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Abstract: A chiral S-deaxaflavin 1 with 2-hydroxynaphthyl group at N(3) position of the pyrimidine ring moiety was 

synthesixed. 1 tmderwenk in the absence of magnesium ion. a “(net) hydride transfer” from BNAH to C(5) almost exclusively on 

the face where OH group is present. It was also the case with PNPH. and enantioselectivity for PNPH by 1 was higher in the 

absence of magnesium ion than in its presence. These results indicate that the “diastereotopic face activation” in 1 is operated as 

well as chiral recognition for PNPH by 1. 

Flavin and 5-deazaflavinl) play important roles in the redox reactions in biological systems. It is 

conceivable that at the active site of the flavoenzymes, one face of flavin molecule is blocked by a “wall” of 

protein, thus only the other open face is allowed to interact with substrates. Besides this “diastereotopic face 

deactivation” or blocking, functional groups of the apoproteins present in proximity to a flavin molecule may 

contribute to “diastemotopic face activation” in the flavin residue through a diastereoface selective protonation 

or, in some instances, a metal coordination to enhance the face selective interaction with substrates. To affect 

the “diastemotopic face activation”, we have prepared a novel optical active Sdeazaflavin 1 with axial chirality 

at N(3) position of the pyrimidine ring moiety (Scheme 1.). In 1, OH group at C(2’) position is the potential 
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functional group for an intramolecular acid catalyst. Since the rotation about N(3)-C( 1’) bond is restticted?a) 

at room temperature, the phenolic OH group will reside only on one of the 5-deazaflavin faces. Thus the 

interaction2b) between a flavin molecule and NAD(P)H models should be facilitated. 

In chiral flavoenzyme models described so far2), “diastereotopic face deactivation” factors through 

steric hindrance have been introduced into flavins or 5-deazaBavins. And no successful flavoenzyme model 

endowed with an effective intramolecular device for “diastereotopic face activation” has been reported4). 

The chiral 5-deazaflavin 1 was prepared (95%) by demethylation of chiral 2 with boron tribromide at 

low temperature without concomitant racemization (checked by HPLC) (Scheme I.). Compound 2 was 

synthesized starting from (2-methoxynaphthyl)urea in a similar yield to that in a previous paper2a). To study 

the effect of substituent at C(2) position on the “(net) hydride transfer” reactions , 5-deazaflavin 3 , which 

lacks functionality at C(2’) position, was also prepared in the same way (Scheme 1.). Successful optical 

resolution of 1-3 was achieved by an HPLC on a chiral stationary phase (CHJRALCEL OD). Specific 

rotations of the enantiomers are listed in Table 1. 

Table I. Specific Rotation of 5-Deazaflavin Enantiomers (c = I .OO in chloroform) 

5Deazaflavin e.e.(%)* 

(1) >99.5 +94.5 -94.2 
(2)** >99.5 -40.3 +40.1 

(3) *** >99.5 +23.9 -23.7 
* Analytical HPLC showed no presence of the other enantiomer. 

**(-)-2 gave (+)-1. ***Absolute/relative configuration of 3 is not yet identified. 

To discuss the diastereoface differentiating “(net) hydride transfer” reactions in l-3, Sdeazaflavin 1-3 

were subjected to reactions with NAD(P)H models. As reported in a previous paper2b), the two 

diastereotopic protons at C(5) position of the reduced 5-deazaflavins (Scheme 1.) were identifide by JH-NMR 

with an aid of Eu(fod)3-d27 (Figure la.). 

@I 
Figure 1.5) *H-NMR spectra (300MHz) 
of C(5)-H in CDC13 at 298K in the presence 

Ha Hb 
of Eu(fod)3d27 (0.2Oeq). (a) Product of 
reduction of 1 with NaBH4 in ethanol. 
(b) Product of reduction of the deuterated 1 with 

BNAH in the absence of magnesium perchlorate 
in dichloromethane (Table 2. Run 3). 

/ 
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5Deazaflavins 1-3 deuterated at C(5) position (98% isotope purity)2b) were prepared and they were 

reduced with BNAH (I benzyl- I .4-dihydronicotinamide) in the presence and absence4) of magnesium 

perchlorate in acetonitrile at 298K. The ratios of the two diastereomers (one having a protium on “a” side and 

deuterium on “b” side at C(5) of the reduced form of 5-deazaflavin (Scheme I.) is designated as Ha,Db, and 
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the other is designated as Da,Hb) were determined by 1 H-NMR. The results shown in Table 2 reveal that the 

OH group at C(2) position favors “a” side attack on 1 and the “‘bulky” methoxy group and tert- 

butyldimethylsilyl grou$ at C(2’) position retards the “a” side attack. 

Table 2. Diastereoface Differentiating2 

DeUterated 

5Deazatlavin Solvent Catalyst Time( hr) Ha(%) Hb(%) 
(1) CH2C12 2 97 3 
(1) CH3CN 2 95 5 
(I)5 ) CH3CN Mg(C104)2 0.25 75 25 

CH3CN Mg(CtO4)2 1 64 36 
CH3CN Mg(CtO4)2 0.75 50 50 

(4)5 ) CH3CN Mg(C104)2 1 20 80 
at 298K. [dFlJ = 1.0 x lW2 (M). [BNAHI = 5.0 x 10s2 (M), [Mg(ClO4)21= 5.0 x 10-2 (M) 

And surprisingly, the “(net) hydride transfer” occurred almost exclusively at Ha position (“a” face ) in 

the absence of magnesium ion in acetonitrile as well as in dichloromethane (Figure 1 b.). These results could 

be accomodated as follows. In the presence of magnesium ion, BNAH will be activated by the formation of a 

binary complex9) (BNAH*Mg2+), which can lead to a productive ternary compiex2b) on both faces of 5- 

deazaflavin, with Mg2+ being a cramp iron or a jointing union between “(net) hydride” donor and acceptor 

molecules. On the other hand, in the absence of magnesium ion, cluster formation between 1 and BNAH is 

facilitated on the face, where the OH group is present , thus “(net) hydride transfer” took place almost 

exclusively at Ha position. Essentially no intermolecular acid catalysis was observed for 2 and 3.4*6) An 

analogue of 1, which has 2-hydroxyphenyl group at N(3) position, was similarly reduced by BNAH resulting 

in a “(net) hydride transfer” in the absence of magnesium ion (This model compound allows a free rotation 

about N(3)-C( 1’) bond, thus giving rise to no diastereoface differentiation.). These results clearly indicate 

that the OH group at C(2) position of 1 facilitates the “(net) hydride transfer”reactions furnishing a 

“diastereotopic face activation” in the reactions with BNAH. 

Chiral recognition by 5-deazafiavins 1-3 were investigated in a model reaction of asymmetric 

intercoenzyme “(net) hydride transfer” reaction. Oxidation reactions of PNPH (I-propyl-N-a-methylbenzyl- 

1,4-dihydronicotinamide)2avd*fh) by (+)-1, (-)-2, and (+)-3 were carried out in the presence of or in the 

absence of magnesium perchlorate. Pseudo-first-order rate constantslo) were determined by monitoring the 

Table 3. Discrimination Factor and Estimated Pseudo-first-order Rate Constans (kv mitrl) 

5Deazaflavin Solvent catalyst kv-(R)-PNPH kvx 103 

kv-(S)-PNPH (R)-PNPH (S)-PNPH 

(+)-(l)* CH3CN Mg(CfO4)2 1.40 ‘1.82 1.30 
(+)-(l)+* CH3CN - 2.20 1.04 0.472 
(+)-(l)*+ CH2C12 - 1.93 0.943 0.488 

(-)-(2)* CH3CN Mg(Cl04)2 1.00 0.714 0.712 
(+)-(3)+ CH3CN Mg(CtO4)2 I .25 0.626 0.499 

at 298K. + IdFll = 1.0 x Ids4 (M). IPNPHI = 5.0 x lo”l (M). IMg(ClO4)2l= 5.0 x lo4 (M) 

** [dFll = 1.0 x lO-4 (M). lPNPHl=2.0 xl(r3 (M) 



7176 

decrease of absorption at 42Onm. which corresponds to the absorption of 5-doruaflavins (Table 3.). As Tabfe 

3 shows, (+)-1 and (+).3 oxidized (R)-PNPH more rapidly than its (S) isomer, Higher degree of chiral 

recognition (kg/kS) was observed for (+)-I than for (+)-2 or (+)-3 in the presence of magnesium ion. 

However, the degree of chiral ~cognition by (+)-1 was appreciably higher in the absence of ma~~ium ion 

than in its presence. These results are unique and against those of usual cases1 t), where the magnesium 

bridging brings about a higher chiral recognition. 

The results in the present paper show the first successful example of “di~tereotopic face ~tivation” in 

5-deazatlavin models and imply that the multiple interactions between substmte and reagent are quite crucial in 

a flavoenzyme system in biological system. 
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