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Abstract: 1-Vinylpyrroles are formylated by the N,N-dimethyl-
formamide/oxalyl chloride reagent system (CH2Cl2, r.t., 40 min) to
give the corresponding 1-vinylpyrrole-2-carbaldehydes in yields up
to 97%.

Key words: aldehydes, pyrroles, formylation, oxalyl chloride,
Vilsmeier–Haack reaction

Pyrroles bearing functional groups have been finding
ever-increasing application in the synthesis of pharma-
ceuticals and analogues of natural compounds.1 New anti-
biotics, pheromones, toxins, inhibitors of cell division and
immunomodulating agents containing the pyrrole core
have been discovered.2 Pyrrole-2-carbaldehydes have
been used as intermediates in the synthesis of diverse oli-
gopyrrole systems,3 anion receptors in biomedical analy-
sis,4 porphyrins,5 models for the investigation of multiple
sclerosis6 and expansion of the genetic alphabet,7 ligands
for metallocomplexes,8 and conjugated polymers.9 Pyr-
role-2-carbaldehydes are also used in the modification of
natural structures such as proteins10 and lipids.11 Chemical
transformation of pyrrole-2-carbaldehydes has allowed
valuable compounds such as carbolines,12 cyanopyr-
roles,13 and divinylpyrroles14 to be obtained. The synthetic
potential of the aldehyde moiety combined with the bio-
logical importance of pyrroles has attracted the continu-
ous attention of chemists all over the world to this class of
compounds.

In the last years, 1-vinylpyrroles, readily available in one
step from ketoximes and acetylenes by the Trofimov reac-
tion,15 have been efficiently applied in the synthesis of
functionalized pyrroles. Recently, we16 have developed a
general method for the synthesis of the previously un-
known 1-vinylpyrrole-2-carbaldehydes 2, based on the
Vilsmeier–Haack reaction modified for 1-vinylpyrroles 1.
A modification was required because of the sensitivity of
the N-vinyl group towards electrophilic attack from the
N,N-dimethylformamide/phosphoryl chloride reagent that
reduced the chemoselectivity of the reaction. As a result,
1-vinylpyrrole-2-carbaldehydes containing aryl and
hetaryl substituents, including fused polycyclic systems,
e.g. 1-vinyl-4,5-dihydrobenz[g]indole-2-carbaldehyde
(2d), were obtained in good yields (Table 1, entry 4),

since such substituents decrease the sensitivity of the vi-
nyl group towards electrophilic reagents. However, in the
case of 1-vinylpyrroles containing donor (alkyl) substitu-
ents, the yields of the target aldehydes were significantly
reduced. For instance, from 1-vinyl-4,5,6,7-tetrahydroin-
dole (1b) the corresponding formyl derivative 2b was ob-
tained in only 56% yield (Table 1, entry 2),16 and the
formylation of 3-ethyl-2-propyl-1-vinylpyrrole (1a) gave
2a in 28% yield only (entry 1). To increase the efficiency
of this approach in a series of 1-vinyl-2-alkyl- and 1-vi-
nyl-2,3-dialkylpyrroles, we have tried to replace the N,N-
dimethylformamide/phosphoryl chloride system by a
milder formylating agent.

Scheme 1

It is known that the formylation of pyrroles, in particular
dipyrromethanes sensitive to the action of acidic reagents,
sometimes requires the use of an N,N-dimethyl-
formamide/benzoyl chloride system instead of the classic
Vilsmeier reagent.17 However, our experiments have
shown that 1-vinylpyrroles are not formylated by the N,N-
dimethylformamide/benzoyl chloride reagent under the
conditions reported earlier for this class of compounds16

(–78 °C, 3 h): the conversion of 1-vinyl-4,5-dihy-
drobenz[g]indole (1d) into the corresponding formyl de-
rivative 2d was only 3.5% (GLC analysis). At a higher
reaction temperature (0 °C), the conversion of 1-vinylpyr-
role 1d to aldehyde 2d increased to 11.7%, while under re-
flux (DCE, 57 °C, 3 h) of the same reactants the
conversion of pyrrole 1d did not exceed 33%. The N,N-
dimethylformamide/benzoyl chloride complex appears to
be unsuitable for introduction of the formyl group to 1-vi-
nylpyrroles.

The use of oxalyl chloride (among a number of other
formylating reagents) in the Vilsmeier–Haack reaction
was briefly mentioned in only a few papers18 and pat-
ents.19 In one of these papers, the influence of the substit-
uent in an amide component was studied,18c showing that
the chloro anhydride structure had ‘only a very small ef-
fect’ on the reaction results. Oxalyl chloride was used in-
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stead of phosphorus oxychloride18a to afford an iminium
salt (the precursor of pyrrole-2-carbaldehydes), since the
formation of phosphorus-containing side products was
thus avoided. However, no evidence that oxalyl chloride
was a ‘softer’ reagent was presented.

Here we report that the replacement of phosphoryl chlo-
ride by oxalyl chloride in the formylation of 1-vinylpyr-
roles 1 makes it possible to increase the yields of 1-
vinylpyrrole-2-carbaldehydes 2 to almost quantitative
with complete conversion of the starting 1-vinylpyrroles
1; it also makes it possible to perform all stages of the re-
action at room temperature (instead of at –78 °C, as the
former protocol16 required) (Scheme 1, Table 1). Stirring
of the reaction mixture in dichloromethane for 40 minutes
resulted in full consumption of the starting 1-vinylpyr-
roles 1 (GLC analysis).

This method was successfully applied to various 1-vi-
nylpyrroles 1 containing aliphatic, aromatic, condensed
aromatic, and heteroaromatic substituents, as well as to 1-
vinylpyrroles condensed with cycloaliphatic and dihy-
dronaphthalene systems (see Table 1). As shown in
Table 1, the yields of 1-vinylpyrrole-2-carbaldehydes
2a,b containing donor (alkyl) substituents were increased
approximately by 20% (entries 1 and 2). Moreover, the
yields of 1-vinylpyrroles with aryl and hetaryl substitu-
ents 2c,e–g were also increased (by 9–27%) (entries 3 and
5–7).

It may be concluded that, in general, oxalyl chloride pro-
vides the best results in the formylation of 1-vinylpyr-
roles, being a less aggressive reagent than phosphoryl
chloride, more active than benzoyl chloride, and safer and
more convenient to handle than other formylating re-
agents.21

The reaction proceeds at room temperature (instead of
–78 °C16) and needs a shorter time (40 min instead of 3 h16).
The use of the new method of 1-vinylpyrrole formylation
by the N,N-dimethylformamide/oxalyl chloride reagent
apparently suppresses oligomerization side reactions and
the removal of N-vinyl groups that occurs in the case of
the N,N-dimethylformamide/phosphoryl chloride reagent.

Melting points were measured on a Kofler micro hot stage appara-
tus. IR spectra were measured on a Bruker IFS-25 as KBr pellets or
films. 1H NMR and 13C NMR spectra were recorded on a Bruker
DPX spectrometer. Oxalyl chloride, DMF and benzoyl chloride are
commercial products. The 1-vinylpyrroles were prepared according
to a published procedure.15a

1-Vinylpyrrole-2-carbaldehydes 2; General Procedure
(COCl)2 (1.40 g, 11.0 mmol) was added dropwise (2–3 min) to
DMF (0.80 g, 11.0 mmol) at ~10 °C (cold H2O), and the white crys-
tals obtained were stirred for 15 min without cooling. Then CH2Cl2

(10.0 mL) was added, and a soln of 1-vinylpyrrole 1 (10 mmol) in
CH2Cl2 (15.0 mL) was added dropwise over 10 min at 25 °C. The
resulting mixture was stirred for 0.5 h at r.t. Then a soln of NaOAc
(4.10 g, 50 mmol) in H2O (45 mL) was added and the stirring was
continued for 0.5 h at r.t. The lower (organic) layer was separated.
The aqueous layer was extracted with Et2O (5 × 30 mL). The com-
bined organic phases were washed with sat. aq NaHCO3 (3 × 30
mL) and H2O (3 × 30 mL), and dried (K2CO3). The residue obtained
after evaporation of the Et2O was purified on basic alumina (hex-
ane–Et2O, 2:1); this gave formylpyrrole 2.

4-Ethyl-5-propyl-1-vinylpyrrole-2-carbaldehyde (2a)
From 1-vinylpyrrole 1a (1.63 g, 10 mmol), 2a was obtained.

Yield: 0.92 g (48%); yellow oily liquid.

IR (film, KBr): 3111, 3049, 2943, 2933, 2867, 2862, 2809, 2727,
1670, 1641, 1580, 1475, 1418, 1375, 1318, 1285, 1250, 1212, 1150,
1125, 1075, 1030, 969, 915, 880, 855, 800, 775, 745, 710, 684, 596,
515, 487 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.43 (s, 1 H, CHO), 7.19 (dd,
3JB–X = 15.8 Hz, 3JA–X = 8.7 Hz, 1 H, HX), 6.84 (s, 1 H, H-3), 5.26
(d, 3JA–X = 8.7 Hz, 1 H, HA), 5.21 (d, 3JB–X = 15.8 Hz, 1 H, HB), 2.61
[m, 2 H, CH2 (Pr)], 2.41 [q, 3J = 7.5 Hz, 2 H, CH2 (Et)], 1.53 [m, 2
H, CH2 (Pr)], 1.17 [t, 3J = 7.5 Hz (Et), 3 H, CH3], 0.93 [t, 3J = 7.3
Hz, 3 H, CH3 (Pr)].

Table 1 Comparison of the N,N-Dimethylformamide/Phosphoryl 
Chloride and N,N-Dimethylformamide/Oxalyl Chloride Reagent Sys-
tems in the Formylation of 1-Vinylpyrroles

Entry Product Isolated yielda (%)

DMF/
POCl3

DMF/
(COCl)2

1 2a 28b 48

2 2b 5616 72

3 2c 6616 93

4 2d 9116 89

5 2e –b 83

6 2f 7220 81

7 2g 8816 97

a The products were identified by IR and 1H and 13C NMR spectros-
copy and elemental analysis.
b Previously unknown.
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13C NMR (100 MHz, CDCl3): d = 178.2 (C=O), 140.3 (C-5), 131.6
(Ca), 131.2 (C-2), 126.4 (C-4), 123.3 (C-3), 111.3 (Cb), 26.6 [CH2

(Pr)], 22.5 [CH2 (Pr)], 18.9 [CH2 (Et)], 15.0 [CH3 (Et)], 14.0 [CH3

(Pr)].

Anal. Calcd. for C12H17NO: C, 75.35; H, 8.96; N, 7.32. Found: C,
75.39; H, 8.91; N, 7.40.

4,5,6,7-Tetrahydro-1-vinylindole-2-carbaldehyde (2b)
From 1-vinylpyrrole 1b (1.47 g, 10 mmol), 2b was obtained.

Yield: 1.26 g (72%); yellowish oil.

IR (film, KBr): 3120, 3085, 2933, 2850, 2786, 2715, 1658, 1641,
1569, 1477, 1460, 1440, 1424, 1387, 1323, 1288, 1255, 1236, 1212,
1157, 1133, 1110, 1087, 1060, 966, 945, 869, 831, 815, 747, 705,
686, 636, 550, 489 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.40 (s, 1 H, CHO), 7.54 (dd,
3JA–X = 9.1 Hz, 3JB–X = 16.1 Hz, 1 H, HX), 6.70 (s, 1 H, H-3), 5.05
(d, 3JB–X = 16.1 Hz, 1 H, HB), 5.03 (d, 3JA–X = 9.1 Hz, 1 H, HA), 2.67
(t, 3J6–7 = 6.0 Hz, 2 H, H-7), 2.51 (t, 3J4–5 = 6.0 Hz, 2 H, H-4), 1.78
(m, 2 H, H-6), 1.72 (m, 2 H, H-5).
13C NMR (100 MHz, CDCl3): d = 178.0 (C=O), 139.8 (C-2), 131.3
(Ca), 131.1 (C-7a), 124.5 (C-3), 122.2 (C-3a), 106.4 (Cb), 24.3 (C-
4), 23.2 (C-7), 22.7 (C-5, C-6).

Anal. Calcd for C11H13NO: C, 75.40; H, 7.48; N, 7.99. Found: C,
75.34; H, 7.53; N, 8.01.

5-Phenyl-1-vinylpyrrole-2-carbaldehyde (2c)
From 1-vinylpyrrole 1c (1.69 g, 10 mmol), 2c was obtained.

Yield: 1.83 g (93%); yellowish oil.

IR (film, KBr): 3121, 3055, 3020, 2987, 2929, 2800, 2727, 1655,
1630, 1593, 1559, 1533, 1492, 1450, 1440, 1428, 1401 1359, 1324,
1285, 1222, 1059, 1032, 951, 919, 888, 865, 830, 746, 680, 660,
606, 537, 462 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.62 (s, 1 H, CHO), 7.40 (m, 5 H,
Ph), 7.35 (dd, 3JB–X = 15.8 Hz, 3JA–X = 8.7 Hz, 1 H, HX), 7.05 (d,
3J3–4 = 3.9 Hz, 1 H, H-3), 6.35 (d, 3J3–4 = 3.9 Hz, 1 H, H-4), 5.08 (d,
3JA–X = 8.7 Hz, 1 H, HA), 4.87 (d, 3JB–X = 15.8 Hz, 1 H, HB).
13C NMR (100 MHz, CDCl3): d = 180.0 (C=O), 142.4 (C-2), 133.3
(Ci), 131.0 (C-5), 131.4 (Cp), 130.1 (Cm), 128.1 (Co), 128.3 (C-3),
124.4 (C-4), 112.6 (Ca), 112.4 (Cb).

Anal. Calcd for C13H11NO: C, 79.17; H, 5.62; N, 7.10. Found: C,
79.08; H, 5.57; N, 7.21.

1-Vinyl-4,5-dihydrobenzo[g]indole-2-carbaldehyde (2d)
From 1-vinylpyrrole 1d (1.95 g, 10 mmol), 2d was obtained.

Yield: 1.99 g (89%); beige crystals; mp 136–138 °C (Lit.16 133–
135 °C).

IR (KBr): 3095, 3020, 2987, 2957, 2899, 2841, 1643, 1616, 1533,
1511, 1462, 1438, 1417, 1370, 1335, 1289, 1236, 1180, 1155, 1136,
1097, 1044, 1029, 948, 921, 915, 877, 842, 777, 765, 738, 710, 685,
666, 637, 600, 575, 539, 524, 477, 436 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.59 (s, 1 H, CHO), 7.75 (d,
3J6–7 = 8.1 Hz, 1 H, H-6), 7.49 (dd, 3JB–X = 15.7 Hz, 3JA–X = 8.3 Hz,
1 H, HX), 7.27 (d, 3J8–9 = 9.1 Hz, 1 H, H-9), 7.20 (m, 2 H, H-7, H-
8), 6.91 (s, 1 H, H-3), 5.41 (d, 3JA–X = 8.3 Hz, 1 H, HA), 5.38 (d,
3JB–X = 15.7 Hz, 1 H, HB), 2.91 (t, 3J4–5 = 7.2 Hz, 2 H, H-4), 2.69 (t,
3J4–5 = 7.2 Hz, 2 H, H-5).
13C NMR (100 MHz, CDCl3): d = 179.1 (C=O), 138.7 (C-5a), 136.1
(C-9b), 133.8 (C-2), 132.1 (Ca), 128.2 (C-7), 128.0 (C-9a), 127.5
(C-6), 126.5 (C-8), 125.4 (C-3a), 124.2 (C-9), 121.1 (C-3), 113.9
(Cb), 30.5 (C5), 22.2 (C-4).

Anal. Calcd for C15H13NO: C, 80.69; H, 5.87; N, 6.27. Found: C,
80.74; H, 5.94; N 6.09.

5-(4-Ethylphenyl)-4-methyl-1-vinylpyrrole-2-carbaldehyde 
(2e)
From 1-vinylpyrrole 1e (2.11 g, 10 mmol), 2e was obtained.

Yield: 1.98 g (83%); red viscous oil.

IR (film, KBr): 3099, 3062, 3039, 2932, 2888, 2840, 1637, 1538,
1508, 1463, 1419, 1372, 1331, 1294, 1193, 1165, 1128, 1092, 1029,
976, 918, 876, 835, 763, 724, 669, 634, 606, 469, 432 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.69 (s, 1 H, CHO), 7.43 (dd,
3JB–X = 15.8 Hz, 3JA–X = 8.8 Hz, 1 H, HX), 7.38 (m, 2 H, Hm), 7.33
(m, 2 H, Ho), 7.03 (s, 1 H, H-4), 5.04 (d, 3JA–X = 8.8 Hz, 1 H, HA),
4.85 (d, 3JB–X = 15.8 Hz, 1 H, HB), 2.82 (q, 3J = 7.6 Hz, 2 H, CH2),
2.14 (s, 3 H, CH3), 1.40 (t, 3J = 7.6 Hz, 3 H, CH3).
13C NMR (100 MHz, CDCl3): d = 178.8 (C=O), 143.6 (Cp), 139.9
(C-5), 132.2 (C-2),  131.4 (Cb), 130.9 (Co), 130.1 (Ci), 127.8 (Cm),
123.9 (C-3), 120.2 (C-4), 110.6 (Ca), 28.7 (CH2, Et), 15.5 (CH3, Et),
12.2 (CH3, Me).

Anal. Calcd for C16H17NO: C, 80.30; H, 7.16; N, 5.85. Found: C,
80.42; H, 7.25; N, 5.93.

5-(2-Naphthyl)-1-vinylpyrrole-2-carbaldehyde (2f)
From 1-vinylpyrrole 1f (2.19 g, 10 mmol), 2f was obtained.

Yield: 2.00 g (81%); crimson oily liquid.

IR (film, KBr): 3290, 3121, 3059, 2959, 2921, 2835, 2800, 2788,
2725, 1661, 1604, 1539, 1488, 1447, 1424, 1366, 1323, 1317, 1294,
1277, 1250, 1218, 1133, 1096, 1040, 955, 898, 864, 838, 825, 787,
767, 752, 696, 677, 666, 632, 478 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.71 (s, 1 H, CHO), 7.99 (s, 1 H,
HAr), 7.87 (m, 3 H, HAr), 7.55 (m, 3 H, HAr), 7.49 (dd, 3JB–X = 15.7
Hz, 3JA–X = 8.6 Hz, 1 H, HX), 7.17 (d, 1 H, J = 4.1 Hz, H-3), 6.55 (d,
1 H,  J = 4.1 Hz,  H-4) ,  5 .11 (d,  3J A–X = 8.6 Hz,  1  H,
H A),  4 .90 (d,  3JB–X = 15.7 Hz, 1 H, HB,).
13C NMR (100 MHz, CDCl3): d = 179.5 (C=O), 142.5 (C-5), 133.3
(C-2), 133.2 (CAr), 132.8 (CAr), 131.5 (Ca), 129.0–126.7 (8C, CAr)
124.6 (C-3), 113.3 (C-4), 112.9 (Cb).

Anal. Calcd for C17H13NO: C, 82.57; H, 5.30; N, 5.66. Found: C,
82.65; H, 5.43; N, 5.55.

5-(2-Thienyl)-1-vinylpyrrole-2-carbaldehyde (2g)
From 1-vinylpyrrole 1g (1.75 g, 10 mmol), 2g was obtained.

Yield: 1.97 g (97%); cherry-colored crystals; mp 35–37 °C (Lit.16

34–35 °C).

IR (KBr): 3100, 3076, 2992, 2841, 2819, 2794, 2727, 1669, 1655,
1640, 1592, 1563, 1511, 1470, 1435, 1415, 1361, 1330, 1313, 1292,
1233, 1199, 1111 1094, 1076, 1038, 1011, 958, 906, 851, 704, 677,
634, 616, 581, 511, 464 cm–1.
1H NMR (400 MHz, CDCl3): d = 9.65 (s, 1 H, CHO), 7.41 (dd,
3J3¢–4¢ = 3.6 Hz, 3J3¢–5¢ = 1.1 Hz, 1 H, H-3¢), 7.30 (dd, 3JB–X = 15.7
Hz, 3JA–X = 8.4 Hz, 1 H, HX), 7.22 (dd, 3J3¢–4¢ = 3.6 Hz, 3J4¢–5¢ = 5.1
Hz, 1 H, H-4¢), 7.11 (dd, 3J4¢–5¢ = 5.1 Hz, 3J3¢–5¢ = 1.1 Hz, 1 H, H-5¢),
7.00 (d, 3J3–4 = 4.0 Hz, 1 H, H-3), 6.54 (d, 3J3–4 = 4.0 Hz, 1 H, H-4),
5.39 (d, 3JA–X = 8.4 Hz, 1 H, HA), 5.17 (d, 3JB–X = 15.7 Hz, 1 H, HB).
13C NMR (100 MHz, CDCl3): d = 179.3 (C=O), 135.3 (C-2¢), 133.7
(C-2), 132.3 (C-5), 130.6 (Ca), 128.1 (C-5¢), 127.7 (C-4¢), 127.0 (C-
3¢), 123.4 (C-3), 114.4 (Cb), 112.9 (C-4).

Anal. Calcd for C11H9NOS: C, 65.00; H, 4.46; N, 6.89; S, 15.77.
Found: C, 65.10; H, 4.38; N, 6.98; S, 15.81.
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