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Abstract. LetK be a field and letA be a central simple algebra overK. Let T A andT2,A
be respectively the trace form and the second trace form ofA. If K has characteristic not
two, it is shown in [U] thatT2,A does not give much more information than the usual trace
form. If K has characteristic two, the quadratic formTA has rank zero. In this article, we
show that the second trace form of a central simple algebraA of even degree over a field of
characteristic two is non-degenerate and we compute its classical invariants.

Introduction

LetK be a field and letA be a central simple algebra overK. The quadratic forms
TA : x ∈ A �→ TrdA(x2) andT2,A : x ∈ A �→ SrdA(x) are called respectively
the trace form and the second trace form of A. If K has characteristic not two,
the trace form has been studied by many authors (see [B1,B2,L,LM,Se,Ti] for
example). In particular, its classical invariants are well-known (see [L,LM,Se] and
[Ti]). The second trace form has also been studied in [U] whenK has characteristic
not two, but it is shown that this form does not give much more information than
the usual trace form. WhenK has characteristic two, the trace form has rank zero.
In this article, we show that the second trace form of a central simple algebraA of
even degree over a field of characteristic two is non-degenerate and we compute
its classical invariants. In the first part, we compute the second trace form of a split
algebra. In the second one, we consider the case of cyclic algebras. Finally, we
compute the Arf invariant and the Clifford invariant of the second trace form in the
general case. The reader will also find in Appendix the proof of an unpublished
result of Saltman which is the main ingredient of our work.

Preliminaries

Let A be a central simple algebra over a fieldK of arbitrary characteristic. If
a ∈ A, the reduced characteristic polynomial of a, denoted by PrdA(a), is defined
as follows: letLbe a splitting field ofAandϕ : A⊗L→ Mn(L)aK-isomorphism.
Then PrdA(a) := det(XIn − ϕ(a ⊗ 1)) is an element ofK[X] and is independent
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of the choice ofL andϕ (cf. [Sc, Chapter 8, §5] for example). Write PrdA(a) =
Xn − s1Xn−1 + s2Xn−2 + . . . , then TrdA(a) := s1 and SrdA(a) := s2 are called
respectivelythe reduced trace andthe reduced second trace of a. If x1, · · · , xn are
the roots of PrdA(a) in an algebraic closure, we have TrdA(a) = x1+ · · ·+ xn and
SrdA(a) = ∑

i<j

xixj . This easily implies the following equality for the bilinear form

b2,A associated to the second trace form when the ground field has characteristic
two:

b2,A(x, y) := SrdA(x + y)+SrdA(x)+SrdA(y) = TrdA(x)TrdA(y)+TrdA(xy)

Finally, if A has degreen overK and if L is a maximal commutative subfield
of A of degreen (if there is any), then it is well-known thatA can be endowed
with a structure of rightL-vector space and that the mapA ⊗ L → EndL(A),
a⊗λ �→ (z �→ azλ) is an isomorphism. In particular, PrdA(a) is the characteristic
polynomial of the left multiplication bya in the rightL-vector spaceA.

Assume that charK = 2. We denote by℘(K) the set{x2 + x, x ∈ K}. If
α ∈ K∗ andβ ∈ K, we denote by(α, β] the class of the corresponding quaternion
algebra in the Brauer group. This algebra has aK-basis 1, e, f, ef satisfying the
relationse2 = α, f 2 + f = β andef + f e = e. Moreover, the map(α, β) ∈
K∗/K∗2×K/℘(K) �→ (α, β] ∈ Br(K) is well defined and bilinear. Ifa, b ∈ K,
we denote byPa,b the quadratic form(x, y) ∈ K2 �→ ax2 + xy + by2. The class
of the Clifford algebra ofPa,b in Br(K) is denoted by((a, b)). It is easy to see that
((a, b)) = 0 if a = 0 and((a, b)) = (a, ab] if a �= 0.A non-degenerate quadratic
form overK has even rank and is isomorphic to an orthogonal sum of somePa,b.
If q � Pa1,b1 ⊥ · · · ⊥ Par ,br , thenthe Arf invariant of q is the element ofK/℘(K)
defined by Arf(q) := a1b1 + · · · + arbr . We also definethe Clifford invariant of
q, denoted byc(q), to be the class of the Clifford algebra ofq in the Brauer group.
It is easy to see that

c(q) = ((a1, b1))+ · · · + ((ar , br )) ∈ Br(K)

if q � Pa1,b1 ⊥ · · · ⊥ Par ,br . If L/K is any field extension, ResL/K denotes the
homomorphism[A] ∈ Br(K) �→ [A⊗ L] ∈ Br(L). Thenc(qL) = ResL/K(c(q)).

1. Motivations

LetK be a field of any characteristic.There are two interestingK-algebra structures,
namely étale algebras and central simple algebras. In order to classify these algebras
up to isomorphism, we need invariants. Since it is quite simple to deal with quadratic
forms, one often searches for GrW-invariants.

Definition 1. LetK be a field. A GrW-invariant of étale algebras of rank n over
K (resp. of central simple algebras of degree n overK) is a mapE �→ qE (resp.
A �→ qA), which sends every étale F -algebra of rank n (resp. every central simple
F -algebra of degree n) to an element of GrW(F ) (the Grothendieck–Witt group of
F ) for every field extension F/K , and which commutes with scalar extensions.
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For example,E �→ TE , E �→ T2,E , A �→ TA andA �→ T2,A induce GrW-
invariants as soon as these forms are non-degenerate.

If charK �= 2, the trace form invariants have been studied extensively, and the
second trace form of central simple algebras has been studied by T. Unger in [U].
The second trace form of étale algebras has not been studied in characteristic not
two, but it is easy to show as in [U] that

T2,E � T2,F ⇐⇒ TE � TF
Moreover, we have the following result, proved by J.-P. Serre (unpublished):

Theorem 1 (Serre, unpublished). Let K be a field of characteristic not two and
let E �→ qE be a GrW-invariant of étale algebras of rank n over K . Then

qE �
m∑
i=0

λi#
iTE

where m = [
n
2

]
denotes the integral part of n2 and λi is an element of GrW(K).

In other words, the trace form is essentially the only GrW-invariant of étale
algebras in characteristic not two.

If charK = 2,TE andTA have rank zero. In the case of étale algebras, the second
trace form is non-degenerate if and only ifn is even (see [BM, Proposition 2.1 (ii)]).
Then Bergé and Martinet proved the following result (see [BM, Theorem 5.1]):

Theorem 2 (Bergé-Martinet, [BM]). Let K be a field of characteristic 2, and let
E be an étale algebra of rank 2m over K . Then

T2,E � P1,Arf (E/K) ⊥ (m− 1)× P0,0

where Arf (E/K) is the Arf invariant of the second trace form of E/K .

For two reasons, this theorem says that the second trace form is a very poor
substitute for the trace form in characteristic two. The first reason is that this result
implies in particular thatc(T2,E) = 0 for any étale algebra of even rank. This
is no longer true if charK �= 2. For example, an easy computation shows that
c(T2,E) is the class of the quaternion algebra(a, b) if E is the biquadratic extension
k(
√
a,
√
b).

The second, obvious, reason is that the second trace form is uniquely determined
by its Arf-invariant (up to isomorphism), contrary to what happens in characteristic
�= 2.

Remark 1. In [Be] Berlekamp defined an invariant for finite separable extensions
of fields of characteristic 2 – similar to the usual discriminant in characteristic�= 2
– in the following way: letL/K be a separable field extension of finite degreen and
η0 a primitive element ofL overK (such thatL = K(η0)). Consider the conjugates
ηi , 0 ≤ i ≤ n − 1 of η0 and define theBerlekamp-invariant of L/K (or additive
discriminant as we will call it according to [BM])d+L/K by

d+L/K =
∑
i<j

ηiηj

(ηi + ηj )2 ∈ K/℘(K).
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This discriminant can be extended to étale algebras in an obvious way and is related
to the Arf-invariant of the second trace form by the following formula:

d+E/K = Arf (E′/K)+ εn
whereE′ = E (resp.E ×K) if n is even (resp.n is odd), andεn is the element in
{0,1} representing the congruence class of[n4]modulo 2 (resp.[n+1

4 ]) if n is even
(resp. ifn is odd). See [BM,W] or [Wa] for more details.

Thus the additive discriminantd+E/K determines uniquely the isomorphism class
of the second trace form ofE/K.

Now consider the GrW-invariants of central simple algebras.
LetA �→ qA be a GrW-invariant. Ifn is an odd integer, we haveqA � qMn(K)

for any central simple algebra of degreen. Indeed, in this caseA has a splitting
fieldL/K of odd degree, so we have

qA ⊗ L � qA⊗L � qMn(L) � qMn(K) ⊗ L
and we conclude by Springer’s theorem (which also holds in characteristic two, see
[Re, lemma p. 231], for example).

Now assume thatn is even. In [Ti,LM,U] and [Se], it is shown that

c(qA) = c(qMn(K))+
n

2
[A]

whenqA = TA or T2,A and charK �= 2. In Sect. 4, we show that this formula holds
for the second trace form in characteristic two. This means that the second trace
form is an equivalent substitute to the trace form in characteristic two, in opposition
to the case of étale algebras. It can be explained by the fact that the crucial point in
the proof of the result of Bergé-Martinet is that an étale algebra is commutative.

2. The split case

Since we are in the split case, the reduced characteristic polynomial of a matrixM

coincides with its usual characteristic polynomial, and will be denoted byχ(M).

Proposition 1. LetK be a field of characteristic two, n = 2m ≥ 2 an even integer
and A = Mn(K). Then

T2,A �
[m

2

]
× P1,1 ⊥ (2m2−

[m
2

]
)× P0,0.

Proof. Let (Ei,j ) be the standard basis ofA. We will write Ei instead ofEi,i . For
1≤ k ≤ m, let

F2k−1 := E1+ · · · + E2k−2+ E2k−1 andF2k := E1+ · · · + E2k−2+ E2k.

Using the fact that the bilinear formb2,A associated to the second trace form satisfies
b2,A(x, y) = TrdA(x)TrdA(y)+TrdA(xy), it is easy to see that putting together the
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symplectic pairs(Ei,j , Ej,i), i < j , (F2k−1, F2k),1 ≤ k ≤ m gives a symplectic
basis forT2,A.
Moreover, we haveχ(Ei,j ) = Xn, so SrdA(Ei,j ) = 0. We also get
χ(F2k) = χ(F2k−1) = (X + 1)2k−1Xn−2k+1, so we have

T2,A(F2k−1) = T2,A(F2k) =
(

2k − 1

2k − 3

)
=

(
2k − 1

2

)
= (2k − 1)(k − 1) = k − 1.

This finishes the proof. ��
Corollary 1. LetK be a field of characteristic two, n ≥ 2 an even integer and A a
central simple algebra of degree n. Then T2,A is a non-degenerate quadratic form
over K .

Proof. LetL be any splitting field ofA. We have

T2,A ⊗ L � T2,A⊗L � T2,Mn(L)

By Proposition 1, the latter form is non-degenerate, so isT2,A.

3. The cyclic case

We recall first the definition of a cyclic algebra. LetE/K be a cyclic extension of
degreen, σ a generator of the Galois group anda ∈ K∗. TheK-vector space

(a, E/K, σ) :=
n−1⊕
i=0

Eei

with the multiplication lawen = a and eλ = λσ e, λ ∈ E is a central simple
algebra of degreen overK, called acyclic algebra, which containsE as a maximal
commutative subfield. The cyclic algebra(1, E/K, σ) is split (see [Sc], Chapter 8,
§12 for example).

Proposition 2. Let K be a field of characteristic two, n = 2m ≥ 2 and A =
(a, E/K, σ) a cyclic algebra of degree n. Then we have

T2,A �
[m

2

]
×Pa−1,a⊥P1,Arf (E/K)⊥Pa−1,a Arf (E/K)⊥

(
2m2− 2−

[m
2

])
×P0,0

where Arf (E/K) is the Arf invariant of the second trace form of the field extension
E/K .

Proof. • If x = λ0+ λ1e+ · · · + λn−1e
n−1, then TrdA(x) = TrE/K(λ0). Indeed,

we have seen that TrdA(x) is the trace of left mutiplication byx in A, considered
as a rightE-vector space. Since we havexej = λ0e

j + · · · = ejλσn−j0 + · · · , we
get

TrdA(x) =
n−1∑
j=0

λσ
n−j

0 = TrE/K(λ0).
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It follows easily that we have the following orthogonal decomposition of theK-
vector spaceA with respect toT2,A: A = E ⊕ Eem ⊕M,
whereM = 〈λek, λ ∈ E, k �= 0,m〉, using the formula

b2,A(x, y) = TrdA(x)TrdA(y)+ TrdA(xy).

• Now we study the restriction of the second trace form to the three spaces
E, Eem andM. For this, we first compute the matrixS = (sij )0≤i,j≤n−1 of
left multiplication byλek,0 ≤ k ≤ m, λ ∈ E. If k = 0, then we haveS =
diag〈λ, λσn−1

, . . . , λσ 〉. Thus we get SrdA(λ) = SrdE(λ), i.e. T2,A|E � T2,E .

Assume now that 1≤ k ≤ m. We haveλekej = ek+j λσ−k−j , thus



sk+j,j = λσ−k−j if 0 ≤ j ≤ n− k − 1,

sk+j−n,j = aλσ−k−j if n− k ≤ j ≤ n− 1,
si,j = 0 otherwise.

For any matrixC = (ci,j )0≤i,j≤n−1, we know that

detC =
∑
τ∈Sn

ε(τ )c0,τ (0) · · · cn−1,τ (n−1)

whereε(τ ) denotes the signature ofτ . Since we want to compute the coefficient
corresponding toXn−2 in the expansion of det(XIn− S), we have to sum over the
elements ofSn which have exactlyn − 2 fixed points, namely the transpositions.
So we get

SrdA(λe
k) =

∑
i>j

si,j sj,i =
n−k−1∑
j=0

sk+j,j sj,j+k.

If i < j , we havesi,j �= 0 if and only if i = k + j − n. In particular,sj,j+k �= 0 if
and only ifj = 2k + j − n, i.e. k = m. Thus SrdA(λek) = 0 for 1≤ k ≤ m− 1.
Since we haveb2,A(λe

i, µej ) = 0 for λ,µ ∈ E and 1≤ i, j ≤ m− 1, we finally
get that the restriction of the second trace form to the subspaceH := 〈λek, λ ∈
E, k = 1, . . . , m − 1〉 is zero. SoM is metabolic becauseH is a subspace ofM
satisfying dimKH = 1

2 dimK M. In particular,T2,A|M is hyperbolic. Moreover we

have SrdA(λem) = a
m−1∑
j=0

λσ
−j
λσ

−m−j
.
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Finally we have obtained

T2,A � T2,E ⊥ aq ⊥ h,

whereq is the quadratic formλ ∈ E �→
m−1∑
j=0

λσ
−j
λσ

−m−j
andh is hyperbolic.

• If a = 1, the algebraA is split, so we getT2,E ⊥ q ∼ [
m
2

] × P1,1 by
Proposition 1 and the previous point, where∼ denotes the Witt-equivalence of
quadratic forms. By Theorem 2, we haveT2,E ∼ P1,Arf (E/K), so

q ∼ P1,Arf (E/K) ⊥
[m

2

]
× P1,1.

Using the fact thataPu,v � P u
a
,av if a ∈ K∗ andu, v,∈ K, we get the result.

4. The general case

Theorem 3. Let K be a field of characteristic two, n ≥ 2 an even integer and A a
central simple algebra of degree n over K . Then we have:

(1) Arf (T2,A) =
[
n
4

]
(2) c(T2,A) = n

2[A]
Before proving the theorem, we want to recall further results. LetK be a field

andA a central simple algebra of degreen overK. Fix aK-basise1, . . . , en2 of
A and letnA(X1, . . . , Xn2) := NrdA(X1e1 + · · · + Xn2en2). This polynomial is
absolutely irreducible, soRA := K[X1, . . . , Xn2]/(nA) is a domain.

Proposition 3. The quotient field K(A) of RA has the following properties:

(a)K(A) splits A,
(b) K is algebraically closed in K(A),
(c) Ker ResK(A)/K = 〈[A]〉.

The proof of(a) can be found in [S1], and(b) is proved in [L, p. 369]. Moreover,
it is shown in [S1] thatK(A) is a rational extension of the fieldK(νA) of rational
functions of the Severi-Brauer variety ofA, so ResK(A)/K(νA) is an injection (see
[J, Theorem 3.8.6] for example).
Since Ker ResK(νA)/K = 〈[A]〉 (see [Am, Theorem 9.3 and Theorem 12.1]) and
ResK(A)/K = ResK(A)/K(νA) ◦ResK(νA)/K , we get assertion (c).

The following theorem is due to Saltman, and will be proved in Appendix:

Theorem 4 (Saltman, unpublished). LetK be a field, A a central simple algebra
of degree n overK andG a finite group of order n. Then there exists a field extension
LG/K such that:

(1) A⊗ LG is isomorphic to a G-crossed product,
(2) ResLG/K is an injection.
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Proof of Theorem 3. • Let us prove assertion (1). IfL/K is a field extension, the
inclusionK ⊆ L induces a mapιL/K : K/℘(K)→ L/℘(L). Then we have

Arf (qL) = ιL/K(Arf (q))

for any quadratic form overK. MoreoverιK(A)/K is an injection. Indeed, ifx ∈
K(A) satisfiesx = λ+λ2 for someλ ∈ K(A), thenλ is an element ofK(A)which
is algebraic overK, soλ ∈ K by Proposition 3 (b), i.e.x ∈ ℘(K).

Since we have

ιK(A)/K(Arf (T2,A)) = Arf (T2,A ⊗K(A)) = Arf (T2,A⊗K(A))
= Arf (T2,Mn(K(A))) (by Proposition 3 (a))

= Arf (T2,Mn(K)⊗K(A)) = Arf (T2,Mn(K) ⊗K(A))
= ιK(A)/K(Arf (T2,Mn(K))),

we get the result using Proposition 1 and the injectivity ofιK(A)/K .
• Now we prove (2) for cyclic algebras. Using Proposition 2, we get

c(T2,A) = (1,Arf (E/K)] +
[n

4

]
(a−1,1] + (a−1,Arf (E/K)]

= (a,
[n

4

]
+ Arf (E/K)].

Sincen is even, we have
[
n
4

] = εn + 2l, for a suitable integerl, so

c(T2,A) = (a, d+E + 2l]
= (a, d+E ] + 2(a, l]
= (a, d+E ],

since a quaternion algebra has order at most 2 in Br(K). By [J], Corollary 2.13.20,
we haven2[A] = (a, F/K, σ |F ), whereF is the unique quadratic subfield ofE.

We now recall how to associate a separable field extension of degree at most
2 to an étale algebra over a fieldK of any characteristic: ifE is an étale algebra
overK of rankn, letH be the set of then K-homomorphisms fromE toKs . Then
Gal(Ks/K) acts onH by left multiplication. Now defineẼ to be the subfield ofKs
fixed by the elementss ∈ Gal(Ks/K) inducing an even permutation onH . Then
Ẽ/K is a separable field extension of degree at most 2. If charK = 2, it is shown
in [BM, Theorem 2.6.], that this extension is defined byd+E , i.e. Ẽ is generated by
an elementx ∈ Ks satisfyingx2+ x + d+E = 0 (if charK �= 2, one can show that
Ẽ = K(√dE), wheredE := detTE is the classical discriminant).

We now prove that in our case, we haveẼ = F . HereE/K is a Galois field
extension, soh(E) ⊆ E for everyh ∈ H and we have in factH = Gal(E/K). In
particular,sh = h for s ∈ Gal(Ks/E) andh ∈ H , so every element of Gal(Ks/E)
induced the trivial permutation onH , which is even. This implies that any element
of Ẽ is fixed by Gal(Ks/E), so Ẽ is a subfield ofE. SinceE/K is cyclic, the
generatorσ of Gal(E/K) permutes cyclically the elements of Gal(E/K), and this
permutation is odd (since it is an-cycle withn even). In particular, the subgroup of
Gal(Ks/K) which is used to definẽE is not the full absolute Galois group (since it
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does not contain any extension ofσ toKs), so[Ẽ : K] = 2. HenceẼ is a quadratic
subfield ofE. SinceE/K is cyclic of even degree,E contains a unique quadratic
subfield, soẼ = F .
We finally obtainn2[A] = (a, Ẽ/K, σ |Ẽ). It is immediate to check that this algebra
is (a, d+E ].

Now letA be any central simple algebra of degreen overK. Using Theorem 2
withG cyclic, we get a field extensionLG/K such thatA⊗LG is a cyclic algebra
and ResLG/K is an injection. Since we have

ResLG/K(c(T2,A)) = c(T2,A ⊗ LG) = c(T2,A⊗LG)

= n

2
[A⊗ LG] = ResLG/K

(n
2
[A]

)
,

we get the result. ��

Remark 2. As in [U,LM,Ti] and [Se], we obtain

c(T2,A) = c(T2,Mn(K))+ rn[A]
for any central simple algebra of even degreen, wherern is an integer which only
depends onn. This is not very surprising, and can be explained as follows: let
A �→ qA be a GrW-invariant of central simpleK-algebras, whereK is a field of
any characteristic. Assume thatqA is a quadratic form for every central simple
algebraA of degreen. We easily get thatc(qA) − c(qMn(K)) ∈ Ker ResK(A)/K ,
so c(qA) = c(qMn(K)) + r(A)[A]. ReplacingA by the generic division algebra
UD := UD(K, n, r) of degreen overK (see for example [S2, Sect. 14]) andK by
its center, we getc(qUD) = c(qMn(K))+r(UD)[UD]. By [Ro,Theorem 1], we have
exp(UD) = n. Sor(UD) is a multiple ofn2 and we haver(UD)[UD] = rn[UD],
with rn = 0 or n2, since[UD] is killed by n. Thusc(qA) = c(qMn(k)) + rn[UD].
Since any central simple algebra can be obtained by specialization ofUD (see [S2,
Sect. 14]), we getc(qA) = c(qMn(K)) + rn[A] for any central simple algebra of
degreen overK, wherern = 0 or n2. It is also easy to show that detqA = detqMn(k)

(or Arf (qA) = Arf (qMn(K)) if charK = 2). This method has first been applied by
Saltman to compute the Clifford invariant of the trace form of a central simple
algebra when charK �= 2 (unpublished).

Appendix: Proof of Theorem 4

In this appendix, we want to give a proof of Theorem 4, since Saltman never
published his result, which is nevertheless of independent interest.

We first recall the notion ofgeneric G-crossed product, defined by Saltman in
[S2, Sect. 12, p. 84].

LetK be any field andG a finite group of ordern. Consider the following short
exact sequence

0→ M → ⊕
g∈G

Z[G]dg f→ Z[G]
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wheref is Z[G]-linear and mapsdg tog−1. ThenM is a finitely generatedZ[G]-
module, which is free as aZ-module. We will write it multiplicatively. Now let
c(g, h) := gdh + dg − dgh ∈ M for g, h ∈ G. We extend the action ofG on the
group algebraK[M] byK-linearity. This action extends naturally on the quotient
fieldK(M) of K[M]. ThenM ⊆ K(M)∗ andc is a 2-cocycle ofG with values in
K(M)∗. If K ′ := K(M)G, the crossed productEG := (K(M)/K ′,G, c) is called
the generic G-crossed product over K. Before proving Theorem 4, we need the
following proposition:

Proposition 4. The genericG-crossed product has exponent n, i.e. [EG] has order
n in Br(K ′).

Proof. This is equivalent to show that[c] has ordern in H 2(G,K(M)∗).
• We first prove that the mapH 2(G,M)→ H 2(G,K(M)∗) is injective. Since

M � Z
r as an abelian group, we have

K[M] = K[m1,m
−1
1 , · · · ,mr,m−1

r ]

where(mi) is a basis ofM. In particular,K[M] is a unique factorization domain.
So the primes ofK[M] form a basis ofK(M)∗/K[M]∗. Moreover, it is easy to
see thatG preserves the set of primes up to units. SoG permutes the elements of
the basis ofK(M)∗/K[M]∗. For each orbitω ofK(M)∗/K[M]∗ under this action,
choose a representativepω and letHω be the stabilizer ofpω. Then we have

K(M)∗/K[M]∗ �
⊕
ω

Z[G/Hω]

asG-modules.
By Shapiro’s lemma, we haveH 1(G,Z[G/Hω]) = H 1(Hω,Z). HereG acts

trivially on Z, soH 1(Z[G/Hω]) = Hom(Hω,Z) = 0 sinceHω is finite. Finally
we get

H 1(G,K(M)∗/K[M]∗) = 0.

Using the long exact sequence of group cohomology induced by the short exact
sequence

0→ K[M]∗ → K(M)∗ → K(M)∗/K[M]∗ → 0

we get that the mapH 2(G,K[M]∗) → H 2(G,K(M)∗) is injective. Moreover
K[M]∗ is the set of monomials with leading coefficient inK∗. Then it is easy to
see thatK[M]∗ = K∗ ⊕M asG-modules. So we have

H 2(G,K[M]∗) = H 2(G,K∗)⊕H 2(G,M)

and the mapH 2(G,M)→ H 2(G,K[M]∗) is injective. We get the desired conclu-
sion by composition with the previous injective map. Notice that the injectivity of
the mapH 2(G,K[M]∗) → H 2(G,K(M)∗) can also be obtained as a particular
case of [S2], Theorem 12.4 (a) (untwisted case).
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• By the previous point, it suffices to show that[c] has ordern in H 2(G,M).
Let t : Z[G] → Z be theZ-linear map which sendsg to 1. Then(g − 1)g∈G is a
basis of Kert and we have the following exact sequence

0→ M → ⊕
g∈G

Z[G]dg f→ Ker t → 0.

Since every freeZ[G]-module is cohomologically trivial (apply Shapiro’s lemma
to the trivial subgroup), the long exact sequence of cohomology gives that the
connecting map

∂ : H 1(G,Ker t)→ H 2(G,M)

is an isomorphism. Ifα is the 1-cocycleg �→ g−1, then∂([α]) = [c], so it remains
to show that[α] has ordern in H 1(G,Ker t).
• Taking the long exact sequence of cohomology associated to

0→ Ker t → Z[G] → Z → 0

we get

H 0(G,Z[G]) t∗→ H 0(G,Z)
∂→ H 1(G,Ker t)→ 0.

It is easy to see thatH 0(G,Z[G]) = Z
∑
g∈G

g, so Imt∗ = nZ and we finally get

H 1(G,Ker t) � Z/nZ. But [α] corresponds precisely to the image of 1 inZ/nZ,
which has ordern. This finishes the proof. ��

Now we are ready to prove Theorem 4. LetLG = K ′((A⊗K K ′)⊗K ′ EopG ). By
Proposition 3 (a), we haveA⊗K LG � EG ⊗K ′ LG. By [J], Theorem 2.13.16 for
example, we know thatEG ⊗K ′ LG is Brauer-equivalent to aG′-crossed product
overLG, whereG′ = Gal(LGK(M)/LG). SinceK ′ is algebraically closed in
LG, we haveLG

⋂
K(M) = K ′, since an element ofLG which belongs to this

intersection is algebraic overK ′. SinceK(M)/K ′ is a Galois extension, this implies
thatLG andK(M) are linearly disjoint overK ′. In particular,[LGK(M) : LG] = n
and Gal(LGK(M)/LG) � G.
Finally,A⊗K LG is Brauer-equivalent to aG-crossed product. Since the degrees
are equal, we get the desired isomorphism.

We know prove that ResLG/K is an injection. We have

ResK(M)/K = ResK(M)/K ′ ◦ResK ′/K .

Notice thatK(M)/K is rational. Indeed, sinceM � Z
l as aZ-module, we have

K[M] � K[X1, X
−1
1 , · · · , Xl,X−1

l ], soK(M) � K(X1, · · · , Xl). Consequently
ResK(M)/K is an injection, so ResK ′/K is an injection.
Since ResLG/K = ResLG/K ′ ◦ResK ′/K , we get

Ker ResLG/K = Br(K) ∩ 〈[(A⊗K K ′)⊗K ′ EopG ]〉
by Proposition 3 (c). Let[B] = r[A ⊗K K ′) ⊗K ′ EopG ] be an element of this
kernel. LetK̃ = K ′K = K(M)G, whereK is an algebraic closure ofK. Since
[B] ∈ Br(K) andK̃ containsK, we have[B ⊗K K̃] = 0. On the other hand, we
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have[B⊗K K̃] = r[EopG ⊗K ′ K̃] = −r[EG⊗K ′ K̃], sinceK̃ splitsA ∈ Br(K). So
we haver[EG⊗K ′ K̃] = 0. SinceEG⊗K ′ K̃ is the genericG-crossed product over
K, which has ordern in Br(K̃), we getn|r. NowA⊗K K ′ andEopG have degreen
overK ′, so[B] = 0.
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