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Abstract: A new concept for immobilising Grubbs III catalyst by
direct coordination of ruthenium to polyvinyl pyridine (PVP) is pre-
sented. PVP was prepared by precipitation polymerisation, which
led to small bead sizes (0.2–2 mm) and large surface areas. Com-
pared to commercial resins, this phase showed superior properties
when employed in model ring-closing metathesis (RCM) and in
representative RCM, enyne and CM reactions with various sub-
strates. The concept of immobilisation was also applied to Raschig
rings made from a glass polymer composite material, which can be
incorporated into devices for continuous flow processes.
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During recent years, olefin metathesis using modern
ruthenium catalysts such as Grubbs I–III (1, 2, 5) and
Hoveyda–Grubbs carbenes (3, 4, Figure 1) has become a
key reaction in organic synthesis.1

Figure 1 Ruthenium-based catalysts 1–5 for olefin metathesis
(Cy = cyclohexyl, Mes = 2,4,6-trimethylphenyl).

In order to remove various ruthenium by-products from
the reaction mixture several protocols such as scaven-
gers,2a–c biphasic extraction,2d and silica gel chromatogra-
phy have been proposed. Another strategy to make Ru-
based olefin metathesis more economical is immobilisa-
tion of these homogeneous catalyst on a solid phase.3

Several attempts have been made to immobilise Grubbs-
type carbenes 1 and 2 on solid or soluble supports either
via ligand L (Figure 1) or via the alkylidene moiety.4

Hoveyda established catalysts 3 and 45 as remarkably ro-
bust complexes promoting olefin metathesis by a release–

return mechanism.6 Recently, various Hoveyda–Grubbs
carbenes were attached to different resins or soluble sup-
ports preferentially via the 2-alkoxy-benzylidene frag-
ment.7

However, for practicability reasons reversible attachment
of catalysts to a solid phase is highly desirable.8 The pos-
sibility of reloading the solid phase opens the door for util-
ising solid supports which have been specially designed
for the individual catalytic process without considering
their costs as much as would be relevant for covalently
bound catalysts. Indeed, this concept should be of
particular relevance in continuous flow processes9 using
reactors filled with heterogeneous or immobilised homo-
geneous catalysts.10 The attachment ought to be strong
enough in order to suppress leaching of the catalyst. How-
ever, after inactivation of the catalyst it is beneficial if it
can be removed and the solid phase can be reactivated
with fresh catalyst. In fact, this strategy would particularly
gain interest in industrial applications.11

In this report we describe a straightforward procedure for
immobilisation Grubbs III by means of coordinative bind-
ing. In contrast to the concept of grafting, we pursued a
polymerisation strategy using the active species as part of
the monomer in order to guarantee high loading.12 Thus,
as polymeric material, we chose polyvinyl pyridine (PVP)
as part of a monolithic highly porous polymer/glass com-
posite material which was obtained by precipitation poly-
merisation of vinyl pyridine and divinyl benzene (DVB)
as cross linker.13 The polymeric phase was prepared from
a heated solution (70 °C) of the monomers and AIBN as
radical initiator in a nonpolar solvent (n-alkane C14–C17

mixture). After 12 hours the precipitation of small inter-
connected polymer particles (5.3 mass% degree of
crosslinking) occurred. The BET surface area is low (<5
m2/g).14,15 The polymeric material consists of very small
particles (0.2–2 mm) compared to commercial resins (10–
50 mm). Despite the small size of the individual bead-like
particles the material can easily be filtered. Indeed, the op-
timised polymerisation process creates polymeric bridges
between these particles, which resulted in an extended,
monolithic polymeric phase (Figure 2, a and b).

Recently, Grubbs and coworkers showed that 3-bromo
pyridine can form a 2:1 complex with the Grubbs II cata-
lyst 2 to yield the active olefin metathesis catalyst 5.16 Ru-
thenium complex 5 is active in many types of metathesis
reactions17 including challenging CM with acrylonitrile.16
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We found that the Grubbs III catalyst 5 can easily be
immobilised through ligand exchange using polyvinyl
pyridine (obtained by precipitation polymerisation,
Scheme 1).18,19 The immobilisation was achieved by em-
ploying PVP in ten-fold excess (with reference to pyridine
moieties on the polymer) which resulted in complete
(96%) immobilisation of catalyst 5 as was judged gravi-
metrically as well as by ICP-MS. The resulting immobil-
ised catalyst 6a is relatively stable towards air.
Degradation was encountered after two weeks.20 For com-
parison reasons, we also employed commercial polyvinyl
pyridine (from Acros) and treated it with Ru-complex 5 to
yield immobilised Ru-complex 6b.

Malonate 7 served as model diene. Transformation of 7 to
cyclopentane 8 in the presence of catalyst 6a (5 mol%, tol-
uene, 110 °C, 4 h; 0.297 mmol Ru/g polymer) was quan-
titative, while polymer 6b yielded the cyclisation product
8 in only 11% under identical conditions. In addition, we
tested whether coordination can only be achieved with the
Grubbs III catalyst 5. Thus, PVP (10 equiv) generated by
precipitation polymerisation was treated for 72 hours with
the Grubbs II catalyst 2 (1 equiv) in toluene in the absence
as well as in the presence of CuCl.5 In both cases it was
hoped that ligand exchange with PCy3 occurs, in the latter
case the addition of the copper salt should facilitate disso-
ciation of the remaining phosphane ligand. The resulting

samples were employed in ring-closing metathesis of
malonate 7 (5 mol%, toluene, 110 °C, 4 h) and were
repeatedly used. The results of these experiments are
summarised in Scheme 2 and Figure 3.

Figure 3 Reusability of Ru-doped PVP polymer (prepared by pre-
cipitation polymerisation) treated with a) Grubbs III 5 (black), b)
Grubbs II 2 (grey) and c) Grubbs II 2 + CuCl (white) in RCM [prepa-
ration of cases b) and c) see text].21

Obviously, the Grubbs III catalyst is the best choice for
conducting ligand exchange reaction with polymer-bound
pyridine. In terms of reusability polymer 6a behaves sim-
ilar to many covalently attached examples described in the
literature4 although in selected cases longer living systems
have been described.4b After the fifth run, activity is lost
which can either be ascribed to lack of thermal stability22

or to the inherent problem of leaching during the catalytic
cycle. Importantly, the solid phase can be reactivated by a
washing protocol (1 N HCl, 1 N NaOH, H2O, MeOH,
toluene, then addition of 5), which is an advantage over
the solid phase concepts described so far.

Having evaluated the coordinative immobilisation of ole-
fin metathesis catalysts to PVP we studied the applicabil-
ity of catalyst 6a in a more general sense (Table 1).21

In the case of allylethers 12 and 13 only double bond
migration to the E/Z-mixture of enol ethers occurred, a
phenomenon that has frequently encountered in olefin
metathesis chemistry.23,24 Snapper and coworkers showed
that the Grubbs II catalyst 2 in the presence of small
amounts of H2 is able to isomerise a cyclic allyl ether into
the corresponding enol ether via postulated Ru–hydride
complexes.25a However, in the present case, the isomeri-
sation proceeds without the presence of any external hy-
drogen source.24a It is known that in the presence of an
additional base isomerisation of olefinic double bonds
may also proceed.25b Here, the additional base may come
from the vacant sites on the PVP phase.

Figure 2 a) Bridging to neighbouring polymer particles visualised
by scattering electron microscopy (visualised by SEM). b) Morpholo-
gy of polyvinyl pyridine (PVP; by SEM).

Scheme 1 Preparation of polymer-bound Ru-complexes 6a (pow-
der) and 6b (the exact stereochemistry in the coordination sphere of
the Ru centre is unknown).19
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Exploiting Barrett’s concept of boomerang catalysts using
1-octene or triphenyl phosphane was tested here to im-
prove reusability of 6a but it rather gave reduced yields
(35% for 14 compared to 96%; conditions: 5 mol% 6a,
toluene, 100 °C).26

In summary, we have described a new metod for the coor-
dinative immobilisation of Grubbs III olefin metathesis
catalyst to polyvinyl pyridine (PVP) with coordinative
properties. The solid-phase-bound catalyst shows very
good chemical reactivity and good recyclability and im-
portantly can easily be reactivated with fresh catalyst,
which opens the possibility of using catalysts of type 6a
under continuous flow conditions in flowthrough reactors.

Current work focuses on altered, non-covalently attached
catalysts which show a longer life time when repeatedly
used and which can be employed in multistep applications
under continuous flow conditions.
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Table 1 RCM and CM with Solid-Phase-Bound Catalyst 6a (Powder)a

Substrate Product Temp, time Yield (%)

9 14 100 °C, 5 h 96

10 15 100 °C, 5 h 99

7 8 100 °C, 5 h 99

11 16 100 °C, 4 h 80

12 17 100 °C, 7 h 98b

13 18 100 °C, 5 h 77c

a Conditions: reactions were carried out under argon in toluene with 5 mol% of catalyst 6a.
b A 50% yield in toluene at 40 °C and no conversion in CH2Cl2 at 40 °C.
c A 25% yield (E/Z = 1:3) with catalyst 2.
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