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Abstract: The photooxidation of an ~-trimethylsiloxysulfide has been studied. The reaction 
generates a persulfoxide which can be trapped by diphenylsulfoxide, decompose to generate 
triplet oxygen and substrate, or rearrange to a silicate product via a silicate intermediate. © 1998 
Elsevier Science Ltd. All rights reserved. 

Persulfoxides, (e.g. 1 in the Scheme), were first suggested as discrete bound species by Schenck and 

Krausch I during their pioneering study of the photooxidations of dialkyl sulfides. Subsequent computational 2 

and experimental studies3, 4 have verified this suggestion and have provided compelling evidence that 1 is a 

ubiquitous intermediate in the reactions of singlet oxygen with a wide range of organosulfur compounds. 5-7 

Persulfoxides have never been directly observed at room temperature as a result of the availability of several 

facile inter- and intramolecular reaction pathways. 7-12 We now report that the photooxidation of [1- 

(ethylthio)-l-methylethoxy]trimethylsilane, 2, provides the first compelling evidence for the formation of 

silicate intermediate, 3, and silicate product 4, via a persulfoxide as depicted in the following Scheme. 
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Irradiation of an oxygen saturated 0.012 M solution of 2, 0.3 M pyridine, and 1 x 10 "~ M 

tetraphenylporphyrin (TPP), in toluene-d s at -60°C for 20 minutes through lcm of a saturated sodium nitrite 
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filter solution resulted in the complete disappearance of 2, formation of acetone, a trace of diethyldisulfide, 

several unidentified products, and 4 as the major product. Conspicuously absent were the sulfoxide 5 and the 

corresponding sulfone. Participation of singlet oxygen in these reactions was verified by demonstrating that 2 

quenched the emission of 102 at 1270nm, that 5 x 10 .3 M DABCO completely quenched the reaction, and that 

the rate of the reaction was much faster in toluene-d 8 than in toluene-h 8. 

In order to verify the absence of either sulfoxide 5 or the corresponding sulfone, 6, they were 

independently synthesized by treatment of 2 at -60°C with one or two equivalents of MCPBA in the presence 

of pyridine, respectively. Their structures were verified by both low temperature IH and ~3C NMR. [5 ~H 

NMR (toluene-ds) ~5 0.06(s, 9H), 1.15(t, J = 7Hz, 3H), 1.29(s, 3H), 1.30(s, 3H), 2.15(m, 1H), 2.24(m, 1H), 13C 

NMR (CDC13) 8 2.0, 8.3, 20.7, 26.0, 38.6, 88.2; 6 ~H NMR (toluene-d 0 8 0.10(s, 9H), 1.10(t, J = 7Hz, 3H), 

1.34(s, 6H), 2.42(q, J = 7Hz, 2H), ~3C NMR (CDC13) fi 1.9, 5.3, 23.7, 39.0, 92.0]. Sulfoxide, 5, decomposes at 

temperatures at or above -20°C in a clean first order process with activation barriers at the 95% confidence 

level of All* = 19.6 + 2.3 kcal/mol, AS* = -6 _+ 8 cal mol ~ K -], and AG*(298.16) = 21.3 + 4.6 kcal/mol. 

The identity of silicate 4 was established by a combination of IH NMR, ~3C NMR, DEPT, and C,H- 

COSY experiments (Figure 1). The observation of a methoxy peak at 3.27 ppm in the proton NMR which 

correlated to a methyl peak at 49.7 ppm in the 13C NMR was especially revealing. In addition, the observation 

of overlapping gem-dimethyl groups in the ~H NMR which are well separated in the 13C NMR, two very 

closely spaced Si-Me groups in the ~H and ~3C NMR's, and a quaternary carbon at 88.0 ppm in the 13C NMR, 

are compelling evidence for the structure of 4. 

FIGURE 1. C,H - COSY of the reaction mixture 

from photooxidation of 2 at -60°C 

in toluene-d 8. a-acetone; u-unknown 
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Two intermediates formed prior to the silicate, 4, are also required by the following experimental 

evidence. Incrementally increasing the concentration of 2 in this experiment from 0.002 molar to 0.3 molar, 

resulted in the appearance and increase of sulfoxide 5. However, silicate 4 is unreactive towards 2 as 

demonstrated by addition of authentically prepared 2 at the end of the photooxidation. Consequently, a 

fleeting intermediate trapped by 2 must have been intercepted. We suggest that this trapped intermediate is 

silicate 3. The peroxide unit in silicate 3 is likely to be susceptible to nucleophilic attack by 2 and its 

rearrangement by migration of an apical methyl group to form 4 has ample precedent in migrations from 

silicon to carbon. 13 Increasing the concentration of 2 from 0.01 to 0.50 M had no effect on the extent of non 

productive physical quenching. (i.e. 2 does not trap an intermediate which dissociates to starting material and 

302 since this would increase the efficiency of the reaction) 2 The extent of physical quenching was 

determined by comparing the rate constant for chemical reaction of 2, k r, which was measured by NMR in 

CDCI 3 in competition with tetramethylethylene using the method of Higgins, Foote, and Cheng, 14 to the rate 

constant for disappearance of singlet oxygen, k~., which was measured by examining the ability of 2 to quench 

the time-resolved emission of singlet oxygen at 1270 nm as described earlier. 15 The ratio k~/k T = [(1.46 + 

0.62) x 106M~sl]/[(2.67+ 0.30) x 106M-~s -1] reveals that kr is only 55% of k r and is independent of 

concentration. Consequently, nonproductive physical quenching must account for 45% of all interactions of 

singlet oxygen with 2 over the entire range of 0.01 to 0.50M. Considerable precedent exists which suggests 

that it is decomposition of a persulfoxide (kq in the Scheme) which is responsible for the inefficiency of sulfide 

photooxidations.2, 3 

Additional evidence for the persulfoxide was obtained by cophotooxidation of 2 and diphenylsulfoxide 

(PhzSO). An intermediate is implicated since Ph2SO is unreactive in the absence of 2, but is converted to 

diphenylsulfone (Ph2SO2) when cophotooxidized with 2. In addition, bis-(p-chlorophenyl)sulfoxide, 

(pCIPh)2SO, is approximately 3 times more reactive than Ph2SO consistent with the nucleophilic character of 

the persulfoxide but inconsistent with the anticipated elecuophilic character of 3. 

The persulfoxide in the reaction of 2 was 10 times more difficult to trap than the persulfoxide formed 

in the photooxidation of diethylsulfide. In addition, physical quenching accounts for 95% of the interactions 

of singlet oxygen with diethylsulfide but only 45% of the interactions with 2. Both these observations point to 

a reduced lifetime of the persulfoxide formed in the reaction of 2 in comparison to diethylpersulfoxide. This 

suggests that formation of 3 is considerably more rapid than formation of the putative second intermediate in 

diethylsulfide photooxidation. 
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In conclusion, the photooxidations of appropriately substituted sulfides can now be added to a growing 

list of reactions which have been demonstrated to proceed via hypervalent silicon intermediates. 16 In 

addition, the formation of 4 and the absence of rearrangement of 5 to its silicate isomer reveals a remarkable 

stabilization of the trigonal bypyramidal structure by the apocophilic methoxy group. 
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