Accepted Manuscript

Regioselective bromination: Synthesis of brominated methoxyquinolines

Osman Çakmak, Salih Ökten

PII: S0040-4020(17)30786-X

DOI: 10.1016/j.tet.2017.07.044

Reference: TET 28876

To appear in: Tetrahedron

Received Date: 10 May 2017

Revised Date: 10 July 2017

Accepted Date: 24 July 2017

Please cite this article as: Çakmak O, Ökten S, Regioselective bromination: Synthesis of brominated methoxyquinolines, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.07.044.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Tetrahedron journal homepage: www.elsevier.com

Regioselective bromination: synthesis of brominated methoxyquinolines

Osman Çakmak^{a,*}, Salih Ökten^b

^aDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey ^bDepartment of Maths and Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online *Keywords:* Quinoline 1,2,3,4-tetrahydroquinoline Bromo quinoline Bromo quinoline Bromination of methoxy quinoline Multifunctionalization of quinoline Regioselective bromination Molecular bromine Simple synthetic methods are described for the synthesis of valuable polyfunctional brominated methoxyquinolines **10-13**, **20-21**, and **24-25**. Three regioselective routes are described for convenient preparation of brominated methoxyquinolines at the C-2, C-3, and C-5 positions with consecutive reaction steps under mild reaction conditions using molecular bromine. While bromination of 6-bromo-8-methoxy-1,2,3,4-tetrahydroquinoline (**8**) selectively gave 3,6-dibromo-8-methoxyquinoline (**10**) and 3,5,6-tribromo-8-methoxyquinoline (**11**), the reaction of 6,8-dimethoxy-1,2,3,4-tetrahydroquinoline (**11**), the reaction of 6,8-dimethoxy-1,2,3,4-tetrahydroquinoline (**13**) on the other hand, direct bromination of 6-methoxy- **17** and 6,8-dimethoxyquinoline (**19**) gave 5-bromo derivatives **20** and **21**. However, the reaction 3,6-dimethoxyquinoline (**8**) resulted in dibromination to form 2,5-dibromoquinoline (**24**). This process selectively led to functionalization of the quinoline ring at both the C-2 and C-5 positions.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Developments in the synthesis of new quinoline derivatives are progressing and expanding hugely due to their pharmaceutical importance. Applications of quinoline derivatives have become widespread from anticancer drugs to almost every branch of medicinal chemistry.¹⁻³ A variety of heterocyclic ring systems for anticancer activity have been widely reported by a number of researchers to develop new approaches to a variety of heterocyclic ring systems, especially including 3-substituted quinoline derivatives.³

Several methods for the synthesis of haloquinolines have been reported, including direct halogenation, which always suffers from poor regioselectivity and overhalogenation,⁴ but only a few methods for the regioselective synthesis of 3-haloquinolines are known.⁵ The development of a new synthetic method for preparing halogen-containing quinolines would enable the synthesis of diverse quinoline frameworks because the halogen atom could enhance biological activity in many cases6 and could also be used for further functionalization in preparing other molecules.^{7,8}

There has been enormous interest in developing efficient methods for the synthesis of quinoline derivatives considering their significant applications in the field of bioorganic, industrial, and synthetic organic chemistry. The Skraup, Friedländer, Doebner–von Miller, and Combes syntheses^{8,9} of quinoline derivatives are important classical synthetic approaches. Almost all synthetic strategies are based on metal catalyzed cyclizations or acid catalyzed cycloadditions.⁹ However, quinoline synthesis has important disadvantages, such as harsh reaction conditions and highly acidic media,¹⁰ that make it tedious to isolate the product from the crude mixture. For instance, the Skraup procedure includes reactions of *meta-* or 3,4-disubstituted anilines normally giving a mixture of regioisomers difficult to isolate. Most of these methods are not fully satisfactory with respect to yield,^{11–13} reaction conditions,^{11,13} generality,^{13,14} and practical use.^{11,13} These synthetic problems have encouraged researchers to develop a practical efficient procedure for the synthesis of these important heterocycles.¹⁵

It is interesting that despite the considerable synthetic and biological interest in quinoline derivatives, very few general synthetic routes are available starting from quinoline or tetrahydroquinoline cores themselves. Recently, we have found that the bromination reaction of substituted 1,2,3,4-tetrahydroquinolines is a good starting point for functionalizing both rings. In our previous publications, brominated tetrahydroquinolines were transformed to their respective derivatives.^{9,16} Bromination of 6-bromo-8-cyano-1,2,3,4-tetrahydroquinoline gave corresponding 3-brominated quinoline derivatives (Scheme 1).¹⁶ This methodology uses neither metal catalyzed cyclizations nor acid catalyzed cycloadditions. The process constitutes a rapid and convenient method for obtaining selective brominated aromatic compounds as the sole products in high yields.

1

Tetrahedron

Tetrahedron

This work presented herein is a continuation of our ongoing research and focuses on the synthesis of polyfunctional quinolines, starting from methoxy 1,2,3,4-tetrahydroquinoline, which provides an efficient synthesis of brominated derivatives at C-3 and C-5 (Scheme 1). We are also interested in investigation of the biological activity and structure–activity relationship (SAR) results because the synthesized quinoline derivatives exhibited promising anticancer activities and interesting SARs (Scheme 2).^{9,17-20}

Scheme 2. Structure-Activity Relationship for compounds 2, 3 and 4.

2. Results and Discussion

The starting compounds were synthesized according to our procedures reported previously starting from 1,2,3,4-tetrahydroquinoline (1) (Scheme 3).^{9,21-22} First we studied bromination of methoxy quinolines 8 and 9 with different equivalents of bromine. The product ratios and conversions are compiled in Scheme 4. While bromination of 8 with three equivalents of bromine afforded compound 10, bromination with four equivalents of bromine gave tribromide 11 (Scheme 4).

Scheme 3. Preparation of starting materials.

Scheme 4. Bromination reaction of 6-bromo-8-methoxy THQ 8 and synthesis of dibromide 10 and tribromide 11.

Dimethoxide 9 was brominated with 3 equivalents of bromine, and the dibromide 12 was obtained as the sole product in high yield (80%) in reaction conditions similar to those of compound 8. On the other hand, bromination of 9 with four equivalents of bromine gave dibromide 13 in 78% yield. The dibromide 13 was also achieved by the bromination of compound 12 using one equivalents of bromine in 85% yield (Scheme 5).

Scheme 5. Bromination of 6,8-dimethoxide 9

The ¹H NMR spectra of compounds **10**, **11**, **12**, and **13** exhibit simple aromatic signals, which are established easily by their vicinal coupling patterns. The ¹H NMR spectra of **10** consisted of four characteristic aryl signals with *meta* couplings (⁴*J* = 1.6 Hz), indicating the positions of the bromine groups. The observation of *meta* couplings and a singlet signal (δ 4.1) in the ¹H NMR spectrum of **10** is consistent with the methoxy group at C-8 and two bromines bound to the C-3 and C-5 positions (Table 1). In the ¹³C NMR spectrum of **10**, methoxy (δ_C 55.6) and aryl signals also support the suggested structure.

Compound **11** was unambiguously assigned on the basis of its ¹H NMR spectrum due to the three CH signals, which are one singlet (7.31 ppm, H-7) and two doublets with *meta* coupling ($J_{2,4}$ = 2.0 Hz) at $\delta_{\rm H}$ 8.92 and 8.75, belonging to H-2 and H-4, respectively. The presence of six quaternary and three CH carbon atoms in the ¹³C NMR spectrum confirms two bromine atoms at the C-3 and C-5 positions in the structure (Table 1).

The NMR spectroscopy clearly identified that the expected products **12** and **13** are formed. The ¹H NMR spectrum of 3,6dibromide **12** exhibits four *meta* coupled aryl signals ($\delta_{\rm H}$ 8.65 and 8.51, ${}^{4}J_{5,7} = 1.8$ Hz; $\delta_{\rm H}$ 7.02 and 6.56, ${}^{4}J_{2,4} = 2.0$ Hz) appearing downfield in comparison with starting material **9**.⁹ However, the ¹H NMR of **13** consists of two *meta* coupled doublets of H-4 ($\delta_{\rm H}$ 8.68, ${}^{4}J_{2,4} = 2.0$ Hz) and H-2 ($\delta_{\rm H}$ 8.78), one singlet of H-7 ($\delta_{\rm H}$ 6.89), and two methoxide signals ($\delta_{\rm H}$ 4.08 and 4.14).

Compounds				Protons				Coupling constants (Hz)
	H2	H3	H4	H5	H6	H7	H8	
10	8.91 d		8.21 d	7.51 d	-	7.16 d	-	$J_{2,4} = 1.6 \text{ Hz}$ $J_{5,7} = 1.6 \text{ Hz}$ $4.10 \text{ s}, OCH_3$
11	8.92 d		8.75 d	-	-	7.31 s	-	$J_{2,4} = 2.0$ Hz 4.10 s, <i>OCH</i> ₃
12	8.65 d	$\langle \cdot \rangle$	8.51 d	7.02 d	-	6.56 d		$J_{2,4} = 2.0 \text{ Hz}$ $J_{5,7} = 1.8 \text{ Hz}$
13	8.78 d	-	8.68 d	-	-	6.89 s		$J_{2,4} = 2.0 \text{ Hz}$ 4.08, 4.14 s, <i>OCH</i> ₃

Table 1. ¹H-NMR data of brominated methoxy quinoline **10-13**.

Scheme 6. Synthesis of starting compounds 17-19

The synthesis of **11** and **13** from **10** and **12**, respectively, prompted us to study the bromination of methoxyquinolines **17**, **18**, and **19** (Schemes 7 and 8) to show whether the selectivity at the C-5 position can be generalized to other methoxy quinolones or not. For this purpose, 6-methoxy **17** and 6,8-dimethoxide **19** were prepared from corresponding the bromoquinolines²¹ (**3**, **15**) according to our previously reported methods (Scheme 6).⁹ Additionally, we developed a new methodology for the formation of 3,6-dimethoxyquinoline (**18**) from its corresponding bromo derivative **16** (Scheme 6). In this context, dibromo derivative **16** was treated with sodium methoxide in DMF in the presence of copper iodide. Copper-assisted nucleophilic substitution afforded corresponding 3,6-dimethoxide **18** as the sole product in a yield of 78%. Kobayashi *et al.* (2003)²³ obtained 3,6-dimethoxide **18** using the Friedländer quinoline synthesis in a five-step cyclization of 1-isocyano-2-(2-lithio-2-methoxyethenyl)benzene. Therefore, our method seems shorter and more practical than the method in the literature.

Bromination of 6-methoxy 17 and 6,8-dimethoxyquinoline 19 produced selectively the compounds 20 and 21 as the sole products (yields 88%, 83%, respectively). Compounds 17 and 18 were also treated with excess bromine (two or more equivalents), but no formation of dibrominated quinolines (22 and 23) was observed (Scheme 7).

5-Bromo-6-methoxyquinoline **20** was generated from 6-methoxyquinoline **17** by bromination in acetic acid in low yield (52%) as a patent procedure.²⁴ Another patent²⁵ described the same procedure, but was slightly modified and gave a lower yield (36%). Our synthetic procedure involves simple reaction conditions; for example, using a common solvent (CHCl₃ or CH₂Cl₂), in high yield (88%), at room temperature, with no extraction required.

Scheme 7. Bromination of methoxy quinolines (3, 13 and 14) and preparation of 5-bromo quinolines (22-24).

Bromination of dimethoxide 18 surprisingly resulted in dibromination, contrary to other methoxyquinolines (17, 19). Direct bromination of dimethoxy 18 with 2 equivalents of bromine produced 2,5-dibromo-3,6-dimethoxy quinoline 24 in good yield (78%) (Scheme 8). Monobrominated compound 25 was also obtained after bromination with one equivalent of bromine in 82% yield. Actually, dibromination of 18 can lead to a multiplicity of isomers such as the formation of 4,5-, 2,5-, 5,7-, and 5,8-dibromoquinolines. No formation of other isomers may be attributed to the orientation of the methyl group in methoxy substituents of 18 (Scheme 8). This also explains the origin of selectivity in which bromination of 6-methoxy quinolines does not occur at the C-7 position. Furthermore, the fact that dibromide 24 was obtained, instead of dibromide 27, can also be attributed to having enormous strain energy (46.83 kcal/mol) due to steric compression of the bromo groups in γ -gauche positions (Figure 1).

Figure 1. 3D Structures of 18, 27, 24 and their total energies

Thus, we have developed a new way to obtain 2-substituted quinolines with a bromo group at C-2. Our studies on the preparation of C2-substituted quinoline derivatives are going on because quinolines substituted at C-2 on the quinoline scaffold have shown interesting anticancer activity in a number of anticancer assays.²⁶

In the literature, studies on the bromination of methoxy quinolines using molecular bromine were reported. In one of the papers, the Eisch bromination of 7,8-dimethoxyquinoline resulted in the formation of a product mixture of 3-bromo-, 5-bromo, and 3,5-dibromo analogues in low yields.²⁶ It is well known that quinoline itself and bromoquinolines are not brominated with molecular bromine but rather, form an *N*-bromine complex.^{8,16} The Eisch bromination^{16,28} requires *N*-bromine complex formation in the first step. Trecourt *et al.* reported that treatment of 7,8-dimethoxyquinoline with bromine involved complex formation.²⁷ However, in our studies, we did not observe any complex formation during the bromination of methoxy quinolines under our reaction conditions.

In the ¹H NMR spectrum of **20**, the characteristic doublet for H-2 of the quinoline scaffold was observed at $\delta_{\rm H}$ 8.81 ppm. Moreover, the protons of the benzene ring of **20** gave AB signal systems ($J_{8,7} = 9.2$ Hz), assigning bromine to C-5. In the ¹H NMR spectrum of 5-bromo-6,8-dimethoxide **21**, four aromatic signals were observed. The doublets of H-2, H-3, and especially H-4 of **21** ($\delta_{\rm H}$ 8.78, 7.47 and 8.46, respectively) appeared more downfield compared with its starting material **19**⁹ ($\delta_{\rm H}$ 8.57, 7.14, and 7.75, respectively). Furthermore, the signal of H-5 disappeared and the signal of H-7 was observed as a singlet signal at $\delta_{\rm H}$ 6.86.

In the ¹H NMR spectrum of monobrominated 3,6-dimethoxy compound **25**, protons of the benzene ring of **25** ($J_{8,7}$ = 8.7 Hz) gave AB signal systems, assigning bromine to C-5. Similarly, the ¹H NMR spectrum of **24** consisted of two doublet and one singlet signals as expected. It was seen that after bromination, the signal of H-2 disappeared, which is evidence for the existence of bromination of the C-2 position. Furthermore, the signals for aromatic protons H-7 and H-8 ($\delta_{\rm H}$ 7.35 and 8.06 ppm, respectively; $J_{8,7}$ = 8.0 Hz) were shifted downfield when compared with signals of the starting material **18** (H-7 and H-8; $\delta_{\rm H}$ 7.22 and 7.95 ppm, respectively) in Table 2. The signal of H-4 is a singlet at $\delta_{\rm H}$ 7.73 ppm as expected. The characteristic methoxide signals ($\delta_{\rm C}$ 55.1 and 55.7) and six quaternary carbons in the ¹³C NMR spectra helped to confirm the structure of **24**.

Compounds				Proton				Coupling constants (Hz)
	H-2	H-3	<mark>H-4</mark>	<mark>H-5</mark>	H-6	<mark>H-7</mark>	<mark>H-8</mark>	
18	8.54 d	-	7.32 d	7.03 d	ł	7.22 d	7.95 d	$J_{2,4} = 2.4 \text{ Hz}$ $J_{8,7} = 9.2 \text{ Hz}$ $J_{7,5} = 2.8 \text{ Hz}$ 3.96, 3.94 s OMe
19	8.57 d	7.14 dd	7.75 d	6.50 d	ł	<mark>6.4 d</mark>	ł	$J_{2,3}$ = 4.0 Hz $J_{4,3}$ = 8.2 Hz $J_{5,7}$ = 1.6 Hz 3.68, 3.85 OMe
20	8.81 dd	7.46 dd	8.52 dd	-	-	7.51 d	8.10 d	J _{2,3} = 3.2 Hz, J _{4,3} = 8.8 Hz J _{8,7} = 9.2 Hz 4.06 s OMe

Table 2. The ¹H-NMR values of methoxy quinoline derivatives **18-21** and **24-25**

3. Conclusion

Two regioselective routes are described for the convenient preparation of 3- and 5-brominated methoxy quinolines. Quinoline cores are selectively functionalized at both the C-3 and C-5 positions under mild reaction conditions.

We found that methoxy 1,2,3,4-tetrahydroquinolines firstly were brominated at the C-3 and C-5 positions to give corresponding bromoquinolines. Bromination of 6-bromo-8-methoxy-1,2,3,4-tetrahydroquinoline (9) under different equivalents of molecular bromine selectively gave dibromo 10 and 11 using three and four equivalents of bromine, respectively. Similarly, bromination of 6,8-dimethoxy-1,2,3,4-tetrahydroquinoline (8) gave dibromo 12 (with three equivalents of Br₂) and tribromo 13 (with four equivalents of Br₂) methoxyquinolines. Selectivity at C-5 was also confirmed by separate bromination reactions of 17 and 19 to give 5-bromo 20 and 21 as the sole products in high yields.

In the literature, functionalized 3-substituted quinolines were prepared by the condensation of substituted anilines in the presence of some metals or Lewis acids used as catalyst.²⁸ Due to general protocols to obtain 3-functionalized quinoline derivatives based on cyclization or cycloaddition of substituted aniline or substituted benzene, the preparation of novel quinoline derivatives substituted at C-3 or other positions was restricted. On the other hand, the bromine group is a good starting point for not only nucleophilic/electrophilic substitution but also palladium catalyzed cross coupling reactions described in our ongoing research. We are currently working on the nitration of bromo and methoxy derivatives of quinolines subsequently their nucleophilic substitution and palladium catalyzed cross coupling reactions, especially Suzuki coupling with brominated tetrahydroquinolines and quinolines.

On the other hand, the reaction of 3,6-dimethoxyquinoline (8) with two equivalents of bromine resulted in dibromination (24) at C-5 and C-2. Thus, we not only opened up functionlization at C-3 and C-5 but also at the C-2 position of quinoline due to the bromine group. Therefore, simple synthetic methods were described for the valuable polyfunctional methoxyquinolines 10, 11, 13, 18, 20, 21, 24, and 25, which can be converted to corresponding substituted quinolines, otherwise difficult to obtain (Scheme 9).

We found that both the methoxy derivatives of 1,2,3,4-tetrahydroquinolines and methoxy quinolines were highly reactive towards bromination and investigations are ongoing regarding the generality and application of this approach to other substituted quinoline derivatives. The reactivity difference of bromine atoms on the heterocyclic ring facilitates the consecutive substitution, leading to the series of polysubstituted analogues. In summary, we have developed three selective routes for the synthesis of quinoline compounds containing bromine substituents at the C-2, C-3, and C-5 positions that along with other bromo methoxides could be important starting materials for the synthesis of polyfunctionalized quinoline derivatives (Scheme 9). The experimental methods are simple, require cheap starting materials (1, 2, 14), promise large-scale synthesis with high yields, and involve easy isolation of the final products.

Scheme 9. General overwiev of bromination methods for methoxy quinolines/ tetrahydroquinolines

4. Experimental section

General Methods. Thin layer chromatography was carried out on Merck silica F254 0.255 mm plates, and spots were visualized by UV at 254 nm. Flash column chromatography was performed using Merck 60 (70–230 mesh) silica gel. Melting points were determined on a Thomas-Hoover capillary melting point apparatus. Solvents were concentrated at reduced pressure. IR spectra were recorded on a Jasco 430 FT/IR instrument. Elemental analyses were recorded on an Elementar Vario MICRO Cube. NMR spectra were recorded on a Bruker spectrometer at 400 MHz for ¹H NMR and at 100 MHz for ¹³C NMR.

4.1. Synthesis of 3,6-dibromo-8-methoxyquinoline (**10**). To a solution of 6-bromo-8-methoxy-1,2,3,4-tetrahydroquinoline (**8**, 241 mg, 1.0 mmol, 1 eq) in CHCl₃ (20 mL), was added a solution of bromine (527 mg, 3.3 mmol, 3.3 eq) in CHCl₃ (5 mL) over 10 min in the dark at rt. After completion of the reaction (bromine completely consumed, 2 days), the resulting mixture was washed with a solution of 5% aq NaHCO₃ (3 × 20 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude material (253 mg) was passed through a silica column eluting with AcOEt/hexane (1:3, 100 mL). The crude product was recrystalized in CHCl₃/hexane (1:3) to give 3,6-dibromo-8-methoxyquinoline (**10**). White powder solid (242 mg, 77% yield): mp 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, *J*₂₄ = 1.6 Hz, 1H, H₂), 8.21 (d, *J*₄₂ = 2.0 Hz, 1H, H₄), 7.51 (d, *J*₅₇ = 1.6 Hz, 1H, H₅), 7.16 (d, *J*₇₅ = 1.2 Hz, 1H, H₇), 4.10 (s, 3H, *OCH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 156.1 (q), 150.4, 137.1 (q), 136.1, 130.9 (q), 121.9 (q), 120.7, 119.2 (q), 112.2, 56.5 (*OCH*₃); IR (KBr, cm⁻¹) v 3047, 2925, 1727, 1592, 1558, 1482, 1371, 1346, 1255, 902, 858, 829, 788, 748; Anal. Calcd for C₁₀H₇Br₂NO: C, 37.89%; H, 2.23%; N, 4.42%. Found: C, 36.90%; H, 2.32%; N, 4.48%.

4.2. Synthesis of 3,5,6-tribromo-8-methoxyquinoline (11). The same procedure was applied in synthesis of 10 but 4.2 equivalents of bromine (671 mg, 4.2 mmol) was used in CHCl₃ (20 mL). The crude product was passed through a silica column eluting with CHCl₃/hexane (1:3) to give 3,5,6-tribromo-8-methoxyquinoline (11) in 72% yield (282 mg) as yellow powder solid.

3,5,6-Tribromo-8-methoxyquinoline (**11**) was synthesized by treating of 3,6-dibromo-8-methoxyquinoline (**10**) with 1 equivalent of bromine for 1 day at rt. The reaction procedure is similar to the above process. This reaction afforded 3,5,6-tribromo-8-methoxyquinoline (**11**). Yellow powder solid (282 mg, 76% yield): mp 164-166 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, J_{24} = 2.0 Hz, 1H, H₂), 8.75 (d, J_{42} = 2.0 Hz, 1H, H₄), 7.31 (s, 1H, H₇), 4.10 (s, 3H, *OCH₃*); ¹³C NMR (100 MHz, CDCl₃) δ 155.2 (q), 150.7, 138.0, 132.5 (q), 132.2 (q), 128.3 (q), 125.6 (q), 120.7 (q), 113.2, 56.6 (*OCH₃*); IR (KBr, cm⁻¹) v 2960, 2925, 2852, 2360, 2337, 1731, 1641, 1562, 1487, 1461, 1280, 1147, 1132, 1024, 943, 821, 765; Anal. Calcd for C₁₀H₆Br₃NO: C, 30.34%; H, 1.53%; N, 3.54%. Found: C, 30.40%; H, 1.49%; N, 3.77%.

4.3. Synthesis of 3-bromo-6,8-dimethoxyquinoline (12). To a solution of 6,8-dimethoxy-1,2,3,4-tetrahydroquinoline (9, 193 mg, 1.0 mmol, 1 eq) in CHCl₃ (15 mL), was added a solution of bromine (495 mg, 3.1 mmol, 3.1 eq) in CHCl₃ (5 mL) over 5 min in the dark at

Tetrahedron

rt. After completion of the reaction (bromine completely consumed. 3 days), the resulting mixture was washed with a solution of 5% aq NaHCO₃ (3 × 20 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude material (220 mg) was passed through a silica column eluting with AcOEt/hexane (1:3, 100 mL). The crude product was recrystalized in CHCl₃/hexane (1:3) to give 3-bromo-6,8-dimethoxyquinoline (**12**). White powder solid (213 mg, 80% yield): mp 124-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J*₂₄ = 2.0 Hz, 1H, H₂), 8.51 (d, *J*₄₂ = 2.0 Hz, 1H, H₄), 7.02 (d, *J*₅₇ = 1.8 Hz, 1H, H₅), 6.56 (d, *J*₇₅ = 1.8 Hz, 1H, H₇), 4.00 (s, 3H *OCH*₃), 3.94 (s, 3H, *OCH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.3 (q), 152.6 (q), 138.3, 134.2, 131.3 (q), 128.0 (q), 122.3, 100.6, 98.3 (q), 56.8, 54.4 (*OCH*₃); IR (KBr, cm⁻¹) v 3016, 2973, 2792, 1741, 1638, 1454, 1422, 1361, 1342 1361, 1297, 1238, 1110, 983, 912, 828, 689; Anal. Calcd for C₁₁H₁₀BrNO₂: C, 49.28%; H, 3.76%; N, 5.22%. Found: C, 49.45%; H, 3.82%; N, 5.16%.

4.4. Synthesis of 3,5-dibromo-6,8-dimethoxyquinoline (13). The same procedure was applied in synthesis of 12 but 4.2 equivalents of bromine (671 mg, 4.2 mmol) in CHCl₃ (20 mL) was used and the reaction was carried on a period of 5 days at rt. The crude product was recrystalized in CHCl₃/hexane (1:3) to give 3,5-dibromo-6,8-dimethoxyquinoline (13) in 78% yield (269 mg) as white powder solid.

3,5-Dibromo-6,8-dimethoxyquinoline (**13**) was synthesized by treating of 3-bromo-6,8-dimethoxyquinoline (**12**) with 1 equivalents of bromine in CHCl₃ (20 mL) for 2 day at rt. The reaction procedure is similar to the above precess. This reaction was afforded 3,5-dibromo-6,8-dimethoxyquinoline (**13**) in 85% yield. White powder solid (269 mg, 85% yield): mp 133-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J_{24} = 2.0 Hz, 1H, H₂), 8.68 (d, J_{42} = 2.0 Hz, 1H, H₄), 6.89 (s, 1H, H₇), 4.10 (s, 3H, *OCH₃*), 4.14 (s, 3H, *OCH₃*); ¹³C NMR (100 MHz, CDCl₃) δ 156.5 (q), 155.3 (q), 148.3, 135.8, 134.6 (q), 130.0 (q), 120.3 (q), 97.3, 97.1 (q), 57.1, 56.4 (*OCH₃*); IR (KBr, cm⁻¹) v 2956, 2923, 2852, 1731, 1608, 1554, 1482, 1461, 1367, 1311, 1207, 1138, 1090, 993, 923, 808, 777; Anal. Calcd for C₁₁H₉Br₂NO₂: C, 38.07%; H, 2.61%; N, 4.04%. Found: C, 37.40%; H, 2.42%; N, 4.09%.

4.5. Synthesis of 3,6-dibromoquinoline (16). In the reported procedure, 15,27 3,6-dibromoquinoline was synthesized by Eisch bromination of 6-bromoquinoline in yield of 82%.

4.6. Synthesis of 3,6-dimethoxyquinoline (18). Freshly cut sodium (0.7 g, 30 mmol) was added to dry methanol (25 mL) under nitrogen gas atmosphere. When dissolution was complete, the warm solution was diluted with dry dimethylformamid by addition of vacuum dried cuprous iodide (1.0 g, 0.51 mmol). After dissolution, 3,6-dibromoquinoline (16) (450 mg, 1.05 mmol) into dry DMF (30 mL) was added. The reaction mixture was stirred magnetically under a nitrogen gas atmosphere at reflux (ca 150 °C) for 6 h. The reaction's progress was monitored by TLC until the starting material was all consumed. After cooling to rt, H₂O (25 mL) and CHCl₃ (50 mL) were added to the reaction mixture. The organic layers were separated, washed with H₂O (2 × 20 mL), and dried over Na₂SO₄. The solvent was removed and the crude product was passed through a short silica gel (3g) column eluting with AcOEt/hexane (1:3, 100 mL). After filtration and purification, the resultant product was 3,6-dimethoxyquinoline (18). Pale yellow powder solid (156 mg, 78% yield): mp 84-86 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J_{24} = 2.4 Hz, 1H, H₂), 7.95 (d, J_{87} = 9.2 Hz, 1H, H₈), 7.32 (d, J_{42} = 2.4 Hz, 1H, H₄), 7.22 (dd, J_{78} = 9.2 Hz, J_{75} = 2.8 Hz, 1H, H₇), 7.03 (d, J_{57} = 2.4 Hz, 1H, H₅), 3.96 (s, 3H, *OCH₃*), 3.94 (s, 3H, *OCH₃*); ¹³C NMR (100 MHz, CDCl₃) δ 158.4 (q), 153.7 (q), 141.7, 139.4 (q), 130.6, 130.1 (q), 119.0, 111.8, 104.8, 55.5 (*OCH₃*), 55.4 (*OCH₃*). All data were identical to that reported in the literature.²²

4.7. Synthesis of 5-bromo-6-methoxyquinoline (**20**). To a solution of 6-methoxyquinoline (**17**, 160 mg, 1.0 mmol, 1 eq) in CH₂Cl₂ (15 mL) was added a solution of bromine (176 mg, 1.1 mmol, 1.1 eq) in CH₂Cl₂ (15 mL) over 10 min in the dark at rt. After completion of the reaction (bromine completely consumed, 2 days), the resulting mixture was washed with a solution of 5% aq NaHCO₃ (3 × 20 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude material (215 mg) was passed through a silica column eluting with AcOEt/hexane (1:4, 150 mL). The crude product was recrystalized in CHCl₃/hexane (1:4) to give 5-bromo-6-methoxyquinoline (**20**). Brown cubic crystal (208 mg, 88% yield): mp 79-81 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.81 (d, J_{23} = 3.2 Hz, 1H, H₂), 8.52 (d, J_{43} = 8.8 Hz, 1H, H₄), 8.10 (d, J_{87} = 9.2 Hz, 1H, H₈), 7.51 (d, J_{78} = 9.2 Hz, 1H, H₇), 7.46 (dd, J_{32} = 4.0 Hz, J_{34} = 8.4 Hz, 1H, H₃), 4.06 (s, 3H, OCH_3); ¹³C NMR (100 MHz, CDCl₃): δ 154.0, 148.8, 144.3, 134.5, 130.3, 128.6, 122.4, 116.5, 107.4, 57.1 (-*OCH*₃); IR (KBr, cm⁻¹) v 2925, 1612, 1587, 1552, 1496, 1321, 1261, 1064, 964, 897, 822, 806, 584; Anal. Calcd for C₁₀H₈BrNO: C, 50.45%; H, 3.39%; N, 5.88%. Found: C, 50.40%; H, 3.32%; N, 5.98%.

4.8. Synthesis of 5-bromo-6,8-dimethoxyquinoline (21). To a solution of 6,8-dimethoxyquinoline (19, 190 mg, 1.0 mmol, 1 eq) in CHCl₃ (15 mL) was added a solution of bromine (176 mg, 1.1 mmol, 1.1 eq) in CHCl₃ (15 mL) over 10 min in the dark at rt. After completion of the reaction (bromine completely consumed, 2 days), the resulting mixture was washed with a solution of 5% aq NaHCO₃ (3 × 20 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude material (230 mg) was passed through a silica column eluting with AcOEt/hexane (1:4, 150 mL). The crude product was recrystalized in CHCl₃/hexane (1:4) to give 5-bromo-6,8-dimethoxyquinoline (21). Brown powder solid (221 mg, 83% yield): mp 58-59 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J_{23} = 4.0 Hz, 1H, H₂), 8.49 (d, J_{43} = 8.4 Hz, 1H, H₄), 7.48 (dd, J_{32} = 4.0 Hz, J_{34} = 8.4 Hz, 1H, H₃), 6.86 (s, 1H, H₇), 4.12 (s, 3H, *OCH*₃), 4.05 (s, 3H, *OCH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 156.2 (q), 154.3 (q), 136.5 (q), 128.8 (q), 97.8 (q), 147.4, 134.4, 123.1, 97.0, 57.2 (*OCH*₃), 56.2 (*OCH*₃); IR (KBr, cm⁻¹) v 2931, 2848, 1722, 1610, 1587, 1500, 1471, 1365, 1247, 1213, 1124, 1084, 898, 809, 781; Anal. Calcd for C₁₁H₁₀BrNO₂: C, 49.28%; H, 3.76%; N, 5.22%. Found: C, 49.25%; H, 3.74%, N, 5.15%.

4.9. Synthesis of 2,5-dibromo-3,6-dimethoxyquinoline (24). To a solution of 3,6-dimethoxyquinoline (18) (190 mg, 1.0 mmol, 1 eq) in CH₂Cl₂ (15 mL), was added a solution of bromine (352 mg, 2.2 mmol, 2.2 eq) in CHCl₃ (5 mL) over 10 min in the dark at rt. After completion of the reaction (bromine completely consumed, 3 days), the resulting mixture was washed with a solution of 5% aq NaHCO₃ (3 × 25 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude material (280 mg) was passed through a silica column eluting with AcOEt/hexane (1:3, 100 mL) The crude product was recrystalized in CHCl₃/hexane (1:4) to give 2,5-dibromo-3,6-dimethoxyquinoline (24). White powder solid (269 mg, 78% yield): mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J*₈₇ = 8.0 Hz, 1H, H₈), 7.73 (s, 1H, H₄), 7.35 (d, *J*₇₈ = 8.0 Hz, 1H, H₇), 4.07 (s, 3H, *OCH*₃), 4.02 (s, 3H, *OCH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 158.6 (q), 154.3 (q), 140.4 (q), 130.7, 130.2 (q), 129.0 (q), 125.6, 107.4, 99.8 (q), 55.7 (*OCH*₃), 55.1 (*OCH*₃); IR (KBr, cm⁻¹) v 2928, 1618, 993; Anal. Calcd for C₁₁H₉Br₂NO₂: C, 38.07%; H, 2.61%; N, 4.04%. Found: C, 38.40%; H, 2.42%; N, 4.13%.

4.10. Synthesis of 5-bromo-3,6-dimethoxyquinoline (25). The same procedure was applied in the synthesis of 24 but 1.1 equivalent of bromine (176 mg, 1.1 mmol) was used and the reaction was carried on a period of 2 days at rt. The crude product was recrystalized in CHCl₃/hexane (1:4) to give 5-bromo-3,6-dimethoxyquinoline (25). White powder solid (219 mg, yield 82%): mp 117-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J_{24} = 2.2 Hz, 1H, H₂), 8.00 (d, J_{87} = 8.7 Hz, 1H, H₈), 7.52 (d, J_{42} = 2.2 Hz, 1H, H₄), 7.32 (dd, J_{78} = 8.7 Hz, 1H, H₇), 4.06 (s, 3H, *OCH*₃), 3.96 (s, 3H, *OCH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 158.2 (q), 153.9 (q), 140.6 (q), 139.4 (q), 130.6, 125.6 (q), 122.4, 110.3, 104.8, 55.8 (*OCH*₃), 55.2 (*OCH*₃); IR (KBr, cm⁻¹) v 2965, 1603, 1023; Anal. Calcd for C₁₁H₁₀BrNO₂: C, 49.28%; H, 3.76%; N, 5.22%. Found: C, 49.13%; H, 3.82%; N, 5.29%.

Acknowledgments

The study was supported by grants from the Scientific and Technological Research Council of Turkey (TUBITAK, Project number: 112T394).

References and notes

- 1. Solomon, R. V.; Lee, H. Curr. Med. Chem. 2011, 18, 1488.
- 2. Ryckebusch, A.; Garcin, D.; Lansiaux, A.; Goossens, J. F.; Baldeyrou, B.; Houssin, R.; Bailly, C.; Hénichart, J. P. J. Med. Chem. 2008, 51, 3617.
- 3. Jain, S.; Chandra, V.; Jain, P. K.; Pathak, K.; Pathak, D.; Vaidya, A. Arab. J. Chem. 2016, doi: 10.1016/j.arabjc.2016.10.009, in press.
- 4. Kumar, L.; Mahajan, T.; Agarwal, D. D. Green Chem. 2011, 13, 2187–2196.
- 5. Tummatorn, J.; Poonsilp, P.; Nimnual, P.; Janprasit, J.; Thongsornkleeb, C.; Ruchirawat, S. J. Org. Chem. 2015, 80, 4516.
- 6. Whittella, L. R.; Battya, K. T.; Wonge, R. P. M.; Bolithoa, E. M.; Foxa, S. A.; Davise, T. M. E.; Murray, P. E. Bioorg. Med. Chem. 2011, 19, 7519.
- 7. Klumphu, P.; Lipshutz, B. H. J. Org. Chem. 2014, 79, 888.
- 8. Sahin, A.; Cakmak, O.; Demirtas, I.; Okten, S.; Tutar, A. Tetrahedron 2008, 64, 10068–10074
- 9. Ökten, S.; Çakmak, O.; Erenler, R.; Tekin, Ş.; Yüce, Ö. Turk. J. Chem. 2013, 37, 896.
- 10. Yadav, D. K. T.; Bhanage, B. M. RSC Adv. 2015, 5, 51570.
- 11. Cho, C. S.; Oh, B. H.; Shim, S. C.; Tetrahedron Lett. 1999, 40, 1499.
- 12. Larock, R. C.; Kero, M. Y.; Tetrahedron Lett. 1991, 32, 569.
- 13. Kiran, B. M.; Mahadevan, K. M. Heterocycl. Commun. 2006, 12, 481.
- 14. Zhou, L.; Zhang, Y. J. Chem. Soc., Perkin Trans 1, 1998, 2899.
- 15. Ucar, S.; Essiz, S.; Dastan, A. Tetrahedron 2017, 73, 1618.
- 16. Ökten, S.; Çakmak, O. Tetrahedron Lett. 2015, 56, 5337.
- 17. Şahin, Ö. Y.; Ökten, S.; Tekin, Ş.; Çakmak, O. J. Biotech. 2012, Supplement 161, 24.
- 18. Ökten, S.; Şahin, Ö. Y.; Tekin, Ş.; Çakmak, O. J. Biotech. 2014, Supplement 185, 106,
- 19. Köprülü, T. K.; Tekin, Ş.; Ökten, S.; Çınar, M.; Duman, S.; Çakmak, O. J. Biotech. 2014, Supplement 185, 93.
- 20. Ökten, S.; Çakmak, O.; Tekin, Ş. Turk. J. Clin. Lab. 2017, doi:10.18663/tjcl.292058, in press.
- 21. Ökten, S.; Eyigün, D.; Çakmak, O. Sigma J. Eng. Nat. Sci. 2015, 33, 8.
- 22. Lindley, J. Tetrahedron 1984, 40, 1433.
- 23. Kobayashi, K.; Yoneda, K.; Mizumoto, T.; Umakoshi, H.; Morikawa, O.; Konishi, H. Tetrahedron Lett. 2003. 44, 4733.
- 24. Mewshaw, R. E.; Zhou, P.; Zhou, D.; Meagher, K. L.; Asselin, M.; Evrard, D. A. U.S. Patent PCT/US2000/000223, 2000.
- 25. Bounaud, P. Y.; Smith, C. R.; Jefferson, E. A. U.S. Patent PCT/US2007/081841, 2008.
- 26. Gopaul, K.; Shintre, S. A.; Koorbanally, N. A.; Anticancer Agents Med. Chem. 2015, 15, 631.
- 27. Trecourt, F.; Mongin. F.; Mallet, M.; Queguiner, G. Synth. Commun. 1995, 25, 4011.
- 28. Eisch, J. J. J. Org. Chem. 1962, 27, 1318.
- 29. Tom, N. J.; Ruel, E. M. Synthesis, 2001, 1351.

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and submitted along with the manuscript and graphic files to the appropriate editorial office.

Click here to remove instruction text...