. Lastra, J. Organomet. Chem., 1994, 474, C27; (c) H. Matsuzaka, H. Koizumi, Y. Takagi, M. Nishio and M. Hidai, J. Am. Chem. Soc., 1993, 115, 10 396.
- 16 H. Werner and T. Rappert, Chem. Ber., 1993, 126, 669; H. Werner, T. Rappert, R. Wiedemann, J. Wolf and N. Mahr, Organometallics, 1994, 13, 2721.
- 17 N. Piro, D. Touchard, L. Toupet and P. H. Dixneuf, J. Chem. Soc., Chem. Commun., 1991, 980; A. Wolinska, D. Touchard, P. H. Dixneuf and A. Romero, J. Organomet. Chem., 1991, 420, 217; D. Touchard, N. Pirio, L. Toupet, M. Fettouhi, L. Ouahab and P. H. Dixneuf, Organometallics, 1995, 14, 5263.
- 18 E. O. Fischer, H. J. Kalder, A. Frank, F. H. Köhler and G. Huttner, Angew. Chem., 1976, 88, 683, Angew. Chem., Int. Ed. Engl., 1976, 15, 623; H. Berke, G. Huttner and J. von Seyerl, Z. Natuforsch., Teil B, 1981, 36, 1277; H. Berke, P. Härter, G. Huttner and J. von Seyerl, J. Organomet. Chem., 1981, 219, 317; H. Berke, U. Grössmann,

- G. Huttner and L. Zsolnai, Chem. Ber., 1984, 117, 3432; H. Fischer,
- D. Reindl and G. Roth, Z. Naturforsch., Teil B, 1994, 49, 1207;
- V. Cadierno, M. P. Gamasa, J. Gimeno, E. Lastra, J. Borge and
- S. Garcia-Granda, Organometallics, 1994, 13, 745; H. Matsuzaka,
- Y. Takagi and M. Hidai, Organometallics, 1994, 13, 13; R. Aumann,
- B. Jasper and R. Fröhlich, Organometallics, 1995, 14, 3173.
- 19 H. Werner, R. Wiedemann, N. Mahr, P. Steinert and J. Wolf, Chem. Eur. J., 1996, 2, in the press.
- 20 M. O. Albers and E. Singleton, Inorg. Synth., 1989, 26, 253.
- 21 J. H. Saunders, Org. Synth., 1955, Coll. Vol. III, 416.
 22 G. Sheldrick, SHELXS 86, A program for solving crystal structures, University of Göttingen, 1986. 23 G. Sheldrick, SHELXL 93, A program for the refinement of crystal
- structures, University of Göttingen, 1993.

Received 11th January 1996; Paper 6/00233A