

TETRAHEDRON

Synthesis of 11-Methoxycarbonyl-13-phenyl-17-vinylgona-1,3,5(10)-trienes

Guillaume Burtin, Hélène Pellissier* and Maurice Santelli*

ESA au CNRS n° 6009, Faculté de St-Jérôme, 13397 Marseille Cedex 20, France

Received 17 November 1997; accepted 23 February 1998

Abstract: Titanium tetrachloride mediated dialkylation of methyl $4-\infty o-4-(p-bromophenyl)$ butanoate ethylene ketal by 1,8-bis(trimethylsilyl)-2,6-octadiene (BISTRO) leads to a mixture of methyl dl and meso-(3-p-bromophenyl-2,5-divinylcyclopentan-1-yl)-propanoates. Methoxycarbonylation, alkylation by iodo-benzocyclobutene and then pyrolysis led to the title compounds. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

Since the first synthesis of equilein and estrone in 1939,^{1,2} many steroids have been prepared using several different strategies. Curiously only few 13-arylsteroids have been synthetised.³ The main step of the syntheses of these 13-arylsteroids is the addition of 2-phenyl-1,3-cyclopentanedione to 1-vinyl-5-methoxytetralol according to the Torgov reaction.⁴

In connection with our interest in steroid synthesis,⁵ we reported on a novel strategy for the synthesis of 1,1-disubstituted-2,5-divinylcyclopentanes which involves the addition of 1,8-bis(trimethylsilyl)-2,6-octadiene 1 (BISTRO) to various electrophilic reagents.⁶ More recently we have shown with carbonyl compounds that the titanium tetrachloride mediated dialkylation of acetophenones and acetophenone ethylene ketals by BISTRO gives a mixture of *dl* and *meso* 1-alkyl-1-phenyl-2,5-divinylcyclopentanes.⁷ These compounds can be used as key intermediates in the synthesis of 13-arylgonatrienes **A**.

Fax: (33) (0)4 91 98 38 65; e-mail: m.santelli@lso.u-3mrs.fr

^{0040-4020/98/\$19.00 © 1998} Elsevier Science Ltd. All rights reserved. *PII:* S0040-4020(98)00193-8

Results and discussion

Initially we studied the dialkylation of alkanophenone derivatives 2. The best result was obtained with the *p*-bromoalkanophenone ethyleneketal 2e (Table 1, entry 6) which is in accordance with the previous report concerning the high reactivity of the *p*-bromoacetophenone ethyleneketal.⁷ In each case, an inseparable mixture of *dl-meso* 3-4 was obtained in 2.33:1 ratio. We observed that in contrast to the dialkylation of acetophenone ethyleneketal, the presence of nitromethane co-solvent is not necessary. An analogous result has been already observed in the course of the dialkylation of 4-nitro-2-butanone ethylene ketal.^{5a}

Table 1. Reaction of BISTRO (1) with Acetophenone Derivatives 2.

Entry	Reag.	Reaction conditions	Yield $3+4(\%)$	dl : meso 3 : 4
1	2a	1, 1.2 eq.; TiCl ₄ , 1.2 eq.; CH ₃ NO ₂ , 4 eq.; 20 °C, 24 h	30	2.03 : 1
2	2b ⁸	1, 5 eq.; TiCl ₄ , 3 eq.; CH ₃ NO ₂ , 4 eq.; 20 °C, 19 h	18	2.33 : 1
3	2c ⁹	1, 2.5 eq.; TiCl ₄ , 2.2 eq.; CH ₃ NO ₂ , 4 eq.; -90 °C, 1h; -55 °C, 1 h	46	2.33 : 1
4	2d ¹⁰	1, 2.5 eq.; TiCl ₄ , 2.2 eq.; CH ₃ NO ₂ , 4 eq.; -90 °C, 1h; -55 °C, 2 h	44	2.33 : 1
5	2e	1, 2.5 eq.; TiCl ₄ , 3 eq.; CH ₃ NO ₂ , 4 eq.; -55 °C, 14 h	49	2.33 : 1
6	2e	1, 2.5 eq.; TiCl4, 3 eq.; -90 °C, 1 h; -55 °C, 10 h	85	2.33 : 1

The following step of our strategy is the alkylation of the enolate of 3 by iodobenzocyclobutene.¹¹ The first attempts required the use of 10 mol equivalents of benzocyclobutenyl iodide for an effective alkylation of 3 which made the preparation of the steroid precursor extremely inefficient. With the aim of enhancing the nucleophilic character of the enolate, the ester 3 was previously acylated with dimethyl carbonate to provide the inseparable *dl-meso* mixture of dimethyl malonates 5 and 6 (72% yield).¹² Thus the alkylation of the diesters 5, 6 was carried out at reflux in acetone in the presence of anhydrous cesium carbonate and only 1.5 mol equivalent of iodobenzocyclobutene using the very simple Claisen's procedure.¹³ Interestingly, the alkylation of the *dl*-isomer 5 occurs with a higher rate than that of the *meso*-isomer 6 which allowed a kinetic separation. Consequently, the alkylation of the diesters 5, 6 afforded exclusively the *dl*-isomer 7, the *meso*-isomer 6 was

mainly recovered (67% yield in 7, 96% yield from 5 and 28 % yield in pure 6). This result confirms our recent work concerning the diastereofacial selectivity of the alkylation of ester enolates.¹⁴

Thermolysis of the benzocyclobutenic intermediate 7a (or 7b) affords the steroids 8a (or 8b) and 9a (or 9b) in 40 % and 42% yield respectively.

The relative stereochemistry of the steroids 8 and 9 has been determined by a series of 1D, COSY and NOESY experiments (400 MHz). A phase mode NOESY experiment showed the vicinal relationship between the *ortho* protons of the phenyl group and the vinylic proton $H^{(20)}$, the axial protons $H^{(14)}$ and $H^{(12)}$ of the tetracycle 8. In contrast, no cross peak has been observed between $H^{(8)}$ and $H^{(14)}$. On the other hand, the *cis* relationship between $H^{(9)}$ and $H^{(8)}$ was confirmed by the vicinal coupling constant (J = 6.3 Hz). In the case of 9, the proximal position of the *ortho* protons of the phenyl group and the protons $H^{(14)}$ and $H^{(20)}$. In contrast, no cross peaks. A similar interaction proved the syn relationship $H^{(14)}$ and $H^{(20)}$. In contrast, no cross peaks have been observed between the *ortho* protons of the phenyl group and the protons $H^{(14)}$, $H^{(20)}$. Finally, the doublet signal of $H^{(9)}$ corresponds to a *cis* relationship with $H^{(8)}$ (J = 5.7 Hz).

The steroid **8** which exhibits *cis-anti-cis* ring fusion stereochemistry comes from a cycloaddition process involving the vinyl group *syn* to the benzocyclobutene moiety. According to molecular model studies, **8** could result from an *endo* approach of the *E o*-xylylene intermediate.¹⁵ In contrast, the formation of the *cis-anti-trans* tetracycle **9** which results also from an *endo* approach of the *E o*-xylylene involves the vinyl group *anti* to the chain bearing the benzocyclobutene. The cycloadducts **8** and **9** are kinetic products since molecular mechanic calculations order the stability of the eight theorically possible isomers resulting from the cyclization of *dl*-isomer **7a** as follows:

The major strain dictated the transition state results from the 1,3-diaxial interaction between the methoxycarbonyl groups and the phenyl group. With the aim to reduce this interaction, we first performed a decarbomethoxylation according to the Krapcho procedure.¹⁶ Heating the new benzocyclobutene intermediate **10** led to a mixture of three inseparable cycloadducts **11** in 85% yield. Reduction of the methoxycarbonyl group to a hydroxymethyl afforded the three isomers **12**, **13** and **14** which were relatively difficult to isolate by flash chromatography. Interestingly, the main product **12** matches the *trans-anti-trans* ring fusion stereochemistry of the natural products.

As for the steroids 8 and 9, the relative stereochemistry of alcohols 12-14 was determined by a series of 1D, COSY and NOESY experiments.

Thermolysis of the reduced benzocyclobutene intermediate 15 gave similar results.

Conclusion: We have described a short and efficient synthesis of 13β -phenyl-17-vinylgonatrienes from 1,3butadiene and benzocyclobutenol. The possibility to change the nature of the substituent of the phenyl group as well as the opportunity to transform the vinyl group by a Wacker-type oxidation enhances the synthetic versatility of our methodology.

Experimental section

General. All reactions were run under argon in oven-dried glassware. ¹H (200 MHz) and ¹³C NMR (50 MHz) spectra were recorded on a Bruker AC 200 spectrometer in CDCl₃ solutions. Chemical shift (δ) are reported in ppm with tetramethylsilane as internal standard. IR spectra were recorded on a Perkin-Elmer 1600 spectrophotometer. Flash chromatography was performed on silica gel (Merk 60 GF₂₅₄ 230-400 mesh) and TLC on silica gel (Merck 60 F₂₅₄). The *dl-meso* ratio was determined by ¹H NMR for compounds **3** and **4**. The structures of the steroids were more precisely established by a series of 1D, NOESY, NOE and decoupling experiments. The ¹H NMR coupling constants were determined on 1D-COSY spectra with semiselective excitation unit on a 400 MHz spectrometer.

Material. All solvents were distilled before used, CH₂Cl₂ and CHCl₃ from P₂O₅, MeOH under Mg(OMe)₂, THF over sodium/benzophenone. **1,8-bis(trimethylsilyl)-2,6-octadiene (BISTRO) 1** was prepared according to the previously described procedure.¹⁷ **Ethylene Ketal 2d** was prepared in 75 % overall yield from the commercially available 3-benzoylpropionic acid by esterification and acetalization. **Ethylene Ketal 2e** was obtained in 60% overall yield from bromobenzene and succinic anhydride by acylation followed by esterification, then ketalization. **Iodobenzocyclobutene** is generated through a six-step sequence. According to literature procedure,¹¹ anthranilic acid is easily converted into benzocyclobutenone which was quantitatively reduced by LiAlH₄ in THF. The alcohol is then transformed into the corresponding mesylate (CISO₂Me, NEt₃, CH₂Cl₂). The crude mixture is directly treated by NaI (in refluxed acetone) to give expected iodobenzocyclobutene.¹⁸ The overall yield of the sequence is 29% from anthranilic acid.

Methyl (dl, meso)-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)-propanoates (3a, 4a). To a stirred solution of 3.5 ml of TiCl₄ (2.2 eq., 31.6 mmol) and 3.1 ml of CH₃NO₂ (4 eq., 57.4 mmol) in 45 ml of anhydrous CH₂Cl₂ under argon was added slowly, at -60 °C, 3.4 g of ethylene ketal 2d (14.4 mmol) in 14 ml of anhydrous CH₂Cl₂. The resulting solution was cooled at - 90 °C and 9.2 g of BISTRO 1 (2.5 eq., 36 mmol) in 36 ml of anhydrous CH₂Cl₂ were added. After stirring 1 hour at -90 °C, the resulting solution was allowed to warm to -50 °C. After stirring 2 hours at -50 °C, the reaction was quenched by adding an excess of a saturated NH₄Cl aqueous solution. The mixture was decanted and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with a saturated NaHCO3 aqueous solution and water, dried over MgSO4 and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient of petroleum ether/ether) to give 1.80 g (44%) of an inseparable mixture of 3a and 4a in 2.33 : 1 ratio. IR (neat) 1738, 1634, 1171, 913, 703 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ **3a**: 7.38-7.12 (5H, m), 6.05-5.84 (1H, m), 5.32 (1H, ddd J = 18.0, 9.5, 8.1 Hz), 5.08-4.88 (4H, m), 3.56 (3H, s), 3.08 (1H, dt, J = 9.0, 4.7)Hz), 2.58 (1H, br q, J = 8.1 Hz), 2.36-1.56 (8H, m); 4a (in part): 3.57 (3H, s), 2.98-2.79 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) & 3a: 174.4 (s), 142.2 (s), 140.9 (d), 139.7 (d), 128.2 (d), 127.8 (d), 127.5 (d), 115.4 (t), 114.5 (t), 54.8 (s), 54.6 (d), 51.4 (q), 49.9 (d), 30.7 (t), 29.6 (t), 27.4 (t), 24.8 (t); 4a (in part): 174.6 (s), 144.5 (s), 138.9 (d), 126.9 (d), 126.0 (d), 115.8 (t), 53.6 (d), 30.1 (t), 28.9 (t).

Methyl (dl, meso)-3-(1-p-bromophenyl-2,5-divinylcyclopentan-1-yl)-propanoates (3b, 4b). Reaction of methyl 3-(2-p-bromophenyl-1.3-dioxolan-2-yl)-propanoate 2e following the previous

procedure without nitromethane (12.5 ml of TiCl₄ (3 eq.; 113.5 mmol) in 113 ml of CH₂Cl₂, 12 g of ethylene ketal **2e** (37.8 mmol) in 38 ml of CH₂Cl₂, 24.1 g of BISTRO **1** (2.5 eq., 94.5 mmol) in 95 ml of CH₂Cl₂, 1 hour at -90 °C then -90 °C to -50 °C) gave 11.7 g (85%) of an inseparable mixture of **3b** and **4b** in 2.33 : 1 ratio. IR (neat) 1736, 1636, 1171, 1006, 915, 737 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ **3b**: 7.45-7.36 (2H, m), 7.22-7.08 (2H, m), 6.01-5.79 (1H, m), 5.29 (1H, ddd, J = 18.4, 9.9, 8.1 Hz), 5.08-4.90 (4H, m), 3.56 (3H, s), 2.99 (1H, dt, J = 9.0, 4.8 Hz), 2.56 (1H, br q, J = 7.8 Hz), 2.31-1.58 (8H, m); **4b** (in part): 3.57 (3H, s), 2.92-2.71 (2H, m); ¹³C NMR (50 MHz, CDCl₃) δ **3b**: 173.9 (s), 141.3 (s), 140.3 (d), 139.1 (d), 130.7 (d), 129.9 (d), 119.9 (s), 115.7 (t), 114.7 (t), 54.5 (s), 54.1 (d), 51.3 (q), 49.8 (d), 30.4 (t), 29.9 (t), 29.3 (t) 28.7 (t); **4b** (in part): 174.1 (s), 143.3 (s), 138.2 (d), 131.1 (d), 128.5 (d), 116.2 (t), 53.6 (d), 30.4 (t), 27.1 (t), 24.2.

Methyl (*dl*, *meso*)-2-methoxycarbonyl-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)propanoates (5a, 6a). To a stirred solution of 28 ml (2.2 eq., 27.9 mmol) of a 1M solution of LiHMDS in THF under argon was added slowly at -65 °C, 3.6 g (12.7 mmol) of the mixture 3a, 4a in 14 ml of anhydrous THF. After stirring at -65 °C for 30 minutes, 16 ml (15 eq., 190.0 mmol) of dimethylcarbonate in 20 ml of anhydrous THF were added. After stirring 1 hour at -65 °C, the resulting solution was allowed to warm to 20 °C. After stirring 1 hour at room temperature, the reaction was quenched by adding an excess of a saturated NH₄Cl aqueous solution. The mixture was decanted and the aqueous layer was extracted twice with ether. The combined organic layers were washed with water, dried over MgSO₄ and evaporated under reduced pressure. The yellow residue was purified by flash chromatography on silica gel (gradient of petroleum ether/ether) to give 2.85 g (66%) of an inseparable mixture of 5a and 6a. IR (neat) 1755, 1738, 1253, 1200, 1151, 914, 704 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 5a: 7.38-7.12 (5H, m), 6.09-5.94 (1H, m), 5.41 (1H, ddd, *J* = 17.2, 10.0, 8.2 Hz), 5.21-4.88 (4H, m), 3.59 (3H, s), 3.24 (3H, s), 3.25-3.07 (1H, m), 2.72-2.30 (4H, m), 2.24-1.49 (4H, m); 6a vide infra; ¹³C NMR (50 MHz, CDCl₃) δ 5a: 170.3 (s), 170.2 (s), 141.3 (s), 140.6 (d), 139.7 (d), 128.7 (d), 127.4 (d), 126.0 (d), 115.2 (t), 115.1 (t), 54.9 (s), 53.7 (d), 52.4 (q), 52.3 (q), 49.3 (d), 48.9 (d), 34.9 (t), 29.6 (t), 27.7 (t); 6a vide infra.

Methyl (*dl*, *meso*)-2-methoxycarbonyl-3-(1-*p*-bromophenyl-2,5-divinylcyclopentan-1yl)-propanoates (**5b**, **6b**). Reaction of methyl (*dl*, *meso*)-3-(1-*p*-bromophenyl-2,5-divinylcyclopentan-1yl)-propanoates **3b**, **4b** following the previous procedure (0.52 g (2.2 eq., 3.1 mmol) of LiHMDS salt in 5 ml of THF, 0.50 g (1.4 mmol) of the mixture **3b**, **4b** in 3 ml of THF, 3.9 ml (15 eq., 45.8 mmol) of dimethylcarbonate in 8 ml of THF, 1 hour at -65 °C, 2.5 hours at room temperature) gave 0.30 g (72%) of an inseparable mixture of **5b** and **6b**. 0.11 g (21%) of starting material was recovered. IR (neat) 1752, 1736, 1637, 1210, 1151, 704 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ **5b**: 7.41-7.12 (4H, m), 6.05-5.86 (1H, m), 5.38 (1H, ddd, *J* = 17.3, 10.0, 8.2 Hz), 5.16-4.89 (4H, m), 3.59 (3H, s), 3.28 (3H, s), 3.25-3.05 (1H, m), 2.85-2.29 (4H, m), 2.17-1.43 (4H, m); **6b** vide infra; ¹³C NMR (50 MHz, CDCl₃) δ **5b**: 170.1 (s), 169.6 (s), 140.6 (s), 140.1 (d), 139.3 (d), 130.7 (d), 130.6 (d), 130.4 (d), 130.3 (d), 120.1 (s), 115.7 (t), 115.5 (t), 54.6 (s), 54.2 (q), 53.8 (q), 52.2 (d), 52.1 (d), 48.7 (d), 34.9 (t), 29.5 (t), 28.2 (t); **6b** vide infra.

Methyl (*dl*)-2-benzocyclobutenyl-2-methoxycarbonyl-3-(1-phenyl-2,5-divinyl-cyclopentan-1-yl)-propanoates (7a). To a stirred solution of 1.06 g (3.1 mmol) of the mixture 5a, 6a in 25 ml of analytical acetone under argon was added successively 1.31 g (1.3 eq., 4.0 mmol) of Cs_2CO_3 and 1.07 g (1.5 eq., 4.6 mmol) of iodobenzocyclobutene. The mixture was stirred 39 hours at reflux then cooled to room temperature, filtered under celite and concentrated under *vacuo*. The residue was purified by flash chromatography on silica gel (gradient of petroleum ether/ether) to give 0.85 g (62%, 88% from 5a) of diester **7a** as a mixture of two diastereoisomers. 0.29 g (27%) of pure *meso* diastereoisomer **6a** was recovered. **7a**: IR (neat) 1729, 1635, 1246, 1200, 913, 762, 706 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.44-6.87 (9H, m), 6.30-6.06 (1H, m), 5.68-5.44 (1H, m), 5.14-4.94 (4H, m), 4.18-4.14 and 3.89-3.85 (Σ 1H, m), 3.56, 3.14, 3.13, 3.09 (Σ 6H, s), 3.21-2.42 (4H, m), 2.22-1.15 (6H, m); ¹³C NMR (50 MHz, CDCl₃) δ 171.7, 170.8, 170.7, 145.9, 145.7, 143.3, 143.1, 142.8, 142.2, 141.4, 141.2, 141.1, 140.8, 129.3, 129.1, 127.5, 127.4, 127.1, 126.4, 126.3, 125.9, 123.8, 123.7, 122.2, 122.1, 115.6, 115.4, 115.3, 115.1, 58.5, 58.4, 55.2, 54.9, 53.3, 52.2, 51.8, 51.7, 51.5, 51.4, 51.3, 50.9, 48.2, 47.8, 38.6, 38.4, 32.8, 32.7, 30.0, 29.8, 29.2, 28.9.

Methyl (*meso*)-2-methoxycarbonyl-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)-propanoate (6a). IR (neat) 1755, 1738, 1253, 1200, 1151, 914, 704 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.37-7.16 (5H, m), 5.98 (2H, ddd, J = 16.8, 10.5, 7.9 Hz), 5.08-4.95 (4H, m), 3.45 (6H, s), 3.25-3.15 (1H, m), 3.02-2.81 (2H, m), 2.45 (2H, d, J = 5.2 Hz), 1.98-1.70 (4H, m); ¹³C NMR (50 MHz, CDCl₃) δ 170.0 (s), 144.0 (s), 138.4 (d), 127.6 (d), 127.1 (d), 125.8 (d), 116.1 (t), 54.5 (s), 53.5 (d), 52.1 (q), 49.1 (d), 29.1 (t), 27.5 (t). Anal. calcd. for C₂₁H₂₆O₄: C, 73.66; H, 7.65. Found: C, 73.57; H, 7.71.

Methyl (*dl*)-2-benzocyclobutenyl-2-methoxycarbonyl-3-(1-*p*-bromophenyl-2,5-divinylcyclopentan-1-yl)-propanoate (7b). Reaction of methyl (*dl*, *meso*)-2-methoxycarbonyl-3-(1-*p*bromophenyl-2,5-divinylcyclopentan-1-yl)-propanoates **5b**, **6b** following the previous procedure (0.55 g of the mixture **5b**, **6b**, 0.6 g (1.3 eq., 1.7 mmol) of Cs₂CO₃, 0.46 g (1.5 eq, 2.0 mmol) of iodobenzocyclobutene, 15 ml of analytical acetone, 27 hours at reflux) gave 0.46 g (67%, 96% from **5b**) of diester **7b** as a mixture of two diastereoisomers. 0.14 g (26%) of pure *meso* diastereoisomer **6b** was recovered. **7b**: IR (neat) 1731, 1630, 1246, 1195 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.40-6.91 (8H, m), 6.25-6.02 (1H, m), 5.62-5.41 (1H, m), 5.12-4.94 (4H, m), 4.20-4.12 and 3.90-3.87 (Σ 1H, m), 3.54, 3.18, 3.14, 3.11 (Σ 6H, s), 3.15-2.43 (4H, m), 2.23-1.41 (6H, m).

Methyl (*meso*)-2-methoxycarbonyl-3-(1-*p*-bromophenyl-2,5-divinylcyclopentan-1-yl)propanoate (6b). IR (neat) 1752, 1736, 1637, 1210, 1151, 704 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.37 (2H, d, *J* = 8.8 Hz), 7.23 (2H, d, *J* = 8.8 Hz), 5.98 (2H, ddd, *J* = 10.4, 8.0, 7.0 Hz), 5.09-4.95 (4H, m), 3.48 (6H, s), 3.15 (1H, dd, *J* = 10.3, 5.2 Hz), 2.98-2.79 (2H, m), 2.42 (2H, d, *J* = 5.2 Hz), 1.98-1.76 (4H, m); ¹³C NMR (50 MHz, CDCl₃) δ 170.3 (s), 143.5 (s), 138.3 (d), 130.8 (d), 129.3 (d), 120.1 (s), 116.8 (t), 54.4 (s), 53.9 (q), 52.5 (d), 49.2 (d), 29.2 (t), 27.8 (t).

General procedure for the thermolysis of steroid precursors. The benzocyclobutenic intermediate was dissolved in 1,2,4-trichlorobenzene (1 ml/0.1 mmol). The resulting solution was stirred at 180-190 °C under argon for an indicated time, then concentrated under vacuo. The residue was purified by flash chromatography on silica gel (gradient of petroleum ether/ether).

(8α, 9α, 14β)-11,11-dimethoxycarbonyl-13β-phenyl-17β-vinylgona-1,3,5(10)-triene (8a) and (8β, 9β, 14α)-11,11-dimethoxycarbonyl-13β-phenyl-17α-vinylgona-1,3,5(10)-triene (9a). Reaction of 334 mg of methyl (dl,)-2-benzocyclobutenyl-2-methoxycarbonyl-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)-propanoate 7a following the general procedure gave, after 17 hours at 180-190 °C, 132 mg (40%) of steroid 8a (mp : 175-176 °C) and 142 mg (42%) of steroid 9a (mp : 178-179 °C). 8a: IR (CCl4) 1733, 1637, 1246, 1074, 911 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (2H, d, J = 8.6 Hz, Ph), 7.15-7.05 (7H, m, H1-H4, Ph), 5.02 (1H, ddd, J = 17.1, 10.2, 8.7 Hz, H20), 4.65 (1H, d, J = 16.9 Hz, H21), 4.55 (1H, d, J = 11.0 Hz, H21), 3.69 (1H, d, J = 6.3 Hz, H9), 3.40 (3H, s), 3.16-3.03 (1H, m, H8), 2.99 (1H, d, J = 14.7 Hz, H12), 2.88 (3H, s), 2.66 (1H, d, J = 14.7 Hz, H12), 2.74-2.60 (3H, m, 2H6, H17), 2.38-2.28 (1H, m, H7), 1.83-1.73 (1H, m, H16), 1.60-1.39 (3H, m, H7, H14, H15), 1.30-1.23 (1H, m, H16), 0.990.85 (1H, m, H15); ¹³C NMR (50 MHz, CDCl₃) δ 172.9, 171.1, 142.6, 140.7 (Ar), 140.4 (C20), 139.3, 127.6 (Ar), 127.5 (4C, Ar), 126.0, 125.8, 125.7, 113.6 (C21), 57.9 (C17), 56.1 (C11), 52.7, 52.1, 51.7 (C13), 42.3 (C14), 39.1 (C8, C9), 35.4 (C12), 29.8 (C6), 29.2, 27.7, 24.8 (C15). Anal. calcd. for C₂₉H₃₂O₄: C, 78.34; H, 7.23. Found: C, 78.26; H, 7.33. **9a**: IR (CCl₄) 1733, 1637, 1246, 1074, 911 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (2H, dd, J = 8.6, 1.2 Hz, Ph), 7.23 (1H, t, J = 7.8 Hz, Ph), 7.14-7.08 (6H, m, H1-H4, Ph), 5.64-5.55 (1H, m, H20), 5.01-4.97 (2H, m, H21), 3.68 (1H, d, J = 5.7 Hz, H9), 3.57 (1H, ddt, J = 13.0, 9.7, 5.8 Hz, H8), 3.49 (3H, s), 3.07 (1H, dd, J = 14.4, 1.0 Hz, H12), 2.82 (3H, s), 2.74-2.60 (3H, m, 2H6, H17), 2.54 (1H, d, J = 14.4 Hz, H12), 2.38 (1H, dddd, J = 13.1, 9.8, 5.2, 3.0 Hz, H7), 1.81 (1H, dq, J = 12.3, 4.5 Hz, H15), 1.70-1.61 (1H, m, H15), 1.51-1.37 (2H, m, H14, H16), 1.24 (1H, tt, J = 9.4, 4.8 Hz, H16), 1.12 (1H, tt, J = 12.9, 5.7 Hz, H7); ¹³C NMR (50 MHz, CDCl₃) δ 173.0, 171.0, 145.3, 141.9 (Ar), 139.7 (C20), 137.8, 129.5 (2C, Ar), 127.3 (2C, Ar), 127.0 (Ar), 126.0, 125.6, 125.5, 124.6, 115.8 (C21), 59.1 (C17), 56.5 (C11), 52.9, 52.4, 52.0 (C13), 46.9 (C14), 41.9 (C9), 37.2 (C12), 31.0 (C8), 28.6 (C6), 27.0, 26.9, 24.2 (C15). Anal. calcd. for C₂₉H₃₂O₄: C, 78.34; H, 7.23. Found: C, 78.42; H, 7.25.

 $(8\alpha, 9\alpha, 14\beta)$ -11,11-dimethoxycarbonyl-13 β -p-bromophenyl-17 β -vinylgona-1,3,5(10)triene (8b) and (8 β , 9 β , 14 α)-11,11-dimethoxycarbonyl-13 β -p-bromophenyl-17 α -vinylgona-1,3,5(10)-triene (9b). Reaction of 533 mg of methyl (dl)-2-benzocyclobutenyl-2-methoxycarbonyl-3-(1-pbromophenyl-2,5-divinyl-cyclopentan-1-yl)-propanoate 7b following the general procedure gave, after 15 hours at 180-190 °C, 213 mg (40%) of steroid 8b and 192 mg (36%) of steroid 9b. 8b: IR (CCl₄) 1736, 1635, 1246, 789 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.34 (2H, d, $J \approx 8.6$ Hz, Ph), 7.21-7.02 (6H, m, H1-H4, Ph), 5.04-4.92 (1H, m, H20), 4.64 (1H, d, J = 17.8 Hz, H21), 4.56 (1H, d, J = 11.2 Hz, H21), 3.66 (1H, d, J = 5.4Hz, H9), 3.40 (3H, s), 3.15-2.87 (2H, m, H8, H12), 2.93 (3H, s), 2.73-2.50 (4H, m, 2H6, H12, H17), 2.41-2.19 (1H, m, H7), 1.81-1.63 (1H, m, H16), 1.50-1.34 (3H, m, H7, H14, H15), 1.30-1.17 (1H, m, H16), 1.17-0.95 (1H, m, H15); ¹³C NMR (75 MHz, CDCl₃) & 172.7, 170.8, 144.3, 141.7 (Ar), 139.2 (C20), 137.4, 130.6 (2C, Ar), 130.2 (2C, Ar), 127.5, 125.9, 125.6, 119.4 (Ar), 114.0 (C21), 57.8 (C17), 56.4 (C11), 52.8, 52.0, 51.4 (C13), 42.3 (C14), 38.9 (C8, C9), 36.8 (C12), 27.6 (C6), 26.9, 26.7, 24.0 (C15). Anal. calcd. for C₂₉H₃₁O₄Br: C, 66.53; H, 5.98. Found: C, 66.54; H, 6.01. **9b**: IR (CCl₄) 1736, 1635, 1246, 789 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.32 (2H, m, Ph), 7.37 (1H, d, J = 7.7 Hz, H1), 7.16-7.03 (5H, m, H2-H4, Ph), 5.61-5.49 (1H, m, H20), 5.04-4.90 (2H, m, H21), 3.66 (1H, d, J = 5.5 Hz, H9), 3.48 (3H, s), 3.46-3.41 (1H, m, H8), 2.99 (1H, d, J = 14.4 Hz, H12), 2.90 (3H, s), 2.73-2.58 (3H, m, 2H6, H17), 2.52 (1H, d, J = 14.4 Hz, H12), 2.43-2.25 (1H, m, H7), 1.78-1.58 (2H, m, 2H15), 1.48-1.33 (2H, m, H14, H16), 1.30-1.18 (1H, m, H16), 1.08 (1H, tt, J = 12.9, 5.7 Hz, H7); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 170.8, 144.3, 141.8 (Ar), 139.9 (C20), 137.4, 131.2 (2C, Ar), 130.4 (2C, Ar), 125.9, 125.7, 124.5, 119.6 (Ar), 116.0 (C21), 57.8 (C17), 56.4 (C11), 52.6, 52.2, 52.0 (C13), 46.6 (C14), 41.7 (C9), 37.0 (C12), 30.9 (C8), 28.5 (C6), 26.9, 26.7, 24.0 (C14). Anal. calcd. for C₂₉H₃₁O₄Br: C, 66.53; H, 5.98. Found: C, 66.63; H, 6.05.

Methyl (dl)-2-benzocyclobutenyl-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)-propanoate (10). To a stirred solution of 480 mg (1.08 mmol) of diester 7a in 4 ml of wet dimethylsulfoxide was added 158 mg (3 eq., 3.23 mmol) of sodium cyanide (NaCN). The resulting solution was stirred 22 hours at 90 °C then cooled to room temperature and poured in a large excess of water. The mixture was extracted with CH_2Cl_2 . The combined organic layers were washed with water, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient of petroleum ether/ether) to give 350 mg (84%) of the monoester **10** as an inseparable mixture of four diastereoisomers. IR (neat) 1733, 1635, 1161, 913, 750, 706 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.48-6.78 (9H, m), 6.25-6.08, 6.12-5.80, 5.79-5.40 (2H, m), 5.22-4.78 (4H, m), 3.60-3.42 (2H, m), 3.40, 3.26, 3.13, 3.07 (3H, s), 3.30-1.60 (10H, m).

11-dimethoxycarbonyl-13 β -phenyl-17-vinylgona-1,3,5(10)-trienes (11). Reaction of 380 mg of 10 following the general procedure gave, after 17 hours at 180-190 °C, 321 mg (85%) of 11 as an inseparable mixture of three steroids. ¹H NMR (200 MHz, CDCl₃) δ 7.43-6.73 (9H, m, H1-H4, Ph), 5.95 (1H, ddd, J = 16.3, 8.7, 10.9 Hz) and 5.32-5.15 (1H, m, H21), 5.11-4.93, 4.71-4.55 (2H, m, H22), 3.75, 3.69, 3.60 (3H, s), 3.37 (1H, dd, J = 10.7, 5.4 Hz, H11), 2.96-1.35 (14H, m, H6-H9, H12, H14-H17).

 $(8\beta, 9\alpha, 14\alpha)$ -11 α -hydroxymethyl-13 β -phenyl-17 α -vinylgona-1,3,5(10)-trienes (12), $(8\alpha, 9\beta, 14\beta)$ -11 β -hydroxymethyl-13 β -phenyl-17 β -vinylgona-1,3,5(10)-trienes (13) and $(8\beta,$ 9 β , 14 β)-11 α -hydroxymethyl-13 β -phenyl-17 β -vinylgona-1,3,5(10)-triene (14). To a stirred suspension of 61 mg of LiAlH₄ (1.16 mmol) in anhydrous THF (3 ml) under argon was added at 0 °C, 321 mg (0.83 mmol) of steroids 11 in 2 ml of anhydrous THF. After stirring 4 hours at 20 °C, 5 ml of wet ether and celite were added. Then, the mixture was stirred for 30 mn before filtration. After evaporation under reduced pressure, the residue was purified by flash chromatography on silica gel (gradient of petroleum ether/ether) to give 109 mg (34%) of 12, 58 mg (18%) of 13 and 90 mg (28%) of 14. 12: IR (CCl₄) 3628, 3422, $1634,1262, 1035, 1008, 910 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (400 MHz, C₆D₆) δ 7.33 (2H, br dd, J = 8.6, 1.2 Hz, Ph), 7.07-6.89 (6H, m, H2-H4, Ph), 6.78 (1H, d, J = 7.7 Hz, H1), 5.93 (1H, ddd, J = 16.9, 10.3, 8.6 Hz, H20), 5.10 (1H, dd, J = 10.2, 2.3 Hz, H21), 5.07 (1H, dd, J = 16.9, 2.3 Hz, H21), 3.73 (1H, dd, J = 10.5, 2.2 Hz, H21), 3.75 (1H, dd, J = 10.5, 2.2 Hz, H21), 3.75 (1H, dd, J = 10.5, 2.2 Hz, H21), 3.75 (1H, dd, J = 10.5, 2.2 Hz, H21), 3.75 (1H, dd, J = 10.5, 2.2 Hz, H21), 3.75 (1H, dd, J = 10.5, 2.2 Hz, H21), 3.75 (1H, dd, J = 10.5, 2.5 Hz), 3.75 (1H, dd, J = 10.5, 2.2 Hz), 3.75 (1H, dd, J = 10.5, 2.5 Hz), 3.55 (1H, dd, J = 10.5,CH₂OH), 3.27 (1H, dd, J = 10.5, 6.4 Hz, CH₂OH), 2.79 (1H, dd, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 2.68 (1H, t, J = 13.2, 3.1 Hz, H12), 3.1 Hz, H1 7.4 Hz, H17), 2.64-2.55 (2H, m, 2H6), 1.96 (1H, br q, J = 9.1 Hz, H8), 1.90-1.65 (7H, m, H9, H11, H14, H15, 2H16), 1.62-1.50 (2H, m, H12, H15), 1.42-1.34 (1H, m, H7); ¹³C NMR (100 MHz, CDCl₃) δ 142.7 (Ar), 140.3 (C20), 147.3, 139.5, 128.1 (2C, Ar), 128.0 (2C, Ar), 127.5 (Ar), 125.6, 125.5, 125.2, 122.9, 114.8 (C21), 67.0, 56.2 (C17), 52.8 (C13), 52.3 (C11), 42.5 (C14), 40.4 (C12), 38.1, 36.6, 27.3, 27.1, 26.9, 26.0. Anal. calcd. for C₂₆H₃₀O: C, 87.09; H, 8.45. Found: C, 87.13; H, 8.50. 13: IR (CCl₄) 3628, 3422, 1634,1262, 1035, 1008, 910 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (4H, m, Ph), 7.33-7.07 (5H, m, H1-H4, Ph), 5.20 (1H, br ddd, J = 18.2, 8.7, 7.4 Hz, H20), 4.96 (1H, br dd, J = 17.2, 2.2 Hz, H21), 4.91 (1H, br dd, J = 10.0, 2.2 Hz, H21), 3.52 (1H, dd, J = 11.1, 5.0 Hz, CH₂OH), 3.03 (1H, br t, J = 10.2 Hz, CH₂OH), 2.88 (2H, dd, J = 7.9, 7.7 Hz, 2H6), 2.55 (1H, dd, J = 15.0, 4.2 Hz, H12), 2.45-2.38 (2H, m, H11, H17), 2.27 (1H, td, J = 10.0, 4.5 Hz, H14), 2.25-2.12 (2H, m, H7, H14, H15), 2.01-1.95(1H, m, H9), 1.96 (1H, dd, J = 15.0, 5.3 Hz, H12), 1.68-1.51 (3H, m, H8, H15, H16), 1.44-1.23 (2H, m, H7, H16); ¹³C NMR (100 MHz, CDCl₃) δ 141.3 (Ar), 139.6 (C20), 145.6, 137.8, 128.7 (Ar), 127.8 (2C, Ar), 127.6 (2C, Ar), 126.1, 126.0, 125.9, 125.7, 115.0 (C21), 66.8, 51.6 (C13), 56.5, 49.4, 43.4 (C14), 41.6, 40.9, 34.0 (C12), 30.1, 29.6, 29.4, 28.3. Anal. calcd. for C₂₆H₃₀O: C, 87.09; H, 8.45. Found: C, 87.01; H, 8.54. 14: IR (CCl₄) 3628, 3422, 1634,1262, 1035, 1008, 910 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.16-6.99 (5H, m, H1-H4, Ph), 5.27 (1H, ddd, J = 17.1, 10.1, 8.5 Hz, H20), 4.67 (1H, dd, J = 17.1, 1.8 Hz, H21), 4.60 (1H, dd, J = 10.2, 1.8 Hz, H21), 3.74 (1H, dd, J = 10.6, 3.0 Hz, CH₂OH), 3.60 (1H, dd, J = 10.6, 5.0 Hz, CH₂OH), 2.43 (1H, dd, J = 5.0, 9.4 Hz, H9), 2.80-2.75 (1H, m, H15), 2.67-2.63 (2H, m, 2H6), 2.57 (1H, d, J = 11.7 Hz, H12), 2.43 (1H, q, J = 7.5 Hz, H17), 2.19-2.14 (1H, m, H8), 2.12-1.93 (2H, m, H15, H16), 1.81-1.75 (2H, m, H11, H12), 1.69-1.54 (3H, m, H7, H14, H16), 1.47-1.38 (1H, m, H7); ¹³C NMR (100 MHz, CDCl₃) δ 141.6 (C20), 138.6 (Ar), 144.3, 137.4, 127.9 (2C, Ar), 127.5 (2C, Ar),

130.0, 129.0, 126.0, 125.5, 125.0, 112.7 (C21), 66.4 , 51.7 (C13), 58.5, 47.7, 39.4, 38.2, 37.8, 37.4 (C12), 30.2, 30.1, 29.4, 27.2. Anal. calcd. for C₂₆H₃₀O: C, 87.09; H, 8.45. Found: C, 87.04; H, 8.51.

(dl)-2-benzocyclobutenyl-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)-propan-1-ol (15). To a stirred solution of 0.12 mg (3.26 mmol) of AlLiH₄ in 8 ml of anhydrous THF under argon was added slowly in an ice bath, 0.9 mg (2.33 mmol) of the esters 10 in 8 ml of anhydrous THF. After stirring at room temperature for 4.5 hours, the reaction was quenched by adding successively 3.9 g of celite, 3.9 g of Na₂SO₄.10H₂O and 0.8 ml of water. After stirring an additional 30 minutes, the mixture was filtered and concentrated under reduced pressure to give 0.79 g (95%) of the alcohols 15 as an inseparable mixture of four diastereoisomers. IR (neat) 3445, 1640, 1265, 896 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) & 7.58-7.02 (9H, m), 6.38-6.08, 6.02-5.82, 5.78-5.42 (2H, m), 5.28-4.95 (4H, m), 3.50-3.10 (3H, m), 2.90-2.60 (2H, m), 2.40-1.58 (8H, m).

Reaction of 123 mg of (dl)-2-benzocyclobutenyl-3-(1-phenyl-2,5-divinylcyclopentan-1-yl)-propan-1-ol 15 following the general procedure gave, after 8 hours at 180-190 °C, 40 mg (32%) of steroid 12, 23 mg (18%) of steroid 13 and 33 mg (26%) of steroid 14.

Acknowledgement: We thank Dr R. Faure for his assistance in NMR measurements, Dr B. Vacher (Pierre Fabre Médicaments, Castres, Fr.) for helpful comments and Dr J. P. Friedelin (Isotopchim, 04310 Fr) for his continuous interest. We thank the "Région Provence Alpes Côtes d'Azur" Council for a fellowship to G. B.

References and Notes

- Bachman, W. E.; Cole, W.; Wilds, A. L. J. Am. Chem. Soc. 1939, 61, 974-975. 1.
- 2. According to the Belstein library, close to 90 000 steroids are known.
- (a) Windholz, T. B.; Brown, R. D.; Patchett, A. A. Steroids 1965, 6, 409–419. (b) Miki, T.; Hiraga, K. JP Patent 66018820 B4, Chem. Abstr. 1967, 66, 18810m; JP Patent 66019337 B4, Chem. Abstr. 1967, 3. 66, 55650e; Patent 66019338 B4, Chem. Abstr. 1967, 66, 55651f; JP Patent 66019339 B4, Chem. Abstr. 1967, 66, 55652g; US Patent 3287380, Chem. Abstr. 1967, 66, 38130t. (c) Patchett, A. A.; Windholz, T. B. US Patent 3725439, Chem. Abstr. 1973, 79, 32190j.
- 4. Anachenko, S.; Torgov, I. V. Tetrahedron Lett. 1963, 1553-1558.
- (a) Ouvrard, P.; Tubul, A.; Santelli, M. Bull. Soc. Chim. Fr. 1993, 130, 772-778. (b) Michellys, P.Y.; 5 Pellissier, H.; Santelli, M. Tetrahedron Lett. 1993, 34, 1931-1934. (c) Pellissier, H.; Santelli, M. Tetrahedron 1996, 52, 9093-9100.
- 6. (a) Tubul, A.; Ouvrard, Ph.; Santelli, M. Synthesis 1991, 173-176. (b) Ouvrard, P.; Tubul, A.; Santelli, M. Tetrahedron Lett. 1992, 33, 7519-7520. (c) Ouvrard, Ph.; Tubul, A.; Santelli, M. Bull. Soc. Chim. Fr. 1993, 130, 772-778. (d) Pellissier, H.; Wilmouth, S.; Santelli, M. Bull. Soc. Chim. Fr., 1995, 132, 627-641. (e) Pellissier, H.; Faure, R.; Santelli M. J. Chem. Soc., Chem. Comm. 1995, 1847-1848. (f) Pellissier, H.; Wilmouth, S.; Santelli, M. Tetrahedron Lett. 1996, 37, 5107-5110.
- Pellissier, H.; Burtin, G.; Santelli, M. Tetrahedron, in press.
 Mallory, F. B.; Luzik, E. D.; Mallory, C. W.; Carroll P. J. J. Org. Chem. 1992, 57, 366-370.
 Padwa, A.; Austin, D. J.; Hornbuckle, S. F. J. Org. Chem. 1996, 61, 63-72.
- 10. Johnson, S. J.; Kesten, S. R.; Wise, L. D. J. Org. Chem. 1992, 57, 4746-4749.
- 11. Dürr, H.; Nickels, H.; Pacala, L. A.; Jones, M., Jr. J. Org. Chem. 1980, 45, 973-980.
- 12. (a) House, H. O. Modern Synthetic Reactions, 2d ed.; W. A. Benjamin: Menlo Park, Calif., 1972; pp 734-765. (b) Fray, A. H.; Kaye, R. L.; Kleinman, E. F. J. Org. Chem. 1986, 51, 4828-4833. 13. (a) Barco, A.; Benetti, S.; Pollini, G. P. Synthesis 1973, 316. (b) Kataoka, H.; Yamada, T.; Goto, K.;
- Tsuji, J. Tetrahedron 1987, 43, 4107-4112.
- 14. Pellissier, H.; Michellys, P. Y.; Santelli, M. J. Org. Chem. 1997, 62, 5588-5591.
- 15. For a discussion on the geometry of the transition state during the steroid synthesis from benzocyclobutene, see ref. 5c.
- 16. (a) Krapcho, A. P.; Glynn, G. A.; Grenon, B. J. Tetrahedron Lett. 1967, 215-217. (b) Krapcho, A. P. Synthesis 1982, 805-892.
- 17. Tubul, A.; Santelli, M. Tetrahedron 1988, 44, 3975-3982.
- 18. Funk, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1980, 102, 5253-5261.