REACTION OF POLYFLUOROAROMATIC COMPOUNDS WITH SULFUR IN THE PRESENCE OF ANTIMONY PENTAFLUORIDE

```
G. G. Yakobson, G. G. Furin,
and T. V. Terent'eva
```

UDC 542.91:547.539.16:546.22

We had shown that the reaction of pentafluorobenzene with elemental sulfur in the presence of SbF_5 gives bis(pentafluorophenyl)sulfide (I) in quantitative yield. The reaction probably proceeds via the formation of the reaction products of sulfur with SbF_5 [1, 2], and subsequent electrophilic attack of the C₆F₅H. The pentafluorophenylsulfenium cation is apparently generated here, which then reacts with the C₆F₅H to give compound (I). This assumption is supported by the formation of (I) when pentafluorophenylsulfenyl chloride (II) is reacted with C₆F₅H in the presence of SbF₅

 $\begin{array}{c} C_{6}F_{5}H \underline{\quad S} \\ \hline C_{6}F_{5}SC1 \underline{\qquad} \\ (I) \end{array} \begin{vmatrix} SbF_{s} \\ \hline C_{6}F_{5}SC1 \underline{\quad} \\ (I) \end{vmatrix} \overset{SbF_{s}}{\longrightarrow} [C_{6}F_{5}S^{+}] Sb_{n}F_{5n+1}] & \frac{C_{s}F_{s}H}{SeF_{s}} (C_{6}F_{5})_{2}S \\ \hline (II) \end{aligned}$

It is obvious that other not completely fluorinated aromatic compounds, which fail to decompose under the influence of SbF_5 , can also enter into the same reaction.

Compound (I) is also obtained in high yield by the reaction of C_6F_5H with SCl_2 and S_2Cl_2 in the presence of SbF_5 . To 1 g of sulfur in 50 ml of SbF_5 at 20°C was added 10 g of C_6F_5H (the temperature of the mixture rose up to 60°). The mixture was kept at 60° for 1 h and then poured over ice. The precipitate was filtered and dried. We obtained 10.6 g (97%) of (I), mp 84-85°; cf. [3]. The mixed melting point with an authentic specimen was not depressed. The IR spectrum of (I) is identical with the spectrum of the authentic product.

In a similar manner, from 1.5 g of C_6F_5H , 1.6 g of (II) and 20 g of SbF₅ was obtained compound (N, mp 84-85°; yield 93%.

LITERATURE CITED

- 1. E. Aynsley, R. Peacock, and P. Robson, Chem. Ind. (London), 1117 (1951).
- 2. R. Gillespie and J. Passmore, Chem. Commun., 1333 (1969).
- 3. G. Deacon and J. Parrot, J. Organomet. Chem., 22, 287 (1970).

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. Novosibirsk State University. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, p. 2128, September, 1972. Original article submitted June 6, 1972.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.