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Abstract. Let K be a field and le# be a central simple algebra ovEt Let7 4 and72 4

be respectively the trace form and the second trace forrh. ¢f K has characteristic not
two, it is shown in [U] that7, 4 does not give much more information than the usual trace
form. If K has characteristic two, the quadratic fof has rank zero. In this article, we
show that the second trace form of a central simple algalwheven degree over a field of
characteristic two is non-degenerate and we compute its classical invariants.

Introduction

Let K be afield and lefA be a central simple algebra ovEr The quadratic forms
Ta:x € A Trda(x?) andTz4 : x € A — Srds(x) are called respectively

the trace form andthe second trace form of A. If K has characteristic not two,

the trace form has been studied by many authors (see [B1,B2,L,LM, Se, Ti] for
example). In particular, its classical invariants are well-known (see [L,LM, Se] and
[Ti]). The second trace form has also been studied in [U] wkidras characteristic

not two, but it is shown that this form does not give much more information than
the usual trace form. Wheki has characteristic two, the trace form has rank zero.

In this article, we show that the second trace form of a central simple algebia

even degree over a field of characteristic two is non-degenerate and we compute
its classical invariants. In the first part, we compute the second trace form of a split
algebra. In the second one, we consider the case of cyclic algebras. Finally, we
compute the Arf invariant and the Clifford invariant of the second trace form in the
general case. The reader will also find in Appendix the proof of an unpublished
result of Saltman which is the main ingredient of our work.

Preliminaries

Let A be a central simple algebra over a figtd of arbitrary characteristic. If
a € A, thereduced characteristic polynomial of a, denoted by Prg(a), is defined
as follows: et be a splitting field ofA andy : AQ L — M,,(L) aK-isomorphism.
Then Prgy(a) := det(X1, — ¢(a ® 1)) is an element oK [X] and is independent
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of the choice ofL andg (cf. [Sc, Chapter 8, §5] for example). Write Rrd) =

X" — 51 X" 1 4 5,X"2 4 .. then Trdy(a) := s1 and Srdi (a) := s are called
respectivelythe reduced trace andthe reduced second trace of a. If x1, - - - , x,, are

the roots of Prd(a) in an algebraic closure, we have k@) = x1 + - - - + x,, and

Srds (a) = ) x;x;. This easily implies the following equality for the bilinear form
bo.a associat]ed to the second trace form when the ground field has characteristic
two:

bo a(x,y) :=Srda(x + y)+ Srda(x) + Srds (y) = Trda(x) Trda (y) + Trda (xy)

Finally, if A has degree over K and if L is a maximal commutative subfield
of A of degreen (if there is any), then it is well-known tha4 can be endowed
with a structure of rightL-vector space and that the map® L — End;(A),
a® X\ +— (z — az))isanisomorphism. In particular, Pr¢u) is the characteristic
polynomial of the left multiplication by: in the rightL-vector spacet.

Assume that chak = 2. We denote by (K) the set{x? + x,x € K}. If
o € K* andg € K, we denote by, 8] the class of the corresponding quaternion
algebra in the Brauer group. This algebra has-hasis le, f, ef satisfying the
relationse? = «, f2 + f = p andef + fe = e. Moreover, the mag, ) €
K*/K*2 x K /9 (K) — (a, B] € Br(K) is well defined and bilinear. i, b € K,
we denote byP, , the quadratic fornix, y) € K2 — ax? + xy + by?. The class
of the Clifford algebra o, ; in Br(K) is denoted by(a, b)). It is easy to see that
((a, b)) =0if a = 0and((a, b)) = (a, ab] if a # 0. A non-degenerate quadratic
form overK has even rank and is isomorphic to an orthogonal sum of sme
If g ~Pyypy L+ L P, p,,thenthe Arfinvariant of qis the element ok /e (K)
defined by Arig) := a1b1 + - - - + a,b,. We also definghe Clifford invariant of
g, denoted by:(¢), to be the class of the Clifford algebragfn the Brauer group.
It is easy to see that

c(q) = ((a1, b1)) +--- + ((ar, b)) € Br(K)

if g =Pgp L--- L Py . If L/K is any field extension, Regx denotes the
homomorphismA] € Br(K) — [A ® L] € Br(L). Thenc(qr) = Reg /kx (c(q)).

1. Motivations

Let K be afield of any characteristic. There are two interestirglgebra structures,
namely étale algebras and central simple algebras. In order to classify these algebras
up toisomorphism, we need invariants. Since itis quite simple to deal with quadratic
forms, one often searches for GrW-invariants.

Definition 1. Let K beafield. A GrW-invariant of étale algebras of rank n over
K (resp. of central simple algebrasof degreen over K)isamap E — g (resp.
A — q4), which sends every étale F-algebra of rank n (resp. every central simple
F-algebra of degree ) to an element of GrW(F') (the Grothendieck—\Wtt group of
F) for every field extension F/ K, and which commutes with scalar extensions.
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For exampleE — Tg, E +— Tog, A — Ts andA — Tz 4 induce GrWw-
invariants as soon as these forms are non-degenerate.

If charK # 2, the trace form invariants have been studied extensively, and the
second trace form of central simple algebras has been studied by T. Unger in [U].
The second trace form of étale algebras has not been studied in characteristic not
two, but it is easy to show as in [U] that

Toe~Tor < Te>Tr
Moreover, we have the following result, proved by J.-P. Serre (unpublished):

Theorem 1 (Serre, unpublished). Let K be a field of characteristic not two and
let E +— qp bea GrW-invariant of étale algebras of rank n over K. Then

m
qe ~ Y N Te
i=0

wherem = [4] denotestheintegral part of 4 and ; isan element of Gr\W(K).

In other words, the trace form is essentially the only GrW-invariant of étale
algebras in characteristic not two.

IfcharK = 2,7g andT4 have rank zero. Inthe case of étale algebras, the second
trace form is non-degenerate if and only i even (see [BM, Proposition 2.1 (ii)]).
Then Bergé and Martinet proved the following result (see [BM, Theorem 5.1]):

Theorem 2 (Bergé-Martinet, [BM]). Let K be afield of characteristic 2, and let
E be an étale algebra of rank 2m over K. Then

T2.E ~PrarE/k) L (m —1) xPoo
where Arf (E/K) isthe Arf invariant of the second trace formof E/K.

For two reasons, this theorem says that the second trace form is a very poor
substitute for the trace form in characteristic two. The first reason is that this result
implies in particular that(72 ) = O for any étale algebra of even rank. This
is no longer true if chak # 2. For example, an easy computation shows that
¢(T2, ) is the class of the quaternion algeliab) if E is the biquadratic extension
k(/a, ~/b).

The second, obvious, reason is that the second trace form is uniquely determined
by its Arf-invariant (up to isomorphism), contrary to what happens in characteristic
# 2.

Remark 1. In [Be] Berlekamp defined an invariant for finite separable extensions
of fields of characteristic 2 — similar to the usual discriminant in charactegsfic
—inthe following way: letL / K be a separable field extension of finite degread

no a primitive element of. overK (such that. = K (5p)). Consider the conjugates
ni, 0 <i <n—1o0ofny and define th&erlekamp-invariant of L/K (or additive
discriminant as we will call it according to [BM]Y; « by

nin;
df e =Y — e K/p(K).
LK Z(’?i+’7j)2 [o)

i<j
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This discriminant can be extended to étale algebras in an obvious way and is related
to the Arf-invariant of the second trace form by the following formula:

dg/K =Arf(E'/K) + &,

whereE’ = E (resp.E x K) if n is even (respu is odd), anc,, is the element in
{0, 1} representing the congruence clas$fmodulo 2 (resp[”%[l]) if nis even
(resp. ifn is odd). See [BM, W] or [Wa] for more details.

Thusthe additive discriminaﬁfg/,{ determines uniquely the isomorphism class
of the second trace form & /K.

Now consider the GrW-invariants of central simple algebras.

Let A — g4 be a GrW-invariant. If: is an odd integer, we havgy >~ gu, (k)
for any central simple algebra of degreeindeed, in this casd has a splitting
field L/K of odd degree, so we have

ga® L >~ qagL =~ qm, (L) = qm,k) ® L

and we conclude by Springer’s theorem (which also holds in characteristic two, see
[Re, lemma p. 231], for example).
Now assume that is even. In [Ti,LM, U] and [Se], it is shown that

c(qa) = clgm, ) + ’%[A]

whengs = T4 or 72,4 and chak # 2. In Sect. 4, we show that this formula holds

for the second trace form in characteristic two. This means that the second trace
formis an equivalent substitute to the trace form in characteristic two, in opposition
to the case of étale algebras. It can be explained by the fact that the crucial point in
the proof of the result of Bergé-Martinet is that an étale algebra is commutative.

2. The split case

Since we are in the split case, the reduced characteristic polynomial of a #fatrix
coincides with its usual characteristic polynomial, and will be denoted(3¥).

Proposition 1. Let K be a field of characteristic two, n = 2m > 2 an even integer
and A = M, (K). Then

Ton ~ [%] xPry L (2m? — [%]) x Poo.

Proof. Let (E; ;) be the standard basis af We will write E; instead ofE; ;. For
1<k =<m,let

Fy1:=E1+ -+ Ex 2+ Ex_1andFy := E1+---+ Ex 2+ Ex.

Using the fact that the bilinear foria_4 associated to the second trace form satisfies
b2, a(x,y) = Trda(x) Trda(y)+Trda(xy), itis easy to see that putting together the
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symplectic pairsE; j, Ej;),i < j, (Fa—1, F), 1 < k < m gives a symplectic
basis for7z, 4.

Moreover, we haver (E; ;) = X", so Srgy (E; ;) = 0. We also get

X (For) = x(For—1) = (X + 1)&-1xn=2%+1 50 we have

2k —1 2k —1
To.a(Fox—1) = T2, a(Fax) = <2k B 3> = < 5 ) =@k-Dk*k-1)=k—-1
This finishes the proof. O

Corollary 1. Let K be afield of characteristic two, n > 2 an even integer and A a

central simple algebra of degree n. Then 7>, 4 is a non-degenerate quadratic form
over K.

Proof. Let L be any splitting field ofA. We have
To.a ® L = ToaeL = To,m, 1)

By Proposition 1, the latter form is non-degenerate, $his.

3. Thecyclic case

We recall first the definition of a cyclic algebra. LEf K be a cyclic extension of
degreen, o a generator of the Galois group amd& K*. The K-vector space

n—1
(a,E/K,0) = @Ee"
i=0
with the multiplication lawe” = a ander = A%¢, L € E is a central simple
algebra of degree over K, called acyclic algebra, which containg as a maximal
commutative subfield. The cyclic algehih E/K, o) is split (see [Sc], Chapter 8,
812 for example).

Proposition 2. Let K be a field of characteristictwo, n = 2m > 2and A =
(a, E/K, o) acyclic algebra of degree n. Then we have

m m
7—2,A = [E] X Pa—l,a J-Pl.,AI’f(E/K) J-]P)z/z—l,aAl’f(E/K) 1 (2m2 —-2- [E]) X HDO,O

where Arf (E /K ) isthe Arf invariant of the second trace form of the field extension
E/K.

Proof. e If x = Ao+ A1e + -+ -+ A,—1¢" L, then Trdy (x) = Trg,k (Ao). Indeed,
we have seen that Tidx) is the trace of left mutiplication by in A, considered
as a rightE-vector space. Since we have’ = ige/ +--- = ¢/23"' + ..., we

get

n—1
Trdy (x) = ng”" = Trg/x (Ao).
j=0
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It follows easily that we have the following orthogonal decomposition ofkhe
vector spacel with respecttdf 41 A =E @ Ee" & M,
whereM = (rek, A € E, k # 0, m), using the formula

b, a(x, y) =Trda (x) Trda(y) 4+ Trda (xy).

e Now we study the restriction of the second trace form to the three spaces
E, E¢™ and M. For this, we first compute the matriX = (s;j)o<i, j<n—1 Of
left multiplication by Ae*,0 < k < m, . € E. If k = 0, then we have§ =
diag(x,)&’"_l, ..., A%). Thus we get Srg(h) = Srde(X), i.e. 2.4l =~ T2.E-

Assume now that k k < m. We havereke/ = 5+i3 7/ thus
Skejy =27 if0<j<n—k-1,
Sktjon,j = a i —k < j<n-—1,

5i,; =0 otherwise.

For any matrixC = (c; j)o<i, j<n—1, W€ know that

detC = Z e(T)Co,z(0) * * * Cn—1,7(n—1)

TeS,

wheree(t) denotes the signature of Since we want to compute the coefficient
corresponding t&”~2 in the expansion of dek I, — S), we have to sum over the
elements ofS,, which have exactly, — 2 fixed points, namely the transpositions.
So we get

n—k—1
k
Srds (re™) = Zsi,jsj,i = Z Sktj,jS ). j+k-

i>j j=0

Ifi < j,wehaves; ; # 0ifandonlyifi = k4 j —n. In particular,s; ;1 # O if
andonlyifj =2k + j —n,i.e. k =m. Thus Srd (Ae¥) = 0forl <k <m — 1.
Since we havéy 4 (Ae', pe/) = 0fora, u € Eand 1< i, j <m — 1, we finally
get that the restriction of the second trace form to the subsface (ref, 1 €
E, k=1, ...,m—1)is zero. SoM is metabolic becausH is a subspace a¥/
satisfying dink H = % dimg M. In particular,72 4|y is hyperbolic. Moreover we
m—1 . .
have Srd (re™) =a S A7 '27 ",
j=0
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Finally we have obtained

Toa>=Tor Lag Lh,

m—1 . :
whereg is the quadratic form. € E — " 1% '22"" andh is hyperbolic.
j=0
e If a = 1, the algebra is split, so we getlor L ¢ ~ [%] x P11 by
Proposition 1 and the previous point, wheredenotes the Witt-equivalence of

quadratic forms. By Theorem 2, we haVgr ~ P1 arf (£/k), SO

m
q~PiafE/k) L [E] x Py1.

Using the fact thatP, , ~ P« ,, if a € K* andu, v, € K, we get the result.

4. Thegeneral case

Theorem 3. Let K beafield of characteristic two, n > 2 an even integer and A a
central simple algebra of degree n over K. Then we have:

(1) Arf(T2,0) = (5]
(2) c(T2,4) = 5[A]

Before proving the theorem, we want to recall further results. K &k a field

and A a central simple algebra of degreever K. Fix a K-basiseq, ... , ¢,2 of
A and letna (X1, ..., X,2) := Nrda(X1e1 + - - - + X,2¢,2). This polynomial is
absolutely irreducible, s®4 := K[X1, ..., X,2]/(n4) is a domain.

Proposition 3. The quotient field K (A) of R4 hasthe following properties:

(a) K(A) splits A,
(b) K isalgebraically closedin K (A),
(c) Ker Rek (4)/k = ([A]).

The proof of(a) can be found in [S1], an@) is proved in [L, p. 369]. Moreover,
it is shown in [S1] thatk (A) is a rational extension of the fielkd (v4) of rational
functions of the Severi-Brauer variety df, so Reg4)/x(v,) iS an injection (see
[J, Theorem 3.8.6] for example).
Since KerReg(,,),k = ([A]) (see [Am, Theorem 9.3 and Theorem 12.1]) and
Resca)/x = Res(ay/k ) © ReK v,y k, We get assertion (c).

The following theorem is due to Saltman, and will be proved in Appendix:

Theorem 4 (Saltman, unpublished). Let K beafield, A a central smple algebra
of degreen over K and G afinitegroup of order n. Thenthereexistsafield extension
L /K such that:

(1) A ® L¢ isisomorphic to a G-crossed product,
(2) Reg,;,/k isaninjection.
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Proof of Theorem 3. e Let us prove assertion (1). If/ K is a field extension, the
inclusionK < L induces amapy x : K/p(K) = L/p(L). Then we have

Arf(gr) =tk (Arf(q))

for any quadratic form ovek. Moreoverig 4,k is an injection. Indeed, it €
K (A) satisfiesc = 1+ A2 for somel € K (A), thenx is an element ok (A) which
is algebraic oveK, sox € K by Proposition 3 (b), i.ex € e (K).

Since we have

tgay/k (A (T2,4)) = Arf (T2,a ® K (A)) = Arf (T2, a0k (4))
= Arf (T2, m,(k (4))) (by Proposition 3 (a))
= Arf (T2, m, ()oK (4)) = AT (T2, m, (k) @ K(A))
= x4y, k (Arf (T2, M, (K))),

we get the result using Proposition 1 and the injectivityxqf) x -
e Now we prove (2) for cyclic algebras. Using Proposition 2, we get

n

(Tan) = (L, Arf (E/K)] + [4] @110+ @, Arf(E/K)]
n
= (a, [Z] + A (E/K)].
Sincen is even, we hav@%] = ¢, + 21, for a suitable integefl, so

c(Tz.4) = (a,dy + 2]
= (a,d}f]+ 2(a, ]
= (a,dj],

since a quaternion algebra has order at most 2 {KBrBy [J], Corollary 2.13.20,
we haves[A] = (a, F/K, o|F), whereF is the unique quadratic subfield &t

We now recall how to associate a separable field extension of degree at most
2 to an étale algebra over a field of any characteristic: i¥ is an étale algebra
overK of rankn, let H be the set of the K-homomorphisms fronk to K. Then
Gal(K,/K) acts onH by left multiplication. Now define to be the subfield ok
fixed by the elements € Gal(K,/K) inducing an even permutation d@i. Then
E/K is a separable field extension of degree at most 2. If khar 2, it is shown
in [BM, Theorem 2.6.], that this extension is defineddg/, i.e. E is generated by
an element € K, satisfyingx? + x + d; = 0 (if chark # 2, one can show that
E = K(J/dg), wheredy, := det7% is the classical discriminant).

We now prove that in our case, we halle= F. Here E/K is a Galois field
extension, s@(E) C E for everyh € H and we have in fac = Gal(E/K). In
particularsh = h for s € Gal(Ks/E) andh € H, so every element of Gt /E)
induced the trivial permutation off, which is even. This implies that any element
of E is fixed by GalK,/E), so E is a subfield ofE. SinceE/K is cyclic, the
generator of Gal(E/K) permutes cyclically the elements of GE) K), and this
permutation is odd (since it isracycle withn even). In particular, the subgroup of
Gal(K,/K) which is used to definé is not the full absolute Galois group (since it
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does not contain any extensionofo K), so[E : K] = 2. HenceE is a quadratic
subfield of E. SinceE /K is cyclic of even degreef contains a unique quadratic
subfield, soE = F.
We finally obtain%[A] = (a, E/K, o|z). Itisimmediate to check that this algebra
is (a, d}f].

Now let A be any central simple algebra of degreaver K. Using Theorem 2
with G cyclic, we get a field extensiohg /K such thatA ® L¢ is a cyclic algebra
and Reg ¢ is an injection. Since we have

Reg./k (c(T2,4)) = c(T2,4 ® L) = c(T2,a8L)
n n
= 514 ® Lg] = Res gk (51A1).

we get the result. O

Remark 2. As in [U,LM, Ti] and [Se], we obtain

c(T2,4) = c(T2,m,(k)) + rulAl

for any central simple algebra of even degre&herer, is an integer which only
depends om. This is not very surprising, and can be explained as follows: let
A — g4 be a GrW-invariant of central simpl€-algebras, wher& is a field of
any characteristic. Assume th@f is a quadratic form for every central simple
algebraA of degreen. We easily get that(ga) — c(qum,x)) € KerResa)/k,
soc(ga) = c(qum,k)) + r(A)[A]. ReplacingA by the generic division algebra
UD :=UD(K,n,r)ofdegree: overK (see for example [S2, Sect. 14]) akicby

its center, we get(qu p) = c(gm, (x))+r(U D)[U D]. By [Ro, Theorem 1], we have
exp(U D) = n. Sor (U D) is a multiple of5 and we have (U D)[U D] = r,[U D],

with r, = 0 or 3, since[U D] is killed by n. Thusc(ga) = c(qm,«k)) + rn[U D].
Since any central simple algebra can be obtained by specializatioP@éee [S2,
Sect. 14]), we get(ga) = c(gm, (K)) + ry[A] for any central simple algebra of
degree: overK, wherer, = 0 or 3. Itis also easy to show that dgt = detq, )

(or Arf(ga) = Arf(qm, (k)) if charK = 2). This method has first been applied by
Saltman to compute the Clifford invariant of the trace form of a central simple
algebra when chat # 2 (unpublished).

Appendix: Proof of Theorem 4

In this appendix, we want to give a proof of Theorem 4, since Saltman never
published his result, which is nevertheless of independent interest.

We first recall the notion ofeneric G-crossed product, defined by Saltman in
[S2, Sect. 12, p. 84].

Let K be any field and; a finite group of order. Consider the following short
exact sequence

0— M — @ ZIGld, > Z[G]
geG
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wheref is Z[G]-linear and map8, to g — 1. ThenM is afinitely generated[G1-
module, which is free as Z-module. We will write it multiplicatively. Now let
c(g,h) == gd, +dg —dg, € Mforg, h € G. We extend the action af on the
group algebr& [M] by K -linearity. This action extends naturally on the quotient
field K (M) of K[M]. ThenM C K(M)* andc is a 2-cocycle ofz with values in
K(M)*. If K’ := K (M), the crossed produdi; := (K(M)/K’, G, ¢) is called
the generic G-crossed product over K. Before proving Theorem 4, we need the
following proposition:

Proposition 4. The generic G-crossed product has exponent n, i.e. [ E ] has order
ninBr(K’).

Proof. This is equivalent to show thét] has ordern in H2(G, K (M)*).
e We first prove thatthe mafi?(G, M) — H?(G, K (M)*) is injective. Since
M ~ 7' as an abelian group, we have

K[M] = K[my,m{% - m,,m ]

where(m;) is a basis of\. In particular,K[M] is a unique factorization domain.
So the primes oK [M] form a basis ofK (M)*/K[M]*. Moreover, it is easy to
see thatG preserves the set of primes up to units.@permutes the elements of
the basis ok (M)*/K[M]*. For each orbit» of K (M)*/K[M]* under this action,
choose a representatiye, and letH,, be the stabilizer op,,. Then we have

K(M)*/KIM]* ~ DZIG/H,)

asG-modules.

By Shapiro’s lemma, we have (G, Z[G/H,]) = H'(H,,, 7). HereG acts
trivially on Z, so HYX(Z[G/H,]) = Hom(H,,, Z) = 0 sinceH,, is finite. Finally
we get

HY(G, K(M)*/K[M]*) =0.

Using the long exact sequence of group cohomology induced by the short exact
sequence

0— K[M]* - K(M)* — K(M)*/K[M]* — 0

we get that the mapi2(G, K[M1*) — H?(G, K(M)*) is injective. Moreover
K[M]* is the set of monomials with leading coefficientAff. Then it is easy to
see thalk[M]* = K* @ M asG-modules. So we have

H%(G, K[M]*) = H%(G, K*) ® H3(G, M)

and the mafH?(G, M) — H%(G, K[M]*) is injective. We get the desired conclu-
sion by composition with the previous injective map. Notice that the injectivity of
the mapH2(G, K[M1*) — H?(G, K(M)*) can also be obtained as a particular
case of [S2], Theorem 12.4 (a) (untwisted case).
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e By the previous point, it suffices to show tHat has order in H2(G, M).
Lett : Z[G] — Z be theZ-linear map which sendsto 1. Then(g — 1), is a
basis of Ker and we have the following exact sequence

0> M— & Z[Gld, —f> Kert — 0.
geG

Since every fre&[G]-module is cohomologically trivial (apply Shapiro’s lemma
to the trivial subgroup), the long exact sequence of cohomology gives that the
connecting map

3 : HY(G, Kert) — H%(G, M)

is an isomorphism. & is the 1-cocyclg — g —1,thend([«]) = [c], soitremains
to show thaf{e] has ordern in H(G, Kerr).
e Taking the long exact sequence of cohomology associated to

0— Kert - Z[G]—-Z — 0

we get
HOG.Z[G) 5 HG.7) > HYG. Kert) — 0.

It is easy to see thati®(G, Z[G]) = Z > g, so Im* = nZ and we finally get
geG

HY(G, Kert) ~ Z/nZ. But [«] corresponds precisely to the image of ZifnZ,
which has ordern. This finishes the proof. O

Now we are ready to prove Theorem 4. gt = K'(A®x K')®x E{). By
Proposition 3 (a), we havé ®x Lg >~ Eg Qg Lg. By [J], Theorem 2.13.16 for
example, we know thak; ® g/ L is Brauer-equivalent to &’-crossed product
over Lg, whereG' = Gal(LzK(M)/Lg). SinceK’ is algebraically closed in
L, we haveLg (K (M) = K’, since an element af s which belongs to this
intersection is algebraic ovér'. SinceK (M) /K’ is a Galois extension, this implies
thatLs andK (M) are linearly disjoint ovek’. In particular[Lc K (M) : Lgl =n
and GalLGK (M)/Lg) ~ G.

Finally, A ®x L¢ is Brauer-equivalent to &-crossed product. Since the degrees
are equal, we get the desired isomorphism.

We know prove that Res, /k is an injection. We have

Rescmy/k = Res )k oRex/k .

Notice thatk (M)/K is rational. Indeed, sinc& ~ Z' as aZ-module, we have
K[M] =~ K[X1, X{% -, X, X; 1, s0K (M) ~ K(X1,-- -, X;). Consequently
Res (m)/k is an injection, so Reg, ¢ is an injection.

Since Reg,; ;x = Reg /' o Rex//k, we get

Ker Res,;/x = Br(K) N {[(A ®k K') ®x' E¢'])

by Proposition 3 (c). LefB] = r[A ®k K') ®k EX] be an element of this
kernel. Letk = K'K = K(M)“, whereK is an algebraic closure df . Since
[B] € Br(K) andK containsk, we havelB ® ¢ K] = 0. On the other hand, we
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have[B @k K1 = r[EY ®k K1 = —r[Eg ® K], sincek splitsA € Br(K). So
we have[Eg ®x K] = 0. SinceEg k- K is the generi&-crossed product over
K, which has orden in Br(K), we getn|r. Now A ®x K’ andEZ have degree
overK’,so[B] = 0.
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