

Phytochemistry 60 (2002) 521-532

PHYTOCHEMISTRY

www.elsevier.com/locate/phytochem

$(4\rightarrow 6)$ -Coupled proteracacinidins and promelacacinidins from *Acacia galpinii* and *Acacia caffra*^{\approx}

Linette Bennie^a, Johan Coetzee^a, Elfranco Malan^a, Daneel Ferreira^{b,*}

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

^bNational Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA

Received 5 February 2002; received in revised form 2 April 2002

Abstract

The series of naturally occurring proanthocyanidins with 7,8-dihydroxylated A-rings is extended by identification of the proteracacinidins epioritin- $(4\beta \rightarrow 6)$ -oritin- 4α -ol, epioritin- $(4\beta \rightarrow 6)$ -ent-oritin- $(4\beta \rightarrow 6)$ -epioritin- 4α -ol, ent-oritin- $(4\alpha \rightarrow 6)$ -epioritin- 4α -ol, ent-oritin- $(4\alpha \rightarrow 6)$ -epioritin- 4α -ol, ent-oritin- $(4\alpha \rightarrow 6)$ -epioritin- 4β -ol, the 'mixed' proteracacinidins/-melacacinidins epioritin- $(4\beta \rightarrow 6)$ -epimesquitol- 4α -ol, epioritin- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol and epimesquitol- $(4\beta \rightarrow 6)$ epioritin- 4α -ol, and the promelacacinidin epimesquitol- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol. © 2002 Published by Elsevier Science Ltd.

Keywords: Acacia galpinii; Acacia caffra; Leguminosae; Biflavanoids; Proteracacinidins; Promelacacinidins; Proanthocyanidins

1. Introduction

The natural occurrence of proanthocyanidins possessing 7,8-dihydroxylated (pyrogallol-type) A-rings was previously disputed (Fourie et al., 1972; Malan and Roux, 1975; Roux and Ferreira, 1982) because of the adverse effect of the 8-hydroxyl group on the stability of a flavan-3,4-diol presumed related C-4 electron deficient center, the transient electrophilic intermediate in the biosynthetic pathway to the proanthocyanidins (Jacques et al., 1977; Botha et al., 1981; Hemingway and Foo, 1983; Hemingway and Laks, 1985). Ongoing studies have, however, demonstrated that the flavan-3,4-diols melacacidin and teracacidin with their 7,8-dihydroxy A-rings are indeed susceptible to facile condensation with phenolic nuclei under mild acidic conditions (Botha et al., 1981; Foo, 1985). Thus, the biosynthesis of promelacacinidins and proteracacinidins should not be inhibited on chemical considerations. Indeed, several naturally occurring promelacacinidins (Foo, 1986, 1989; Young et al., 1986; Bennie et al., 2000) and proteracacinidins (Malan et al., 1994; Malan, 1995; Malan

E-mail address: dferreir@olemiss.edu (D. Ferreira).

and Sireeparsad, 1995; Coetzee et al., 1998a,b; Bennie et al., 2000, 2001a,b, 2002) have been identified. Here we report the structure elucidation of 22 compounds, including a series of $(4\rightarrow 6)$ -coupled proteracacinidins 1, 3, 5, 7, 9, 11 and 13, the 'mixed' proteracacinidins/melacacinidins 15, 17 and 19, and the promelacacinidin 23 from the heartwoods of *Acacia galpinii* and *A. caffra* and their corresponding permethylaryl ether triacetates. Synthetic approaches towards some of the analogs are also described.

2. Results and discussion

Previous screening of the methanol extracts of the heartwoods of *A. galpinii* and *A. caffra* demonstrated the complexity of the mixture of mono-, di- and trimeric pro-/leucoanthocyanidins (Bennie et al., 2001b, 2002, and references cited). Continued investigation of the same sources have now revealed the presence of several new $(4\rightarrow 6)$ coupled proteracacinidins epioritin- $(4\beta\rightarrow 6)$ -oritin- 4α -ol **1**,¹ epioritin- $(4\beta\rightarrow 6)$ -ent-oritin- 4α -ol **3**,² ent-oritin- $(4\beta\rightarrow 6)$ -epioritin 4α -ol **5**,² ent-oritin($4\beta\rightarrow 6)$ -epioritin- 4α -ol **9**,^{1,2}

 $^{^{\}star}$ Part 36 in the series 'Oligomeric flavanoids'. Part 35 (Bennie et al., 2002).

^{*} Corresponding author. Tel.: +1-91-662-915-1572; fax: +1-91-662-915-7062.

¹ From A. caffra.

² From A. galpinii.

ent-oritin- $(4\alpha \rightarrow 6)$ -oritin- 4α -ol $11^{1,2}$ and ent-oritin- $(4\alpha \rightarrow 6)$ -epioritin- 4β -ol 13,¹ the 'mixed' pro-teracacinidins/-melacacinidins epioritin- $(4\beta \rightarrow 6)$ -epimesquitol- 4α -ol 15,¹ epioritin- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol 17^1 and epimesquitol- $(4\beta \rightarrow 6)$ -epioritin- 4α -ol, 19,¹ and the pro-melacacinidin epimesquitol- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol 23.¹ Owing to their complexity, the free phenolic mixtures could not be sufficiently resolved and hence the proanthocyanidins were instead purified as their permethylaryl ether triacetates 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 24. Derivatization did not only permit two additional chromatographic steps which ensured sample purity, but also provided key ¹H NMR reference signals which facilitated unequivocal structure elucidation.

The structures and relative configurations of these derivatives were determined by analysis of MS and ¹H and ¹³C NMR spectroscopic data (Tables 1 and 2, respectively). ¹H NMR spectral data are given for solutions in CDCl₃ and for those compounds showing poor resolution in key spectral regions also in C₆D₆ or acetone- d_6 . Absolute stereochemistry was assessed via circular dichroic (CD) data, and ¹³C resonances were assigned by HMQC and HMBC experiments. Since the ¹³C NMR spectral data of the epioritin-(4 β →6)-epioritin-4 α -ol hexa-*O*-methylether triacetate, i.e. the 3-C(Fring) diastereoisomer of derivative **2** were not previously recorded (Malan and Sireeparsad, 1995), these are included for comparative purposes (see Experimental).

FAB-MS analyses of the permethylaryl ether triacetates indicated molecular formulae of $C_{42}H_{44}O_{14}$ (*m*/*z* 772) for **2**, **4**, **6**, **8**, **10**, **12** and **14**, $C_{43}H_{46}O_{15}$ (*m*/*z* 802) for **16** and **18** and **20**, and $C_{44}H_{48}O_{16}$ (*m*/*z* 832) for **24**. When taken in conjunction with the number and nature of the *O*-methyl and *O*-acetyl resonances in their ¹H NMR spectra (Table 1), these formulas suggested proteracacinidin structures with carbon–carbon bonds linking the upper oritin- and lower teracacidin-type flavanyl units in **2**, **4**, **6**, **8**, **10**, **12** and **14**, the oritinand melacacidin-type units in **16** and **18**, the mesquitoland teracacidin-type units in **20**, and the mesquitol- and melacacidin-type moieties in **24**.

The ¹H NMR spectral data of the proteracacinidin derivatives **2**, **4**, **6**, **8**, **10**, **12** and **14** reflected the presence of an AB- and two AA'BB'-spin systems as well as a one-proton singlet for aromatic protons. In the spectra of **16**, **18** and **20** one of the AA'BB'-spin systems was replaced by an ABX-spin pattern, while in **24** both the AA'BB'-systems were replaced by two ABX-spin patterns. Protons of the heterocyclic rings of all the derivatives resonated as two AMX-spin systems, with conspicuously deshielded 4-H(F) resonances reminiscent of the flavan-3,4-diol-type DEF lower unit (Bennie et al., 2001a,b, 2002). Differentiation of the spin systems and the connections between aromatic and heterocyclic protons were effected with COSY experiments which indicated ⁴J_{HH} coupling between the respective 2- and

2',6'-protons. Prominent ${}^{4}J_{\rm HH}$ benzylic coupling between 5-H(A) and 4-H(C) identified the AB-spin system as belonging to the A-ring. ${}^{4}J_{\rm HH}$ coupling from the remaining broad aromatic singlet to both 4-H(F) and 4-H(C), supported by similar NOE associations observed in a phase sensitive NOESY experiment confirmed the C-4(C) \rightarrow C-6(D) interflavanyl bonds. This was additionally supported by the three bond correlations between 4-H(C) and 5-C of both the A- and D-rings in the HMBC experiments.

The relative configurations of all the derivatives were evident from ¹H NMR coupling constants of heterocyclic protons. Those derivatives with 2,3-cis-3,4-trans constituent units (C-rings of 2, 4, 16, 18, 20 and 24, Frings of 14, 18 and 24) exhibited ${}^{3}J_{2,3} = 1.5$, ${}^{3}J_{3,4} = 3.0$ Hz coupling constants; those with 2,3-trans-3,4-cis configured moieties (C-rings of 10, 12 and 14, F-ring of 4) showed ${}^{3}J_{2,3} = 6.5 - 10.0$, ${}^{3}J_{3,4} = 3.5 - 4.9$ Hz; compounds with 2,3-trans-3,4-trans flavanyl units (C-rings of 6 and 8, F-rings of 2, 8 and 12) had ${}^{3}J_{2,3} = 10.0$, ${}^{3}J_{3,4}$ 8–10 Hz; and analogs with 2,3-cis-3,4-cis configured units (F-rings of 6, 10, 16 and 20) exhibited ${}^{3}J_{2,3} = 1.0$ and ${}^{3}J_{3,4} = 4.5$ Hz couplings (Bennie et al., 2001a, b, 2002). Both 2,3-trans-3,4-trans and 2,3-cis-3,4-cis relative configurations were confirmed by NOE associations between 2- and 4-H indicating their cofacial arrangement in the respective C- and F-rings. 2,3-Cis-3,4-trans and 2,3-trans-3,4-cis relative stereochemistry of C-rings was similarly confirmed by NOE associations of 5-H(D) and 2-H(C). These NOE observations are essential for the unequivocal differentiation of *cis-trans* and *cis-cis* heterocyclic ring relative configurations. The stability of the 7,8-dihydroxy-2,3-cis-3,4-cis-flavan-3,4-diols and on the abundance of dimers with 2,3-cis-3,4-cis-flavanyl constituent units all possessing 7,8-dihydroxy A-rings and axial C-3 hydroxyl groups have been discussed recently (Coetzee et al., 1999).

The protons of the 2,3-trans-3,4-cis C-rings of 10, 12 and 14 exhibited "abnormal" coupling constants $({}^{3}J_{2,3}=6.5, {}^{3}J_{3,4}=4.9$ Hz). Previously we documented similar coupling constants (${}^{3}J_{2,3} = 6.0$, ${}^{3}J_{3,4} = 4.9$ Hz) for a 2,4-diaryl-6-(2-benzopyranyl)-chromane with 2,3-trans-3,4-cis stereochemistry (Malan et al., 1990a). Since the 2,3-trans-3,4-cis relative configuration of the C-rings of all three derivatives was unequivocally established by the observed NOE association between 5-H(D) and 2-H(C), the small ${}^{3}J_{2,3}$ value presumably reflected substantial contributions of A-conformers towards the A-/E-conformational itinerary of the C-ring (Porter et al., 1986). Such a dynamic conformational equilibrium would reduce the average dihedral angle of 2- and 3-H(C) and hence the observed ¹H NMR coupling constant.

The chemical shifts of the C-2 (C-ring) resonances in the ¹³C NMR spectra of all the derivatives (Table 2) fully supported these relative configurations. Those

Table 1 (a) ¹H NMR peaks (δ_{H}) of compounds **2**, **4**, **6** and **8** at 300 MHz

Ring	Proton	2—CDCl ₃	4—CDCl ₃	6—CDCl ₃	6 (CD ₃) ₂ CO	8-CDCl ₃	8-(CD ₃) ₂ CO	
A	5 6	6.68 (<i>d</i> , 9.0) 6.56 (<i>d</i> , 9.0)	6.66 (<i>d</i> , 9.0) 6.59 (<i>d</i> , 9.0)	6.48 (br.s) 6.48 (br.s)	6.44 (<i>d</i> , 9.0) 6.58 (<i>d</i> , 9.0)	6.40 (<i>d</i> , 9.0) 6.48 (<i>d</i> , 9.0)	6.39 (<i>d</i> , 9.0) 6.58 (<i>d</i> , 9.0)	
В	2', 6' 3', 5'	7.31 (<i>d</i> , 9.0) 6.88 (<i>d</i> , 9.0)	7.30 (<i>d</i> , 9.0) 6.88 (<i>d</i> , 9.0)	7.41 (<i>d</i> , 9.0) 6.91 (<i>d</i> , 9.0)	7.47 (<i>d</i> , 9.0) 6.96 (<i>d</i> , 9.0)	7.38 (<i>d</i> , 9.0) 6.91 (<i>d</i> , 9.0)	7.47 (<i>d</i> , 9.0) 6.96 (<i>d</i> , 9.0)	
C	2 3 4	5.14 (br.s, 1.5) 5.39 (dd, 1.5, 3.0) 4.43 (d, 3.0)	5.15 (br.s, 1.5) 5.37 (dd, 1.5, 3.0) 4.44 (d, 3.0)	4.97 (<i>d</i> , 10.0) 5.71 (<i>t</i> , 10.0, 10.0) 4.45 (broadened)	5.01 (<i>d</i> , 10.0) 5.76 (<i>dd</i> , 10.0, 10.0) 4.45 (broadened)	4.99 (<i>br.d</i> , 10.0) 5.72 (<i>br.t</i> , 10.0, 10.0) 4.45 (broadened)	5.04 (<i>d</i> , 10.0) 5.76 (<i>dd</i> , 10.0, 10.0) 4.52 (broadened)	
D	5	6.20 (s)	6.40 (s)	6.72 (br.s)	6.91 (br.s)	6.68 (br.s)	6.84 (<i>br.s</i>)	
Е	2', 6' 3', 5'	7.36 (d, 9.0)7.37 (d, 9.0)6.92 (d, 9.0)6.93 (d, 9.0)		7.43 (d, 9.0)7.53 (d, 9.0)6.92 (d, 9.0)6.98 (d, 9.0)		7.43 (<i>d</i> , 9.0) 6.92 (<i>d</i> , 9.0)	7.48 (<i>d</i> , 9.0) 6.98 (<i>d</i> , 9.0)	
F	2 3 4	2 5.08 (d, 10.0) 5.25 (d, 10.0) 3 5.46 (dd, 10.0, 8.0) 5.34, (dd, 10.0, 3.5) 4 6.16 (d, 8.0) 5.99 (d, 3.5)		5.33 (br.s, 1.0) 5.63 (br.s, 1.0) 5.62 (dd, 1.0, 4.5) 5.59 (dd, 1.0, 4.5) 6.23 (d, 4.5) 6.32 (d, 4.5)		5.04 (<i>d</i> , 10.0) 5.50 (<i>dd</i> , 8.0, 10.0) 6.25 (<i>d</i> , 8.0)	5.22 (<i>d</i> , 10.0) 5.46 (<i>dd</i> , 8.0, 10.0) 6.24 (<i>d</i> , 8.0)	
OMe		4.00, 3.98, 3.90, 3.88, 3.84, 3.82 (each <i>s</i>)	4.02, 3.99, 3.93, 3.89, 3.84, 3.81 (each <i>s</i>)	3.67, 3.83, 3.84, 3.85, 3.89 (×2) (each <i>s</i>)	3.63, 3.76, 3.79, 3.83, (×2), 3.85 (each <i>s</i>)	See (CD ₃) ₂ CO spectrum	3.68, 3.74, 3.78 (×2), 3.83, 3.84 (each <i>s</i>)	
OAc		1.91, 1.82, 1.81 (each s)	2.12, 1.91, 1.83 (each s)	1.68, 1.95, 2.14 (each s)	1.63, 1.92, 2.05 (each s)	1.68, 1.84, 2.10 (each s)	1.65, 1.78, 2.02 (each s)	

(b) ¹H NMR peaks ($\delta_{\rm H}$) of compounds **10**, **12**, and **14** at 300 MHz

Ring	Proton	10—CDCl ₃	12—CDCl ₃	12—C ₆ D ₆	14—CDCl ₃	$14-C_6D_6$
A	5	6.67 (<i>d</i> , 8.5)	6.56 (<i>d</i> , 8.5)	6.82 (<i>d</i> , 8.5)	6.57 (<i>d</i> , 9.0)	6.84 (<i>d</i> , 9.0)
	6	6.53 (<i>d</i> , 8.5)	6.47 (<i>d</i> , 8.5)	6.46 (<i>d</i> , 8.5)	6.51 (<i>d</i> , 9.0)	6.44 (<i>d</i> , 9.0)
В	2', 6'	7.33 (<i>d</i> , 9.0)	7.33 (<i>d</i> , 9.0)	7.37 (<i>d</i> , 9.0)	7.31 (<i>d</i> , 9.0)	7.52 (<i>d</i> , 9.0)
	3', 5'	6.90 (<i>d</i> , 9.0)	6.90 (<i>d</i> , 9.0)	6.78 (<i>d</i> , 9.0)	6.90 (<i>d</i> , 9.0)	6.81 (<i>d</i> , 9.0)
С	2	5.34 (<i>d</i> , 6.5)	5.39 (<i>d</i> , 6.5)	5.76 (<i>d</i> , 6.5)	5.41 (<i>br.s</i> , 6.5)	5.78 (br.s, 6.5)
	3	5.43 (<i>dd</i> , 6.5, 4.9)	5.43 (<i>dd</i> , 6.5, 4.9)	6.00 (<i>dd</i> , 6.5, 4.9)	5.41 (<i>dd</i> , 6.5, 4.9)	6.05 (dd, 6.5, 4.9)
	4	4.67 (<i>d</i> , 4.9)	4.64 (<i>d</i> , 4.9)	5.17 (<i>d</i> , 4.9)	4.66 (<i>d</i> , 4.9)	5.23 (d, 4.9)
D	5	6.55 (br.s)	6.57 (br.s)	7.13 (br.s)	6.86 (br.s)	7.67 (br.s)
Е	2', 6'	7.42 (<i>d</i> , 9.0)	7.38 (<i>d</i> , 9.0)	7.47 (<i>d</i> , 9.0)	7.41 (<i>d</i> , 9.0)	7.55 (<i>d</i> , 9.0)
	3', 5'	6.93 (<i>d</i> , 9.0)	6.93 (<i>d</i> , 9.0)	6.83 (<i>d</i> , 9.0)	6.94 (<i>d</i> , 9.0)	6.91 (<i>d</i> , 9.0)
F	2	5.33 (br.s, 1.0)	5.07 (<i>d</i> , 10.0)	4.80 (<i>d</i> , 10.0)	5.28 (br.s, 1.5)	5.55 (br.s, 1.5)
	3	5.59 (dd, 1.0, 4.5)	5.49 (<i>dd</i> , 10.0, 8.0)	5.96 (<i>dd</i> , 10.0, 8.0)	5.22 (dd, 1.5, 3.0)	5.74 (dd, 1 .5, 3.0)
	4	6.25 (d, 4.5)	6.21 (<i>d</i> , 8.0)	6.60 (<i>d</i> , 8.0)	5.76 (d, 3.0)	6.19 (d, 3.0)
OMe		3.82, 3.84, 3.87, 3.91, 3.93, 3.96 (each <i>s</i>)	3.74, 3.82, 3.84, 3.85, 3.87, 3.97 (each <i>s</i>)	3.32, 3.33, 3.56, 3.75, 3.76, 4.10 (each <i>s</i>)	3.98, 3.93, 3.91, 3.85, 3.82, 3.78 (each <i>s</i>)	4.17, 3.87, 3.73, 3.49, 3.36, 3.33 (each <i>s</i>)
OAc		1.87, 1.94, 1.96 (each s)	1.83, 1.89, 1.92 (each s)	1.55, 1.80, 1.87 (each s)	2.11, 1.92, 1.92 (each s)	1.82, 1.62, 1.39 (each s)

(continued on next page) $\overset{5}{3}$

Ring	Carbon	16—CDCl ₃	16-(CD ₃) ₂ CO	18—CDCl ₃	18—(CD ₃) ₂ CO	20 —CDCl ₃	22 —CDCl ₃	24 —CDCl ₃
A	5 6	6.74 (<i>d</i> , 8.5) 6.59 (<i>d</i> , 8.5)	6.74 (<i>d</i> , 8.5) 6.69 (<i>d</i> , 8.5)	6.69 (<i>d</i> , 8.5) 6.58 (<i>d</i> , 8.5)	6.70 (<i>d</i> , 8.5) 6.65 (<i>d</i> , 8.5)	6.75 (<i>d</i> , 8.5) 6.59 (<i>d</i> , 8.5)	6.71 (<i>d</i> , 8.5) 6.59 (<i>d</i> , 8.5)	6.70 (<i>d</i> , 8.5) 6.58 (<i>d</i> , 8.5)
В	2', 6' 3', 5' 2' 5' 6'	7.30 (<i>d</i> , 8.5) 6.88 (<i>d</i> , 8.5)	7.31 (<i>d</i> , 8.5) 6.91 (<i>d</i> , 8.5)	7.31 (<i>d</i> , 8.5) 6.88 (<i>d</i> , 8.5)	7.32 (<i>d</i> , 8.5) 6.92 (<i>d</i> , 8.5)	7.00 (<i>d</i> , 2.0) 6.83 (<i>d</i> , 8.5) 6.88 (<i>dd</i> , 2.0, 8.5)	7.03 (<i>d</i> , 8.5) 6.83 (<i>dd</i> , 2.0) 6.87 (<i>dd</i> , 2.0, 8.5)	7.03 (<i>d</i> , 2.0) 6.83 (<i>d</i> , 8.5) 6.88 (<i>dd</i> , 2.0, 8.5)
С	2 3 4	5.15 (br.s, 1.5) 5.43 (dd, 1.5, 3.0) 4.43 (d, 3.0)	5.15 (<i>br.s</i> , 1.5) 5.45 (<i>dd</i> , 1.5, 3.0) 4.45 (<i>d</i> , 3.0)	5.18 (br.s, 1.5) 5.36 (dd, 1.5, 3.0) 4.46 (d, 3.0)	5.19 (br.s, 1.5) 5.32 (dd, 1.5, 3.0) 4.49 (d, 3.0)	5.14 (br.s, 1.5) 5.46 (dd, 1.5, 3.0) 4.44 (d, 3.0)	5.17 (br.s, 1.5) 5.41(dd, 1.5, 3.0) 4.46 (d, 3.0)	5.18 (br.s, 1.5) 5.41(dd, 1.5, 3.0) 4.46 (d, 3.0)
D	5	6.29 (br.s)	6.31 (br.s)	6.63 (br.s)	6.72 (br.s)	6.27 (br.s)	6.62 (<i>br.s</i>)	6.64 (<i>s</i>)
Е	2', 6' 3', 5' 2' 5' 6'	7.03 (<i>d</i> , 2.0) 6.88 (<i>d</i> , 8.5) 7.04 (<i>dd</i> , 2.0, 8.5)	7.22 (<i>d</i> , 2.0) 6.99 (<i>d</i> , 8.5) 7.14 (<i>dd</i> , 2.0, 8.5)	7.03 (<i>d</i> , 2.0) 6.90 (<i>d</i> , 8.5) 7.04 (<i>dd</i> , 2.0, 8.5)	7.17 (<i>d</i> , 2.0) 7.00 (<i>d</i> , 8.5) 7.11 (<i>dd</i> , 2.0, 8.5)	7.40 (<i>d</i> , 8.5) 6.93 (<i>d</i> , 8.5)	7.40 (<i>d</i> , 8.5) 6.94 (<i>d</i> , 8.5)	7.03 (<i>d</i> , 2.0) 6.90 (<i>d</i> , 8.5) 7.03 (<i>dd</i> , 2.0, 8.5)
F	2 3 4	5.33 (<i>d</i> , 1.0) 5.64 (<i>dd</i> , 1.0, 4.5) 6.19 (<i>d</i> , 4.5)	5.61 (<i>br.s</i> , 1.0) 5.60 (<i>dd</i> , 1.0, 4.5) 6.28 (<i>d</i> , 4.5)	5.29 (<i>d</i> , 1.5) 5.26 (<i>dd</i> , 1.5, 3.0) 5.66 (<i>d</i> , 3.0)	5.39 (br.s, 1.5) 5.28 (d, 1.5, 3.0) 5.63 (d, 3.0)	5.33 (br.s, 1.0) 5.59 (dd, 1.0, 4.5) 6.20 (d, 4.5)	5.30 (<i>d</i> , 1.5) 5.22 (<i>dd</i> , 1.5, 3.0) 5.66 (<i>d</i> , 3.0)	5.30 (br.s, 1.5) 5.26 (dd, 1.5, 3.0) 5.67 (d, 3.0)
OMe		3.99 (×2), 3.98, 3.91 (×2), 3.89, 3.81 (each <i>s</i>)	4.01, 3.97, 3.86, 3.85, 3.83 (×2), 3.79 (each <i>s</i>)	4.02, 4.01, 3.99, 3.93 (×2), 3.92, 3.81 (each <i>s</i>)	4.02, 3.98, 3.86, 3.85, 3.84, 3.83, 3.79 (each <i>s</i>)	4.01, 3.99, 3.98, 3.89, 3.88, 3.87, 3.84 (each <i>s</i>)	4.03, 4.01, 4.00, 3.92, 3.88 (×2), 3.84 (each <i>s</i>)	4.03, 4.01 (×2), 3.93, 3.92, 3.91, 3.88 (×2) (each <i>s</i>)

Table 1 (*continued*) (c) ¹H NMR peaks (δ_c) for compounds **16**, **18**, **20**, **22** and **24** at 300 MHz (296 K)

OAc 1.95, 1.92, 1.88 (each s) 1.91, 1.86, 1.80 (each s) 2.12, 1.91, 1.90 (each s) 2.10, 1.88, 1.87 (each s) 1.95, 1.92, 1.87 (each s) 2.10, 1.91, 1.89 (each s) 2.11, 1.91, 1.90 (each s)

Splitting patterns and J-values (Hz) are given in parentheses.

525

Table 2 ^{13}C NMR peaks ($\delta_c)$ for compounds 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24

Ring	Carbon	2— CDCl ₃	4— CDCl ₃	6 — (CD ₃) ₂ CO	8 — (CD ₃) ₂ CO	10— CDCl ₃	12— C ₆ D ₆	14— CDCl ₃	16— (CD ₃) ₂ CO	18— (CD ₃) ₂ CO	20 — CDCl ₃	22 — CDCl ₃	24 — CDCl ₃
A	5	125.26	125.24	123.30	123.39	124.47	124.32	123.99	125.35	125.59	125.42	125.14	125.10
	6	105.73	106.03	106.17	106.19	105.17	106.03	105.39	106.15	106.65	105.59	105.81	105.85
В	2', 6' 3', 5' 2' 5' 6'	128.03 113.99	128.01 113.99	128.24 113.86	129.28 113.86	127.95 114.28	129.42 114.49	127.54 114.37	128.07 113.86	128.65 114.34	110.36 111.23 119.18	110.39 111.19 119.17	110.45 111.23 119.17
С	2	73.59	73.66	80.62	80.51	76.18	76.66	76.55	73.49	73.97	73.73	73.74	73.75
	3	72.19	72.35	72.45	72.27	71.68	71.90	71.65	71.98	72.70	72.17	72.37	72.34
	4	41.45	40.94	45.30	a	36.00	36.55	34.54	41.50	41.24	41.74	41.05	41.04
D	5	124.28	127.03	122.88	123.66	123.55	124.84	127.96	123.52	128.16	123.40	127.84	127.89
	6	129.49	129.04	126.87	127.57	126.25	127.91	126.37	128.67	129.62	128.87	128.95	129.01
E	2', 6' 3', 5' 2' 5' 6'	128.33 114.23	129.14 114.28	129.33 114.02	129.30 114.04	127.95 114.25	128.82 114.29	128.10 114.24	110.88 111.97 119.36	111.60 112.44 120.07	127.94 114.25	128.09 114.24	110.23 111.44 119.34
F	2	79.43	75.11	77.26	79.13	77.51	79.55	74.54	77.46	75.19	77.62	74.64	74.60
	3	71.46	70.36	67.30	71.67	67.09	71.47	69.19	67.17	69.16	67.01	68.99	68.90
	4	70.76	66.84	66.98	70.67	67.09	71.37	66.53	66.92	66.63	67.13	66.46	66.43

^a Chemical shift not defined.

compounds with a 2,4-*trans* configuration (2, 4, 10, 12, 14, 16, 18, 20 and 24) displayed shielded 2-C(C) signals (ca. 4–7 ppm) compared to the chemical shifts of these carbons in derivatives with a 2,4-*cis* configuration (6 and 8) due to the γ -gauche effect (Fletcher et al., 1977).

A conspicuous feature of the ¹H NMR spectral data (Tables 1, 2; CDCl₃) of derivatives with 2,3-trans-3,4-cis (4) or 2,3-cis-3,4-trans (14, 18 and 24) F-ring configurations, i.e. having 2-H(F) and 4-OAc(F) in a cis-diaxial orientation, is the large shielding of their 4-H(F) resonances (8 5.99, 5.76, 5.66 and 5.67 for 4, 14, 18 and 24, respectively) relative to their chemical shifts in derivatives with 2,3-cis-3,4-cis (e.g. δ 6.25 for 10) or 2,3-trans-3,4-*trans* configured F-rings (e.g. δ 6.21 for derivative 12). In order to minimize *cis*-1,3-diaxal van der Waals strain between 2-H(F) and 4-OAc(F), the F-ring halfchair conformation is probably distorted, pushing the 4-H(F) bond close to an orthogonal orientation relative to the D-ring. Donation of electron density from this aromatic ring into the 4-H(F) σ^* -antibonding orbital could then explain the observed shielding of this proton. A similar shielding of the 4-H resonances was also recorded for the permethylaryl ether acetate derivatives of dimeric epioritin- $(4\beta \rightarrow 6)$ -epioritin- 4β -ol [4-H(F)] and the monomeric flavan-3,4-diol epioritin-4β-ol [4-H(C)] when compared to the same derivatives of epioritin- $(4\beta \rightarrow 6)$ -epioritin- 4α -ol and epioritin- 4α -ol (Malan and Sireeparsad, 1995).

A further notable but less readily explicable feature of the 1 H NMR spectra of derivatives 6 and 8, i.e. those

with 2,3-trans-3,4-trans configured C-rings, is the severe line-broadening of their 4-H(C) resonances, and to a lesser degree also of 3-H(C), 5-H(A), 5-H(D) and 7-OMe(D). Since similar effects were not observed for $(4\rightarrow 6)$ -linked dimeric proanthocyanidins with 2,3-trans-3,4-trans C-rings and resorcinol-type D-rings (Steenkamp et al., 1988; Malan et al., 1990b), such broadening presumably results from the presence of the 8-OMe Dring substituent in derivatives 6 and 8. Inspection of Dreiding models indicated that free rotation about the interflavanyl bond in these derivatives will mainly be impeded by steric interaction between 7-OMe of the quasi-axial DEF moiety and the axial 3-H(C). The buttressing effect of 8-OMe(D) on 7-OMe(D) would intensify such interaction, hence retarding the rate of rotation to such an extent that broadening of the aforementioned resonances is observed. Small effects of steric hindrance to free rotation will obviously have the strongest influence on the line-shape of resonances closest to the atoms comprising the restricted rotor.

Also notable is the peculiar "disappearance" of the 4-C(C) resonances in the ¹³C NMR spectra of **6** and **8**, i.e. those showing restricted rotation about the interflavanyl bond, and also in derivatives **10** and **12** which exhibit sharp ¹H NMR resonances at ambient temperatures. Such a phenomenon is presumably explicable in terms of the long relaxation time of this carbon on the NMR time scale. The chemical shifts of these carbon atoms were however evident in the HMQC experiment for **6** (at 45 °C), **10** and **12**, probably due to the shorter relaxation time of H compared to C. Only in the case of $\mathbf{8}$ could the 4-C(C) resonance be not observed at all.

Derivatives 2, 4, 6, 8, 16, 18, 20 and 24 displayed highamplitude positive Cotton effects $\{[\theta]_{240,3} + 1.05 \times 10^4$ (2); $[\theta]_{243,4} + 1.35 \times 10^4$ (4); $[\theta]_{245,3} + 1.64 \times 10^4$ (6); $[\theta]_{246,5} + 1.09 \times 10^4$ (8); $[\theta]_{243,1} + 6.66 \times 10^3$ (16); $[\theta]_{239,2} + 9.04 \times 10^5$ (18); $[\theta]_{234,9} + 7.78 \times 10^3$ (20); $[\theta]_{237,9} + 2.53 \times 10^4$ (24)} near 240 nm in their CD spectra. These indicated a 4 β -orientation of the DEF-flavanyl units at C-4(C) (Van der Westhuizen et al., 1981), and in conjunction with coupling constants of the protons of this ring, defined 2*R*,3*R*,4*R*(C) absolute configuration for 1, 3, 15, 17, 19 and 23, and 2*S*,3*R*,4*R* absolute stereochemistry for 5 and 7. Negative high-amplitude Cotton effects in the same wavelength region of the CD spectra of derivatives 10, 12 and 14 { $[\theta]_{240.2}$ -2.88×10⁵ (10); $[\theta]_{244.7}$ -2.8×10⁴ (12); $[\theta]_{245.4}$ -1.36×10⁴ (14)} similarly indicated 4 α -(C) DEF-flavanyl moieties and hence 2*S*,3*R*,4*S* absolute configuration for the stereocenters of the C-rings of 9, 11 and 13. Oritin-4 α -ol, oritin-4 β -ol, epioritin-4 β -ol and *ent*-oritin-4 α -ol, as the most likely biogenetic precursors of the DEF flavanyl moieties of 1, 3, 5, 7, 9, 11, 13 and 19, occur abundantly in both *A. galpinii* and *A. caffra* (Malan, 1995). Thus, these units possess 2*R*,3*S*,4*R* absolute configuration in 1, 7 and 11 (oritin-4 α -ol derived DEF units), 2*S*,3*R*,4*R* in 3

Scheme 1. Formation of the 4β -benzylsulfanylepioritin 27 and the 4β -benzylsulfanylepimesquitol 28.

(*ent*-oritin-4 α -ol derived), 2*R*,3*R*,4*R* in 5, 9, 19 (epioritin-4 α -ol derived) and 15 (epimesquitol-4 α -ol derived), and 2*R*,3*R*,4*S* in 13 (epioritin-4 β -ol derived), 17 and 21 (epimesquitol-4 β -ol derived). The *ent*-oritin-4 α -ol derived DEF unit in 4 was confirmed by comparing its CD data in the 280 nm region with those of *ent*oritin-4 α -ol tri-*O*-methyl ether diacetate (Coetzee et al., 1998a).

The structures of epioritin- $(4\beta \rightarrow 6)$ -epioritin- 4α -ol and epioritin- $(4\beta \rightarrow 6)$ -epioritin- 4β -ol were previously confirmed by semisynthesis via acid-catalyzed self condensation of epioritin- 4α -ol (Malan and Sireeparsad, 1995). Unequivocal confirmation of the structures of the 'mixed' proanthocyanidin **16**, **18**, **20** and **24** was thus sought by using thiophilic Lewis acid catalysed coupling of an appropriate 4-benzylsulfanylflavan-3-ol to the relevant teracacidin- or melacacidin-type flavan-3,4-diol (Steynberg et al., 1998). 4β -Benzylsulfanylepioritin **27** and 4β -benzylsulfanylepimesquitol **28** were readily available via acid-catalyzed thiolysis (Hemingway et al., 1983) of epioritin- 4α -ol **25** and epimesquitol- 4α -ol **26**, respectively (Scheme 1). The structures of **27** and **28** were evident from comparison of their ¹H NMR and CD data (see Experimental) with those of related compounds and from the mechanism of their formation (Coetzee et al., 1999).

Treatment of a mixture comprising epimesquitol- 4α -ol **26** (2 molar excess) and 4β -benzylsulfanylepioritin **27** with silver tetrafluoroborate in THF at 30 °C³ followed by an aqueous work-up and the appropriate derivatization, afforded the epioritin- $(4\beta \rightarrow 6)$ -epimesquitol-4 α -ol and epioritin- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol derivatives **16** (4.1%) and **18** (4.4%). Their ¹H NMR and CD data were identical to those of the similar derivatives of the natural products 15 and 17. Formation of 17 is explicable in terms of solvolysis at C-4 of the allcis F-ring of 15 during the aqueous work-up (Coetzee et al., 1999). A similar protocol using 4β-benzylsulfanylepimesquitol 28 and epioritin- 4α -ol 25 gave the epimesquitol- $(4\beta \rightarrow 6)$ -epioritin- 4α -ol and epimesquitol- $(4\beta \rightarrow 6)$ -epioritin-4 β -ol derivatives **20** (4.3%) and **22** (4.6%). Derivative 20 was identical to the same derivative of the natural product **19** by comparison of their ¹H

 $^{^3\,}$ At 0 °C the formation of ether-linked derivatives (Coetzee et al., 1998a) predominated.

NMR and CD data. The inverted C-4 (F-ring) configuration of **22** was conspicuously evident from the now familiar shielding of the 4-H resonance (δ 5.66) (Table 2) compared to its chemical shift in **20** (δ 6.20) with 2,3-*cis*-3,4-*cis* F-ring configuration. Finally, condensation of 4 β -benzylsulfanylepimesquitol **28** and epimesquitol-4 α -ol **26** and subsequent derivatization afforded the epimesquitol-($\beta \rightarrow 6$)-epimesquitol-4 β -ol derivative **24** with spectral characteristics identical to those of the same derivative of the natural product **23**.

Our identification of eleven new $(4\rightarrow 6)$ -linked proanthocyanidins of the teracacinidin- and/or melacanidin-type from the heartwoods of *A. galpinii* and *A. caffra* further demonstrates the remarkable diversity of the phenolic pool in *A. galpinii* and *A. caffra*. These natural sources possess high concentrations of 7,8-dihydroxylated flavan-3,4-diols as potential biosynthetic precursors, but lack C-4(C) deoxy flavanoids as potent nucleophiles to effectively trap the flavan-3,4-diolderived electrophiles in the pathway leading to the proanthocyanidins.

3. Experimental

¹H and ¹³C NMR spectra were recorded on a Bruker Avance DPX 300 and a Bruker Avance DRX 500 spectrometer, respectively, for solns. as indicated, with Me₄Si as internal standard. FAB mass spectra were recorded on a VG-70E instrument with a VG 11-250J data system and an iontech saddlefield FAB gun. UV-Vis spectra of solutions (MeOH) were measured using a Cary 50 Conc spectrophotometer. TLC was performed on precoated Merck plastic sheets (silica gel 60 PF_{254} , 0.25 mm) and the plates were sprayed with H₂SO₄-HCHO (40:1; v/v) after development. Preparative plates (PLC) [20×22 cm, Kieselgel PF₂₅₄ (1.0 mm)] were air dried and used without prior activation. CC was done on Sephadex LH-20 in various columns, solvent systems and flow rates (to be specified in each instance). Methylations were performed with an excess of CH₂N₂ in MeOH/Et₂O for 48 h at -15 °C while acetylations were conducted in Ac₂O-pyridine at ambient temperature. Evaporations were done under reduced pressure at ambient temp. in a rotary evaporator, and freeze drying of aqueous solutions on a Virtis 12 SL freezemobile.

3.1. Isolation of phenolic compounds

The extraction of the heartwoods of *A. caffra* and *A. galpinii* and column separations to give fractions A–UU and A–Z, respectively, were comprehensively described in Parts 28 (Coetzee et al., 1998a) and 32 (Bennie et al., 2000).

3.2. Epioritin- $(4\beta \rightarrow 6)$ -oritin- 4α -ol hexa-Omethylether triacetate **2**

Methylation of a portion (200 mg) of fraction X from A. caffra followed by PLC in benzene-Me₂CO-EtOAc (7:2:1; v/v) gave three bands at $R_f 0.58$ (32 mg), 0.44 (31 mg) and 0.30 (18 mg). Acetylation of the $R_{\rm f}$ 0.30 band followed by PLC purification in hexane-benzene-Me₂CO–MeOH (43:42:10:5; \times 2; v/v) afforded two main bands at $R_f 0.63$ (4.1 mg) and 0.49 (1.5 mg). The former band yielded $\mathbf{2}$ as a white amorphous solid. (Found: M^+ , 772.2734. $C_{42}H_{44}O_{14}$ requires M⁺, 772.2731); δ_{H} (Table 1); ¹³C NMR (CDCl₃, 27 °C): δ 20.81, 20.91, 21.28 [3×CH₃COO–], 41.45 [4-C(C)], 55.62 (×2), 55.65, 56.73, 61.28, 61.48 [6×-OCH₃], 70.76 [4-C(F)], 71.46 [3-C(F)], 73.59 [2-C(C)], 72.19 [3-C(C)], 79.43 [2-C(F)],105.73 [6-C(A)], 113.99 (×2) [3,5-C(B)], 114.23 (×2) [3,5-C(E)], 115.27 [10-C(A)], 116.18 [10-C(D)], 124.28 [5-C(D)], 125.26 [5-C(A)], 128.03 (×2) [2,6-C(B)], 128.33 [1-C(E)], 128.33 (×2) [2,6-C(E)], 129.49 [6-C(D)], 130.91 [1-C(B)], 137.74 [8-C(A)], 141.05 [8-C(D)], 148.93 [9-C(D)], 149.33 [9-C(A)], 152.00 [7-C(D)], 152.60 [7-C(A)], 159.67 [4-C(B)], 160.44 [4-C(E)], 169.62, 170.05, 170.96 [3×CH₃COO–]; CD [θ]_{221.4} 1388, [θ]_{225.6} 839, [θ]_{240.3} 10 520, $[\theta]_{247.3}$ 70, $[\theta]_{249.6}$ -1000, $[\theta]_{257.1}$ 90, $[\theta]_{285.2}$ -5754, and $[\theta]_{295.8}$ 4. ¹³C NMR data of epioritin-(4 β \rightarrow 6)epioritin-4a-ol hexa-O-methylether triacetate, i.e. the 3-C(F-ring) diastereoisomer of 2. ¹³C NMR (CDCl₃, 27 °C): δ 20.76, 20.99, 21.27 [3×CH₃COO–], 41.71 [4-C(C)], 55.59, 55.64, 56.74, 61.33, 61.45, 61.52 [6×-OCH₃], 67.02 [3-C(F)], 67.15 [4-C(F)], 72.28 [3-C(C)], 73.73 [2-C(C)], 77.59 [2-C(F)], 105.64 [6-C(A)], 113.97 (×2) [3,5-C(B)], 114.24 (×2) [3,5-C(E)], 114.63 [10-C(D)], 115.18 [10-C(A)], 123.39 [5-C(D)], 125.39 [5-C(A)], 127.95 (×2) [2,6-C(E)], 128.02 (×2) [2,6-C(B)], 128.66 [6-C(D)], 128.91 [1-C(E)], 130.24 [1-C(B)], 137.66 [8-C(A)], 141.03 [8-C(D)], 148.29 [9-C(D)], 149.31 [9-C(A)], 151.67 [7-C(D)], 152.61 [7-C(A)], 159.65 [4-C(B)], 160.09 [4-C(E)], 170.06, 170.40, 170.76 [3×CH₃COO–].

3.3. Epioritin- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol hepta-Omethylether triacetate **18**

The $R_{\rm f}$ 0.49 band (Section 3.2) afforded **18** as a white amorphous solid. (Found: M⁺, 802.2836. C₄₃H₄₆O₁₅ requires M⁺, 802.2837); $\delta_{\rm H}$ (Table 1); ¹³C NMR [(CD₃)₂CO), 27 °C]: δ 20.55, 20.72, 21.10 [3×CH₃COO-], 41.24 [4-C(C)], 55.47, 56.06, 56.19, 56.38, 60.75, 61.13, 61.63 [7×-OCH₃], 66.63 [4-C(F)], 69.16 [3-C(F)], 72.70 [3-C(C)], 73.97 [2-C(C)], 75.19 [2-C(F)], 106.65 [6-C(A)], 111.60 [2-C(E)], 112.44 [5-C(E)], 114.34 (×2) [3,5-C(B)], 114.73 [10-C(D)], 115.64 [10-C(A)], 120.07 [6-C(E)], 125.59 [5-C(A)], 128.16 [5-C(D)], 128.65 (×2) [2,6-C(B)], 130.16 [1-C(E)], 129.62 [6-C(D)], 130.97 [1-C(B)], 138.27 [8-C(A)], 141.75 [8-C(D)], 149.50 [9-C(D)], 149.85 [3-C(E)],

150.21 [9-C(A)], 150.45 [4-C(E)], 152.98 [7-C(A)], 153.34 [7-C(D)], 160.36 [4-C(B)], 169.36, 169.60, 169.93 [$3 \times CH_3COO-$]; CD [θ]_{230.3} 12, [θ]_{239.2} 9039, [θ]_{248.4} 21, [θ]_{250.3}-194, [θ]_{261.0} 312, [θ]_{277.6} 477, and [θ]_{286.0}-42.

3.4. Epioritin- $(4\beta \rightarrow 6)$ -ent-oritin-4 α -ol hexa-Omethylether triacetate **4**

Acetylation and PLC purification in benzene-Me₂CO (9:1; v/v) of the $R_f 0.44$ band (Section 3.2) gave a single band at $R_{\rm f}$ 0.54 (3.3 mg) which yielded 4 as a white amorphous solid. (Found: M^+ , 772.2731. $C_{42}H_{44}O_{14}$ requires M⁺, 772.2731); $\delta_{\rm H}$ (Table 1); ¹³C NMR (CDCl₃, 27 °C): δ 20.85, 21.29, 21.59 [3×CH₃COO–], 40.94 [4-C(C)], 55.61, 55.67, 56.51, 61.22, 61.42 61.61 $[6 \times -OCH_3]$, 66.84 [4-C(F)], 70.36 [3-C(F)], 72.35 [3-C(C)], 73.66 [2-C(C)], 75.11 [2-C(F)], 106.03 [6-C(A)], 113.99 (×2) [3,5-C(B)], 114.28 (×2) [3,5-C(E)], 114.55, 114.69 (×2) [10-C(A)]/[10-C(D)], 125.24 [5-C(A)], 127.03 [5-C(D)], 128.01 (×2) [2,6-C(B)], 129.04 [6-C(D)], 129.14 (×2) [2,6-C(E)], 129.16 [1-C(E)], 130.28 [1-C(B)], 137.50 [8-C(A)], 141.15 [8-C(D)], 148.78 [9-C(D)], 149.17 [9-C(A)], 152.66 [7-C(A)], 153.01 [7-C(D)], 159.66 [4-C(B)], 160.41 [4-C(E)], 169.74, 170.02, 170.50 [3×CH₃COO-]; CD $[\theta]_{220.5}$ 32, $[\theta]_{224.5}$ -1026, $[\theta]_{232.4}$ 13, $[\theta]_{243.4}$ 13 470, $[\theta]_{284.6}$ 247, and $[\theta]_{291.7}$ 1521. The remaining band from fraction X contained related pro-/leucoanthocyanidins that were reported elsewhere (Bennie et al., 2000, 2001a).

3.5. Ent-oritin- $(4\beta \rightarrow 6)$ -epioritin- 4α -ol hexa-Omethylether triacetate **6**

Methylation of a portion (100 mg) of fraction V from A. galpinii followed by PLC in benzene–Me₂CO (4:1; v/ v) gave four bands at $R_{\rm f}$ 0.63 (6.0 mg), 0.37 (40.0 mg), 0.27 (8.0 mg) and 0.21 (6.0 mg). Acetylation of the $R_{\rm f}$ 0.37 band followed by PLC purification in hexane-benzene-Me₂CO-MeOH (43:42:10:5; $\times 2$; v/v) afforded 6 as a white amorphous solid. (Found: M^+ , 772.2732. $C_{42}H_{44}O_{14}$ requires M⁺, 772.2731); δ_{H} (Table 1); ¹³C NMR [(CD₃)₂CO), 27 °C]: δ 20.10 (×2), 20.33 [3×CH₃COO-], 45.30 [4-C(C)], 55.05 (×3), 56.02, 60.26, 60.47 [6×-OCH₃], 66.98 [4-C(F)], 67.30 [3-C(F)], 72.45 [3-C(C)], 77.26 [2-C(F)], 80.62 [2-C(C)], 106.17 [6-C(A)], 113.86 (×2) [3,5-C(B)], 114.02 (×2) [3,5-C(E)], 115.65 [10-C(D)], 120.15 [10-C(A)], 122.88 [5-C(D)], 123.30 [5-C(A)], 126.87 [6-C(D)], 128.24 (×2) [2,6-C(B)], 129.33 (×2) [2,6-C(E)], 129.75 [1-C(E)], 130.09 [1-C(B)], 137.94 [8-C(A)], 141.69 [8-C(D)], 148.57 [9-C(D)], 148.73 [9-C(A)], 152.53 [7-C(D)], 152.53 [7-C(A)], 160.17 [4-C(E)], 160.35 [4-C(B)], 168.37, 169.97, 170.52 [3×CH₃COO-]; CD $[\theta]_{225.2}$ 1765, $[\theta]_{234.0}$ -4253, $[\theta]_{238.9}$ 103, $[\theta]_{245.3}$ 16 390, $[\theta]_{253,9}$ 65.43, $[\theta]_{274,3}$ -12 320, and $[\theta]_{303,6}$ -63. TLC showed no defined compounds in the remaining bands and they were therefore not further investigated.

3.6. Ent-oritin- $(4\beta \rightarrow 6)$ -oritin- 4α -ol hexa-Omethylether triacetate **8**

Methylation of a portion (100 mg) of fraction T from A. galpinii followed by PLC in benzene-Me₂CO (4:1; v/v) gave four bands at $R_f 0.50$ (5.0 mg), 0.43 (7.0 mg), 0.28 (6.0 mg) and 0.24 (16.0 mg). Acetylation of the $R_{\rm f}$ 0.24 band followed by PLC purification in benzene-Me₂CO (9:1; v/v) afforded two main bands at R_f 0.70 (10.0 mg) and 0.64 (3.0 mg). Further purification of the $R_{\rm f}$ 0.70 band by PLC in hexane-Me₂CO-EtOAc $(33:11:6; \times 4; v/v)$ gave a single band at $R_f 0.58$ (8.0 mg) which yielded 8 as a white amorphous solid. (Found: M⁺, 772.2731. C₄₂H₄₄O₁₄ requires M⁺, 772.2731); $\delta_{\rm H}$ (Table 1); ¹³C NMR [(CD₃)₂CO), 27 °C]: δ 19.97, 20.01, $20.43 [3 \times CH_3 COO-], 55.04 (\times 2), 55.08, 56.01, 60.23,$ 60.48 [6×-OCH₃], 70.67 [4-C(F)], 71.67 [3-C(F)], 72.27 [3-C(C)], 79.13 [2-C(F)], 80.51 [2-C(C)], 106.19 [6-C(A)], 113.86 (×2) [3,5-C(B)], 114.04 (×2) [3,5-C(E)], 114.04 [10-C(D)], 119.79 [10-C(A)], 123.39 [5-C(A)], 123.66 [5-C(D)], 127.57 [6-C(D)], 128.79 [1-C(E)], 129.28 (×2) $[2,6-C(B)], 129.30 (\times 2) [2,6-C(E)], 130.03 [1-C(B)],$ 137.89 [8-C(A)], 141.67 [8-C(D)], 148.67 [9-C(D)], 148.67 [9-C(A)], 152.58 [7-C(A)], 153.02 [7-C(D)], 160.33 [4-C(B)], 160.58 [4-C(E)], 168.49, 168.98, 170.94 $[3 \times CH_3 COO -]; CD [\theta]_{230.2} 43, [\theta]_{234.0} - 3174, [\theta]_{238.0} 42,$ $[\theta]_{246.5}$ 10 870, $[\theta]_{260.6}$ 10, $[\theta]_{274.9}$ -5263, and $[\theta]_{288.2}$ 1. The remaining bands were not further investigated.

3.7. Ent-oritin- $(4\alpha \rightarrow 6)$ -epioritin- 4α -ol hexa-Omethylether triacetate **10**

Methylation of a portion (100 mg) of fraction R from A. galpinii followed by PLC (B:A; 4:1; \times 2; v/v) gave four bands at $R_{\rm f}$ 0.60 (5.0 mg), 0.44 (4.0 mg), 0.38 (19.0 mg) and 0.31 (10.0 mg). Acetylation and PLC purification (B:A; 9:1; v/v) of the R_f 0.31 band gave a single band at $R_{\rm f}$ 0.50 (6.0 mg) which yielded 10 as a white amorphous solid. (Found: M⁺, 772.2734. C₄₂H₄₄O₁₄ requires M⁺, 772.2731); $\delta_{\rm H}$ (Table 1); ¹³C NMR (CDCl₃, 27 °C): δ 21.00 (×2), 21.32 [3×CH₃COO–], 36.00 [4-C(C)], 55.65 (×3), 56.64, 61.30, 61.34 [6×-OCH₃], 67.09 [4-C(F)], 67.09 [3-C(F)], 71.68 [3-C(C)], 76.18 [2-C(C)], 77.51 [2-C(F)], 105.17 [6-C(A)], 114.25 $(\times 2)$ [3,5-C(E)], 114.28 $(\times 2)$ [3,5-C(B)], 114.72 [10-C(D)], 116.65 [10-C(A)], 123.55 [5-C(D)], 124.47 [5-C(A)], 126.25 [6-C(D)], 127.95 (×2) [2,6-C(B)], 127.95 (×2) [2,6-C(E)], 128.95 [1-C(E)], 130.78 [1-C(B)], 137.38 [8-C(A)], 141.03 [8-C(D)], 147.99 [9-C(D)], 148.69 [9-C(A)], 152.66 [7-C(D)], 152.66 [7-C(A)], 159.84 [4-C(B)], 160.09 [4-C(E)], 170.45, 170.59, 170.96 [3×CH₃COO-]; CD $[\theta]_{222.3}$ -6070, $[\theta]_{228.6}$ 51 500, $[\theta]_{232.1}$ 2529, $[\theta]_{240,2}$ -280820, $[\theta]_{252,1}$ -11 640, $[\theta]_{281,9}$ -137 000, and $[\theta]_{298,3}$ -7977. The remaining bands contained related pro-/leucoteracacinidins that were reported previously (Coetzee, et al., 1998a,b).

3.8. Ent-oritin- $(4\alpha \rightarrow 6)$ -oritin- 4α -ol hexa-Omethylether triacetate 12

Methylation of a portion (100 mg) of fraction M from A. galpinii followed by PLC in hexane-benzene-Me₂CO–MeOH (43:42:10:5; $\times 2$; v/v) gave six bands at $R_{\rm f}$ 0.60 (3.0 mg), 0.36 (11.0 mg), 0.31 (21.0 mg), 0.20 (24.0 mg), 0.14 (7.0 mg) and 0.10 (6.0 mg). Acetylation of the $R_{\rm f}$ 0.20 band followed by PLC purification in hexane-benzene-Me₂CO-MeOH (47:46:5:2; ×4; v/v) afforded two main bands at R_f 0.65 (11.0 mg) and 0.60 (4.0 mg). The former band yielded 12 as a white amorphous solid. (Found: M⁺, 772.2733. C₄₂H₄₄O₁₄ requires M^+ , 772.2731); δ_H (Table 1); ¹³C NMR (C₆D₆, 27 °C): δ 20.25, 20.52, 20.94 [3×CH₃COO-], 36.55 [4-C(C)], 54.86, 54.89, 56.26, 60.79, 60.91, 61.03 $[6 \times -OCH_3]$, 71.37 [4-C(F)], 71.47 [3-C(F)], 71.90 [3-C(C)], 76.66 [2-C(C)], 79.55 [2-C(F)], 106.03 [6-C(A)], 114.29 (×2) [3,5-C(E)], 114.49 (×2) [3,5-C(B)], 117.23 [10-C(D)], 117.46 [10-C(A)], 124.32 [5-C(A)], 124.84 [5-C(D)], 127.77 [1-C(B)], 127.91 [6-C(D)], 128.49 [1-C(E)], 128.82 (×2) [2,6-C(E)], 129.42 (×2) [2,6-C(B)], 138.74 [8-C(A)], 141.71 [8-C(D)], 148.74 [7-C(D)], 149.61 [9-C(A)], 153.47 [9-C(D)], 153.47 [7-C(A)], 160.16 [4-C(E)], 160.71 [4-C(B)], 168.92, 169.86, 170.85 [3×CH₃COO-]; CD $[\theta]_{237.9}$ 207, $[\theta]_{244.7}$ -28 090, $[\theta]_{258.1}$ -4188, $[\theta]_{274.2}$ -7557, and $[\theta]_{299.8}$ -547. The remaining bands contained related pro-/leucoteracacinidins that were reported previously (Coetzee et al., 1998a,b).

3.9. Ent-oritin- $(4\alpha \rightarrow 6)$ -epioritin- 4β -ol hexa-Omethylether triacetate 14

Methylation of a portion (200 mg) of fraction S of A. *caffra* followed by PLC in benzene–Me₂CO–EtOAc (7:2:1; v/v) gave four bands at $R_f 0.43$ (17 mg), 0.34 (13 mg), 0.31 (23 mg) and 0.21 (21 mg). Acetylation of the $R_{\rm f}$ 0.21 band followed by PLC in benzene–Me₂CO (9:1; v/v) afforded one main band at R_f 0.42 (5.1 mg). Further purification of this band by PLC in CHCl₃-Et₂O $(98:2; \times 3; v/v)$ yielded 14 at $R_f 0.27 (3.2 \text{ mg})$ as a white amorphous solid. (Found: M⁺, 772.2731. C₄₂H₄₄O₁₄ requires M⁺, 772.2731); $\delta_{\rm H}$ (Table 1); ¹³C NMR (CDCl₃, 27 °C): δ 21.00, 21.34, 21.60 [3×CH₃COO-], 34.54 [4-C(C)], 55.66 (×2), 56.48, 61.33 (×2), 61.45 [6×-OCH₃], 66.53 [4-C(F)], 69.19 [3-C(F)], 71.65 [3-C(C)], 74.54 [2-C(F)], 76.55 [2-C(C)], 105.39 [6-C(A)], 113.62 [10-C(D)], 114.24 (×2) [3,5-C(E)], 114.37 (×2) [3,5-C(B)], 116.39 [10-C(A)], 123.99 [5-C(A)], 126.37 [6-C(D)], 127.54 (×2) [2,6-C(B)], 127.96 [5-C(D)], 128.10 (×2) [2,6-C(E)], 128.91 [1-C(E)], 130.91 [1-C(B)], 137.42 [8-C(A)], 141.38 [8-C(D)], 148.46 [9-C(A)], 148.75 [9-C(D)], 152.67 [7-C(D)], 153.62 [7-C(A)], 159.78 [4-C(B)], 160.05 [4-C(E)], 169.46 (×2), 170.70 [3×CH₃COO–]; CD [θ]_{221.0} 11, [θ]_{226.7}–897, [θ]_{231.4} 30, $[\theta]_{237.5}$ 5525, $[\theta]_{240.4}$ 282, $[\theta]_{245.4}$ -13 550, $[\theta]_{254.8}$ 14,

 $[\theta]_{275.5}$ 17, $[\theta]_{286.0}$ –4374, and $[\theta]_{294.2}$ 17. The remaining bands contained related pro-/leucoanthocyanidins that were reported elsewhere (Bennie et al., 2000, 2001b).

3.10. Epioritin- $(4\beta \rightarrow 6)$ -epimesquitol-4 α -ol hepta-Omethylether triacetate 16

Methylation of a portion (200 mg) of fraction HH from A. caffra followed by PLC in benzene-Me₂CO-EtOAc (7:2:1; \times 2; v/v) gave five bands at R_f 0.68 (14 mg), 0.63 (21 mg), 0.51 (20 mg), 0.47 (21 mg) and 0.39 (19 mg). Acetylation of the $R_{\rm f}$ 0.39 band followed by PLC in benzene–Me₂CO (9:1; v/v) yielded 16 at $R_f 0.33$ (7.0 mg) as a white amorphous solid. (Found: M^+ , 802.2837. $C_{43}H_{46}O_{15}$ requires M⁺, 802.2837); δ_{H} (Table 1); ¹³C NMR [(CD₃)₂CO), 27 °C]: δ 19.93, 20.07, 20.26 [3×CH₃COO-], 41.50 [4-C(C)], 54.99, 55.59, 55.67, 56.15, 60.37, 60.64, 61.07 [7×-OCH₃], 66.92 [4-C(F)], 67.17 [3-C(F)], 71.98 [3-C(C)], 73.49 [2-C(C)], 77.46 [2-C(F)], 106.15 [6-C(A)], 110.88 [2-C(E)], 111.97 $[5-C(E)], 113.86 (\times 2) [3,5-C(B)], 115.29 [10-C(A)],$ 115.48 [10-C(D)], 119.36 [6-C(E)], 123.52 [5-C(D)], 125.35 [5-C(A)], 128.07 (×2) [2,6-C(B)], 128.67 [6-C(D)], 130.06 [1-C(E)], 130.49 [1-C(B)], 137.87 [8-C(A)], 141.09 [8-C(D)], 148.40 [9-C(D)], 149.37 [9-C(A)], 149.69 [3-C(E)], 149.92 [4-C(E)], 151.42 [7-C(D)], 152.98 [7-C(A)], 159.84 [4-C(B)], 169.15, 169.75, 170.04 [3×CH₃COO–]; CD $[\theta]_{219.8}$ 34, $[\theta]_{225.4}$ -3334, $[\theta]_{230.1}$ 42, $[\theta]_{232.5}$ 1 033, $[\theta]_{236.1}$ 259, $[\theta]_{243.1}$ 6660, $[\theta]_{248.4}$ 102, $[\theta]_{251.4}$ -1384, $[\theta]_{258,1}$ -765, and $[\theta]_{284,9}$ -9276.

3.11. Epimesquitol- $(4\beta \rightarrow 6)$ -epioritin-4 α -ol hepta-Omethylether triacetate **20**

Acetylation of the $R_{\rm f}$ 0.47 band (section 3.10) followed by PLC in benzene-Me₂CO (9:1; v/v) yielded 20 at $R_{\rm f}$ 0.35 (11.4 mg) as a white amorphous solid. (Found: M^+ , 802.2835. $C_{43}H_{46}O_{15}$ requires M^+ , 802.2837); δ_H (Table 1); ¹³C NMR (CDCl₃, 27 °C): δ 20.77, 21.01, 21.36 [3×CH₃COO-], 41.74 [4-C(C)], 55.65, 56.25, 56.29, 56.72, 61.36, 61.40, 61.53 [7×-OCH₃], 67.01 [3-C(F)], 67.13 [4-C(F)], 72.17 [3-C(C)], 73.73 [2-C(C)], 77.62 [2-C(F)], 105.59 [6-C(A)], 110.36 [2-C(B)], 111.23 $[5-C(B)], 114.25 (\times 2) [3,5-C(E)], 114.65 [10-C(D)],$ 115.17 [10-C(A)], 119.18 [6-C(B)], 123.40 [5-C(D)], 125.42 [5-C(A)], 127.94 (×2) [2,6-C(E)], 128.58 [1-C(E)], 128.87 [6-C(D)], 130.69 [1-C(B)], 137.58 [8-C(A)], 141.03 [8-C(D)], 148.31 [9-C(D)], 149.08 [3-C(B)], 149.13 [4-C(B)], 149.21 [9-C(A)], 151.68 [7-C(D)], 152.63 [7-C(A)], 160.10 [4-C(E)], 170.00, 170.40, 170.79 [3×CH₃COO–]; CD [θ]_{213.4} 11, [θ]_{216.4} –1085, [θ]_{219.3} 40, $[\theta]_{228.2}$ 5228, $[\theta]_{233.8}$ 152, $[\theta]_{237.3}$ -3 68, $[\theta]_{240.3}$ 50, $[\theta]_{244.9}$ 7782, $[\theta]_{251,1}$ 51, and $[\theta]_{285,3}$ -12 560. The remaining bands contain related pro-/leucoanthocyanidins that were reported elsewhere (Bennie et al., 2001a).

3.12. Epimesquitol- $(4\beta \rightarrow 6)$ -epimesquitol- 4β -ol octa-O-methylether triacetate 24

Methylation of a portion (200 mg) of fraction FF from A. caffra followed by PLC in benzene-Me₂CO-EtOAc (7:2:1; v/v) gave two bands at R_f 0.42 (36 mg) and 0.33 (28 mg). Acetylation of the $R_{\rm f}$ 0.33 band and PLC purification in benzene–Me₂CO (B:A; 9:1; v/v) afforded two main bands at $R_{\rm f}$ 0.56 (2.6 mg) and 0.41 (3.2 mg). The latter band yielded 24 as a white amorphous solid. (Found: M⁺, 832.2943. C₄₄H₄₈O₁₆ requires M⁺, 832.2942); $\delta_{\rm H}$ (Table 1); ¹³C NMR (CDCl₃, 27 °C): δ 21.04, 21.53, 21.67 [3×CH₃COO–], 41.04 [4-C(C)], 56.31 (×4), 56.51, 61.28, 61.39, 61.61 [8×-OCH₃], 66.43 [4-C(F)], 68.90 [3-C(F)], 72.34 [3-C(C)], 73.75 [2-C(C)], 74.60 [2-C(F)], 105.85 [6-C(A)], 110.23 [2-C(E)], 110.45 [2-C(B)], 111.23 [5-C(B)], 111.44 [5-C(E)], 113.57 [10-C(D)], 114.97 [10-C(A)], 119.17 [6-C(B)], 119.34 [6-C(E)], 125.10 [5-C(A)], 127.89 [5-C(D)], 129.01 [6-C(D)], 129.24 [1-C(E)], 130.81 [1-C(B)], 137.52 [8-C(A)], 141.17 [8-C(D)], 148.97–149.53* (×6) [9-C(A), 3-C(B), 4-C(B), 9-C(D), 3-C(E), 4-C(E)], 152.65 [7-C(D)], 152.65 [7-C(A)], 169.41, 169.55, 169.99 $[3 \times CH_3COO-]$, *Signals overlap; CD $[\theta]_{216,9}$ -24, $[\theta]_{224.4}$ 4142, $[\theta]_{229.9}$ 612, $[\theta]_{237.9}$ 25 270, $[\theta]_{251.0}$ -52, $[\theta]_{258.6}$ 327, $[\theta]_{266.1}$ -93, $[\theta]_{277.6}$ 1634, and $[\theta]_{282.1}$ 53.

3.13. Procedure for the synthesis of (2R,3S,4S)-2,3-cis-3,4-trans-3,3',4',7,8-pentahydroxy-4-benzylsulfanylflavan [4β-benzylsulfanylepimesquitol] **28**

Epimesquitol-4 α -ol **26** (1.0 g) and an excess of toluene- α -thiol (2.2 ml) were dissolved in EtOH (15 ml) while the solution was purged with N2 gas. The solution was transferred to an N₂-purged vial, HOAc (4 ml) was added and the vial was sealed. After 24 h at 100 °C in a steam bath, the solvent was removed under a stream of N₂. The residue was transferred into a container with H_2O (50 ml) and the excess toluene- α -thiol was removed by washing with hexane $(2 \times 50 \text{ ml})$. The aqueous layer was extracted with Et₂O (5 \times 20 ml). The Et₂O was removed under a stream of N2 and the oil was applied to a Sephadex LH-20 column (4 \times 150 cm) with the use of a small amount of EtOH. The column was eluted with CHCl₃-EtOH (4:1), at a flow rate of 1 ml/min and 16 ml fractions were collected. The fractions were combined as follows: tubes 10–12 (42 mg), 13–25 (220 mg) and 26–44 (625 mg). The 625 mg fraction yielded 28 as a light yellow amorphous powder. (Found: M⁺, 510.1713. $C_{28}H_{30}SO_7$ requires M⁺, 510.1712); δ_H [(CD₃)₂CO, 20 °C]: δ 7.50–7.23 [m, 5×H(D)]; 7.34 [d, 9.0, 2,6-H(B)]; 6.83 [d, 9.0, 3,5-H(B)]; 6.53 [d, 8.5, 5-H(A)]; 6.43 [d, 8.5, 6-H(A)]; 5.33 [br s, 2-H(C)]; 4.07 [dd, 1.5, 4.0, 3-H(C)]; 4.04 (d, 14.0, CH₂); 3.95 [d, 4.0, 4-H(C)]; 3.92 (d, 14.0, CH₂); CD [θ]_{228.7} 96, [θ]_{230.7} –1533, [θ]_{232.6} 84, [θ]_{240.4} 14 940, $[\theta]_{248.1}$ 99, and $[\theta]_{282.7}$ -10 410.

3.14. Synthesis of epimesquitol- $(4\beta \rightarrow 6)$ -epioritin-4 α ol hepta-O-methylether triacetate 20.

4β-Benzylsulfanylepimesquitol **28** (100 mg, 2.43 × 10^{-4} mole) and epioritin-4α-ol **25** (141 mg, 4.86 × 10^{-4} mol, 2 eq) in THF (10 ml) were stirred with AgBF₄ (118 mg, 6.07×10⁻⁴ mol, 2.5 eq) at 30 °C for 90 min. Methylation, acetylation and subsequent PLC separation in benzene–Me₂CO (9:1; v/v) of the reaction mixture yielded two main bands at $R_{\rm f}$ 0.59 (37 mg) and 0.36 (28 mg).

3.15. Epimesquitol- $(4\beta \rightarrow 6)$ -epioritin-4 α -ol hepta-Omethylether triacetate 20

Further purification of the R_f 0.59 band by PLC in CHCl₃-hexane-Me₂CO (90:6:4; ×2; v/v) yielded two bands at R_f 0.46 (5.7 mg) and 0.42 (5.3 mg). The former band yielded **20** (4.3%) as a white amorphous solid with NMR and CD data identical to those of the natural product derivative.

3.16. Epimesquitol- $(4\beta \rightarrow 6)$ -epioritin-4 β -ol hepta-Omethylether triacetate 22

The $R_{\rm f}$ 0.42 band afforded 22 (4.6%) as a white amorphous solid. (Found: M⁺, 802. 2833. C₄₃H₄₆O₁₅ requires M⁺, 802.2837); $\delta_{\rm H}$ (Table 1); ¹³C NMR (CDCl₃, 27 °C): § 21.00, 21.35, 21.67 [3×CH₃COO-], 41.05 [4-C(C)], 55.66, 56.26, 56.33, 56.50, 61.35 (×2), 61.60 [7×-OCH₃], 66.46 [4-C(F)], 68.99 [3-C(F)], 72.37 [3-C(C)], 73.74 [2-C(C)], 74.64 [2-C(F)], 105.81 [6-C(A)], 110.39 [2-C(B)], 111.19 [5-C(B)], 113.55 [10-C(D)], 114.24 (×2) [3,5-C(E)], 114.93, [10-C(A)], 119.17 [6-C(B)], 125.14 [5-C(A)], 127.84 [5-C(D)], 128.09 (×2) [2,6-C(E)], 128.83 [1-C(E)], 128.95 [6-C(D)], 130.82 [1-C(B)], 137.54 [8-C(A)], 141.19 [8-C(D)], 149.07 [9-C(D)]/[3-C(B)], 149.12 [4-C(B)]/[9-C(A)], 152.64[7-C(D)]/[7-C(A)], 160.06 [4-C(E)], 169.53 (×2), 169.97 $[\theta]_{220.9} - 36, \quad [\theta]_{225.7}$ $[3 \times CH_3 COO-];$ CD 3613, $[\theta]_{279.1}-23$, $[\theta]_{285.1}$ -2387, $[\theta]_{292.0}-4$, $[\theta]_{294.6}$ 258, and $[\theta]_{299.6} - 5.$

Acknowledgements

Financial support by the Foundation for National Research Foundation, Pretoria and by the 'Sentrale Navorsingsfonds' of UFS is acknowledged. We thank Mr. Frank T. Wiggers and Dr. D. Chuck Dunbar for the ¹³C NMR spectroscopic data. This work was in part supported by the United States Department of Agriculture, Agricultural Research Service Specific Cooperative Agreement No. 58–6408–2-0009.

References

- Bennie, L., Malan, E., Coetzee, J., Ferreira, D., 2000. Structure and synthesis of ether-linked proteracacinidin and promelacacinidin proanthocyanidins from *Acacia caffra*. Phytochemistry 53, 785–793.
- Bennie, L., Malan, E., Coetzee, J., Ferreira, D., 2001a. Structure and stereochemistry of triflavanoids containing both ether and carboncarbon interflavanyl bonds. Phytochemistry 53, 1023–1034.
- Bennie, L., Coetzee, J., Malan, E., Woolfrey, J.R., Ferreira, D., 2001b. Oligomeric flavanoids. Part 34. Doubly-linked proteracacinidin analogues from *Acacia caffra* and *Acacia galpinii*. Tetrahedron 57, 661–667.
- Bennie, L., Coetzee, J., Malan, E., Ferreira, D., 2002. Structure and stereochemistry of dimeric proteracacinidins possessing the rare C- $4(C) \rightarrow C-5(D)$ interflavanyl linkage. Phytochemistry 59, 673–678.
- Botha, J.J., Ferreira, D., Roux, D.G., 1981. Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and [4,8]biflavanoids. Journal of the Chemical Society, Perkin Transactions 1, 1235–1245.
- Coetzee, J., Malan, E., Ferreira, D., 1998a. Oligomeric flavanoids. Part 28. Structure and synthesis of ether-linked (4-O-3)-bis-teracacinidins, a novel class of naturally occurring proanthocyanidins. Journal of Chemical Research (S) 526–527. [(M), 2287–2296].
- Coetzee, J., Malan, E., Ferreira, D., 1998b. Oligomeric flavanoids. Part 29. Structure and synthesis of novel ether-linked (4-O-4) bisteracacinidins. Tetrahedron 54, 9153–9160.
- Coetzee, J., Malan, E., Ferreira, D., 1999. The formation and stability of flavans with 2,3-cis-3,4-cis configuration. Tetrahedron 55, 9999–10004.
- Fletcher, A.C., Porter, L.J., Haslam, E., Gupta, R.K., 1977. Plant proanthocyanidins. Part 3. Conformational and configurational studies of natural procyanidins. Journal of the Chemical Society, Perkin Transactions 1, 1628–1637.
- Foo, L.Y., 1985. Facile self-condensation of melacacidin: a demonstration of the reactivity of the pyrogallol A-ring. Journal of the Chemical Society, Chemical Communications 1273–1274.
- Foo L.Y., 1985. A novel pyrogallol A-ring proanthocyanidin dimer from *Acacia melanoxylon*. Journal of the Chemical Society, Chemical Communications, 236–237.
- Foo, L.Y., 1989. Isolation of (4-O-4)-linked biflavanoids from Acacia melanoxylon: first examples of a new class of single ether-linked proanthocyanidin dimers. Journal of the Chemical Society, Chemical Communications, 1505–1506.
- Fourie, T.G., Du Preez, I.C., Roux, D.G., 1972. 3',4',7,8-Tetrahydroxyflavonoids from the heartwood of *Acacia nigrescens* and their conversion products. Phytochemistry 11, 1763–1770.
- Hemingway, R.W., Foo, L.Y., 1983. Condensed tannins. Quinone methide intermediates in procyanidin synthesis. Journal of the Chemical Society, Chemical Communications, 1035–1036.
- Hemingway, R.W., Karchesy, J.J., McGraw, G.W., Wielesek, R.A., 1983. Heterogeneity of interflavanyl bond location in loblolly pine bark procyanidins. Phytochemistry 22, 275–281.
- Hemingway, R.W., Laks, P.E., 1985. Condensed tannins: a proposed route to (2*R*,3*R*)-(2,3-*cis*)-proanthocyanidins. Journal of the Chemical Society, Chemical Communications, 746–747.

- Jacques, D., Opie, C.T., Porter, L.J., Haslam, E., 1977. Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyanidin in plants. Journal of the Chemical Society, Perkin Transactions 1, 1637–1643.
- Malan, E., 1995. A (4β→5)-linked proteracacinidin dimer from the heartwood of *Acacia caffra*. Phytochemistry 40, 1519–1521.
- Malan, E., Roux, D.G., 1975. Flavonoids and tannins from Acacia species. Phytochemistry 14, 1835–1841.
- Malan, E., Sireeparsad, A., 1995. The structure and synthesis of the first dimeric proteracacinidin from *Acacia galpinii*. Phytochemistry 38, 237–239.
- Malan, E., Sireeparsad, A., Burger, J.F.W., Ferreira, D., 1994. A novel doubly-linked proteracacinidin analogue from *Acacia caffra*. Tetrahedron Letters 35, 7415–7416.
- Malan, J.C.S., Steenkamp, J.A., Steynberg, J.P., Young, D.A., Brandt, E.V., Ferreira, D., 1990a. Oligomeric flavanoids. Part 8. The first profisetinidins and proguibourtinidins based on 8-C substituted (–)-fisetinidol units and related C-ring isomerized analogues. Journal of the Chemical Society, Perkin Transactions 1, 209–218.
- Malan, J.C.S., Young, D.A., Steynberg, J.P., Ferreira, D., 1990b. Oligomeric flavanoids. Part 10. Structure and synthesis of the first tetrahydro-pyrano[3,2-g]chromenes related to (4,6)-bis-(-)-fisetinidol profisetinidins. Journal of the Chemical Society, Perkin Transactions 1, 227–234.
- Porter, L.J., Wong, R.Y., Benson, M., Chan, B.G., Vishwanadhan, V.N., Gandour, R.D., Mattice, W.L., 1986. Conformation analysis of flavans. ¹H NMR and molecular mechanical (MM₂) studies of the benzopyran ring of 3',4',5,7-tetrahydroxyflavan-3-ols: the crystal and molecular structure of the procyanidin: (2*R*,3*S*,4*R*)-3',4',5,7tetramethoxy-4-(2,4,6-trimethoxyphenyl)-flavan-3-ol. Journal of Chemical Research M, 830.
- Roux, D.G., Ferreira, D.1982.Structure, absolute configuration of angular, linear condensed tannins, 1982. Fortschritte der Chemie Organischer Naturstoffe 41, 47–76.
- Steenkamp, J.A., Malan, J.C.S., Roux, D.G., Ferreira, D., 1988. Oligomeric flavanoids. Part 1. Novel dimeric profisetinidins from *Colophospermum mopane*. Journal of the Chemical Society, Perkin Transactions 1, 1325–1330.
- Steynberg, P.J., Nel, R.J.J., Van Rensburg, H., Bezuidenhoudt, B.C.B., Ferreira, D., 1998. Oligomeric Flavanoids. Part 27. Interflavanyl bond formation in procyanidins under neutral conditions. Tetrahedron 54, 8153–8158.
- Van der Westhuizen, J.H., Ferreira, D., Roux, D.G., 1981. Synthesis of condensed tannins. Part 2. Synthesis by photolytic rearrangement, stereochemistry and circular dichroism of the first 2,3-cis-3,4cis-aryl flavan-3-ols. Journal of the Chemical Society. Perkin Transactions 1, 1220–1226.
- Young, E., Brandt, E.V., Young, D.A., Ferreira, D., Roux, D.G., 1986. Synthesis of condensed tannins. Part 17. Oligomeric (2*R*,3*S*)-3,3',4',7,8-pentahydroxyflavans: atropisomerism and conformation of biphenyl and *m*-terphenyl analogues from *Prosopis glandulosa* ('Mesquite'). Journal of the Chemical Society, Perkin Transactions 1, 1737–1749.