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1. Introduction Table 1. Selected surface area of organocatalysts for catalytic
. . _ .__direct C-H arylation (highlighted in blue
Cross-coupling reactions are widely used to construct blary(ij y (highlig )
motifs, which are commonly found in functional materials such O Q
as organic semiconductors and organic light emitting dioales
well as in pharmaceuticalsThe strategy of forming aryl-aryl D _
. . 4 " / A\ N0
bond has evolved from using second Yoovfirst row' transition _ _ N
L . N N NH, O
metalcatalysts, and from activated arette parent arenes via c1 o2
direct C-H arylatiorf.® O O

Ha(ttp)

Itami in 2008 which has emerged as a new approach for the

biaryl synthesis. It is mechanistic interesting, that transition osu y

metals are not required in the bond breaking and makin
0 . \ N |

processe$’ The often expensive metal catalysts themselves an { O O

the pharmaceutical requirement to remove metallic impurities 0Bu Ns">=N  OBu

afterwards could be avoided. Thus the cross-coupling of N omu O O

The organocatalytic direct C-H arylation is first reported by g o8
[ OBu

ZT

BuO

unreactive aromatic C-H bonds with aryl halides leads to a H(trip)
; . . H(obopc) P
cheaper and more environmentally friendly reaction.
] Entry Catalyst Surface area ? Aloading / mol% ref

Later, various organocatalysts were found to catalyze the c1 30.6 20 60
direct C-H arylation in the presence of strong base, such as, c2 206 20 6c
DMEDA (N,N'-dimethylethylenediamin€e¥: 1,10- o) 618 5 11a
Phenanthroliné’ quinoline-amino-carboxylic acitfzwitterionic i '

. ed . . f . Hz(obopc) 120.6 3 1lc
radicaf’ and amino-linked N-heterocyclic carbiffeHowever, Htri 90.0 1 11b
the catalyst loadings usually required 20 mol% and N (trip) ) )

Ceo 149.6 1 this work

atmosphere for satisfactory results. Alternatively, metal and base 6
# estimated by Spartan '10 at Semi-Empirical/AM1 level
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free, photocatalytic protocol using Eosin Y as photocatalyst haSable 2. C5o loading effects on g-catalyzed direct C-H
been discovered by KénigOur group has reported the air- arylation of benzene
compatible organocatalysts such agtid) (5 mol%)*'? H(trip) cat Ceo
(1 mol%)*™® and H(obopc) (3 mol%)® The larger surface area KOH (10 equiv) O

of these catalysts tends to allow lower catalyst loading (Table 1, ! . ‘BUOH (10 equiv)
entries 1-5). 200 °C, dark, O

100 equiv @i time

A general accepted mechanism of these strong base-promoted 1a
organocatalytic direct C-H arylation was initiated by one electron _ Entry Gso loading/ mol% Time / h Yielda/ %
reduction of aryl halide by an electron donor to generate an aryl 1° 5 25 59
halide radical anion. This radical anion eliminates a halide anion 2 5 3 68
to give an aryl radical. The aryl radical then adds to an arene to 3 2.5 6.5 65
yield the biaryl product (Scheme 1) A recent report 4 1 9 7
suggested that in situ deprotonation of the organocatalyst gives g 01 36 58
anionic electron-rich alkene species as the electron ddiidre 6 0 72 32

one electron reduction of aryl halides by organic electron donors
has been well document&t Alternatively, reduction of aryl
halides via photo-induced electron transfer using PDI
(perylenediimide) photocatalyst has been repaorted.

GC vyield.
> Under N

Table 3. Base effects ondgcatalyzed direct C-H arylation of
e (from donor) benzene A
50 (1 Mol%

X x|
G {j/ ¥> FG{j/ base ‘
A Z ! ( 'BUOH (10 equiv)
200 °C, dark, O

J X 100 equiv air, time 1a
Xy Entry Bases Equiv Time / h Yielth / %6
el ‘—’j_ FG@ 1 NaOH 10 36 12
Z 2 KOH 10 9 71
© 3 CsOH 10 3 47
, o Vi KOH 10 30 14
Scheme 1. General mechanism of organocatalytic direct C-H 5 'BUOK 10 3 20
arylation 6 KOH 20 35 71
Donor-acceptoreTt interaction was found to be important in 7 KOH 30 3 57
the one-electron reduction via electron transfer from organic & KOH 20 15 60

superelectron dondf. Hence, the electron-rich organocatalyst * GC yield.
with larger surface area may enhancertfteinteraction with the  ® without'BuOH.
aryl halides and facilitates the electron transfer process. ©180°C

Inspired by the report from Fukuzumi and Kadishsdan be
readily reduced by MeOlo generate a mixture of electron-rich  Control experiment without & yielded 32% ofla in 72 h
Ceo(OMe),™ and G~ radical aniort’ Taking the advantage of (Table 2, entry 6). The formation & is accounted by the direct
large surface area ofsgand its spherical shape to maximizet  reduction of 4-iodotoluene by KOH via single electron transfer to
interaction (Table 1, entry 6), the combination gf &d a strong  give the corresponding aryl iodide radical anion, which further
base serves as the potential reducing agent for aryl halides rigacts according to the mechanism depicted in Scheffie 1.
catalytic direct C-H arylation. Herein we report thg-Catalyzed  Alternatively, 4-iodotoluene reacts with KOH to generate an
direct C-H arylation of benzene with aryl iodides in air with onlyaryne intermediate, which is then trapped by benZene.
1 mol% loading of &, Therefore, the formation dfa in the absence of¢gis minor due
to its longer reaction time and much lower product yield. The
conditions shown in Table 1, entry 4 was chosen for

Initially, treatment of 4-iodotoluene (1 equiv) with KOH (10 investigations on base effects at reasonably lqwidading (1
equiv), 'BUOH (10 equiv) and & (5 mol%) in benzene (100 MoI%) and short reaction time.
equiv) at 200°C under N for 2.5 h gave direct C-H arylation  The cations of group 1 metal hydroxides affect the coupling
product 4-methylbiphenyla in 59% yield (Table 2, entry 1). TO yeaction  significantly. Among the three Group 1 metal
our delight, the reaction was compatible with air and yieldedhygroxides examined, KOH was the best base (Table 3, entries 1-
68% oflain 3 h (Table 2, entry 2). 3). Although CsOH took a shorter reaction time, lower yield of

With 2.5 mol% G, loading, the reaction took 6.5 h for 1awas resulted due to the co-formation of significant amounts of
completion to yield 65% ofla (Table 2, entry 3). Further 4-tbutoxytoluene and 8butoxytoluene (Table 3, entry 3). The
lowering the catalyst loading to 1 mol% produckadin 71%  nucleophilic aromatic substitution of 4-iodotoluene with
yield in 9 h (Table 2, entry 4). Surprisingly, the reaction alsd’utoxide, formed in situ from KOH aﬁBuOH,{ through benzyne
proceeded smoothly with only 0.1 mol% of,@ yield 58% of mechanism became significdftWithout any'BuOH, the yield

1lain 36 h (Table 2, entry 5). The high catalytic activity gf i@  ©f 1a decreased significantly even after 30 h (Table 3, entry 4).
consistent with its large surface area (Table 1). We reasoned thaBuOH help to solubilize KOH better in

benzene.

2. Results and discussion
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Table 4. Cgp-catalyzed direct C-H arylation of benzene with equimolar mixture of benzene and benzdnéeq 1). The KIE

aryl iodides was measured to be 1.11+0.01 from GCMS analysis. Therefore
Cep (1 MOI%) the C-H bond cleavage is not rate-determining.
| KOH (20 equiv)
f BUOH (10 equiv) SN Ceo (1 mol%)
FG ©/ * © 200°C, dark, ~ FOU ' KOH (20 equiv) Cets  CoDs
i air, time BUOH (10 equiv)
199 equiv 1 * Cete + CeDs 3505 gark, * M
Entry Aryl Halides Time /h Product Yield /%% 50 equiv 50 equiv air, 35 h

total yield = 58%
—<: :>—I
! 35 la n knlkp = 1.11£0.01

2 § > ! 5 1b 79
Table 5. Reaction enthalpies and Gibbs free energies at 298K
Q' and 473K using B3LYP/SVP. All energies are given in
3 13 lc 43 kcal/mol.
OH™ + Cgp — Cgo(OH) 2
4 @—l 3 1d 78 .
OH + Cgo(OH)” ——= Cgo(OH)*" + OH* @)

i} S
5 MeO@I 35 le 71 CoslOHE + | Gey(OHY +0. @
6 CIOI 3.5 lfb Trace B

1g 74 O. —»@-H' ®)

1h 38

7 F@—I 45 N
1g 47 @'+PhH—> O @ )
H
8 —@Br 72 la 11
D om0 <D o
H

¢ GC yield.
®1g =yplfterphenyl + O| e —@Ph + O? (®)

The direct use 0BuOK instead of KOHBUOH combination
was not satisfactory (Table 3, entry 3x was yielded in 40%

after 3 h with the co-formation of ¥butoxytoluene and 8- Rgaction AE AG (298 K) AG (473 K)
butoxytoluene in about 1:1 ratio from GCMS analySis. 2 -115.6 -103.7 -84.4
Increasing the KOH loading to 20 equiv shortened the reaction 3 10.2 6.8 -7
time to 3.5 h (Table 3, entry 6). 30 Equiv of KOH led to 4 -19.3 -21.0 -8.9
significant substitution products and hence decredsegield 5 10.2 4.0 0.4
(Table 3, entry 7). 6 -21.5 -7.2 0.3

_ _ _ 7 -90.6 -91.9 -92.8

Finally, we attempted to carry out the coupling reaction at 8 14.8 14.8 15.7

milder temperature. The reaction at T8was slowed down to
15 h with only 60% yield ola (Table 3, entry 8). Therefore we
selected the conditions in Table 2, entry 6 as the optimal To gain mechanistic understandings on thg-catalyzed
conditions to examine the substrate scopes. direct C-H arylation and the nature of electron donor, we carried
. . . ut DFT calculations and evaluated the thermodynamics of each
. _The optimized conditions proved4o be general to various arylaction steps at both 298 K and 473 K using 4-iodotoluene as
iodides  (Table 4). 3-lodotoluene as well as iodobenzeng gyrate (Table 5). The calculations were performed using

undervv_ent smoqth direct C-H aryla_tion with benzene to glye hybrid functional B3LYP with split-valence: plus polarization
and1d in good yields (Table 4, entries 2 and 4). Electron rich 4pasis sets (SVBimplemented in Gaussian 63

iodoanisole reacted well to produte in 71% vyield (Table 4,
entry 5). The sterically demanding 2-iodotoluene gave the As Gy is an ideal electron receptor, it easily reacts with OH
coupling productlc in 43% vyield (Table 4, entry 3). Cross- to form Go(OH)™ anion (eq 2¥° The reaction is highly favorable
coupling involving aryl bromide was unsatisfactory (Table 4,with AG of -84.4 kcal/mol at 473 K. This agrees with the
entry 8). spontaneous addition of MeQd G, giving CGeo(OMe) with
. , _equilibrium constant estimated to be 4.3 X M™'" Further
4-Chloroiodobenzene  underwent double-arylation  with.ootion of GOH)" with OH produces hydroxyl radical and

benzene to yield 74% qf-terphenyllg as the major product in Coo(OHY™ (eq 3). Although it is endergonic at 298 K, it becomes

3.5 h, with only trace amount of mono-arylated product 4'exergonic at 473 K, indicating that temperature plays an essential

chlorobiphenyl 1f formed (Table 4, entry 6). The double- 0 tor this step. g(OH)Y*~ then transfers an electron to 4-

arylation was less extensive for 4-fluoroiodobenzene, yielding,y toiuene to generate an aryl iodide radical anion with the
38% of mono-arylated product 4-fluorobipherdyl and 47% of recovery of G(OH)™ (eq 4). It is shown that OH)>" is the

di-arylated productg after 4.5 h (Table 4, entry 7). The moNnO- 1oy,cing agent for 4-iodotoluene. Direct electron transfer from

arylatzii)n occurs selectively at the more easily reduced Ar'beo(OH)’ to 4-iodotoluene is endergonic by more than 50
bond: kcal/mol and therefore {OH) is not the electron donor.

To _gain more insight on the C-H cI_eavagg step, a comp_etition The cleavage of C-I bond in aryl iodide radical anion to form
experiment was performed by reacting 4-iodotoluene with a%ryl radical and iodide is more favorable at 473 K (eq 5). The
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addition of aryl radical to benzene generate cyclohexadienyl Unless otherwise specified, all reagents were purchased from
radical (eq 6), which can easily be deprotonated by excessdOH™ commercial suppliers and used without further purification.
generate biaryl radical anion witkG of -92.8 kcal/mol (eq 7f. Hexane for chromatography was distilled from anhydrous
Biaryl radical anion then transfer electron to 4-iodotoluene taalcium chloride. Thin layer chromatography was performed on
yield another aryl iodide radical anion and furnish the biarylprecoated silica gel 60,4z plates. Silica gel (Merck, 70-230 and
product (eq 8). 230-400 mesh) was used for column chromatography irtHir.
. - . NMR spectra were recorded on a Bruker Avancelll 400 (400

B{ased on the experlmental findings, [.)FT calculations an(f{/IHz) spectrometer. Spectra were referenced internally to the

previous accepted mechanism, a catalytic cycle for the C Ivent residual proton resonance in CP@I17.26 ppm) or with

X L ) S
catalyzed dlre_ct C-H arylation is proposed in Schemeﬂaz. InSte"J}é)tramethylsilane (TMS$ 0.00 ppm) as the internal standard.
of deprotonation of electron donor precursor by basthe Chemical shifts § are reported in parts per million (ppm).

reﬁctgoln ']:c’ |n|t|aFed hby addition of Oggb_n%o to for_m leo((?H) ' Coupling constantsJ| are reported in hertz (Hz). GC-MS

r;/arllcsfelrsfrgfr:ez;nlgtr:e? Op}r:rsgc(%ﬁ% eneerr:a{t:s S{Lné’ &glj)giron analysis was conducted on a GCMS-QP2010 Plus system using a

CoolOHY™ with a large surfac(c)st areaginteracts WithGAl’-l war Rtx-5MS column (30 m x 0.25 mm). The details of GC program
60 9 are as follow: The column oven temperature and injection

interaction and reduces it to form an aryl iodide radical aniontemperature were 100.0 and 29800 Helium was used as carrier
which undergoes Ar-l cleav_age to eliminateahd produces an as. Flow control mode was chosen as linear velocity (36.3 cm s
aryl radical . The aryl radical adds to benzene to generate i with pressure 68.8 kPa. The total flow, column flow and purge
cyclohexadienyl radical intermediate, which is deprotonated b low were 13.5. 0 9'5 and.3 0 mL rfﬁnres,pectively Split mode
OH to give biaryl radical anioff. This radical anion undergoes injection with split ratio 10.0 was applied. Samples were injected

;)hneeneelecg;)rll _tcr)gf‘ dséer;:jchlr-zilanozlEt}cl)dct:ri Clgtjeplt'gg E;?;?JT(; fS solutions in hexane. The GC oven was held at £@ofér 2
W aryliodi : : P ytic cy min, ramped to 250.6C at 30.0°C min*, and held at 250.8C

Al.iﬁmoat;iyie‘ggescttaazr?;_nha:f:ggpoﬂf.;hti Cgcggrr:]exgqt;?enyl.:ﬁ‘:\'.‘ialfor 1 min. The detector was a quadrupole MS with 70 eV
wi 2 ) lon s thu patible with air. o6 ctron impact ionization. Naphthalene was used as internal

oH- standard. Unless specified, all the reactions were carried out in a
OH-* ; , .

OH < closed system under air and dark in a thick-wall glass tube
equipped with a Teflon-stoppered Rotaflo stopcock. The reaction

vessel was covered with aluminum foil to protect from light and

)>-< was heated on an aluminum block. Cardboard was used as

protective shield around the heater. The reactions were

duplicated and the vyields are the average yields. The coupling

>—< Ar products are known compounds and with identical properties to
those reported in the literature.

Ceo L‘—’ Ceo(OH) Ceo(OH)?"

4.2 Procedures for the Cg loading effects on catalytic direct
C-H arylation of benzene.

Ar_ H
PhH& @//«"bo 4.2.1. With 5 mol% & under N. Cq (8.1 mg, 0.0112 mmol), 4-

iodotoluene (48.8 mg, 0.224 mmol), KOH (125 mg, 2.24 mmol)

OH’ and'BuOH (215uL, 2.24 mmol) were dissolved in benzene (2.0
mL, 22.4 mmol). The mixture was degassed for three freeze-
pump-thaw cycles and heated at 200 °C. After confirming the
complete consumption of the aryl halide by GCMS analysis the

The formation ofp-terphenyllg from 4-haloiodobenzene is solvent was removed by rotary evaporator. The crude residue was
due to a competitive intramolecular reduction process (Schemmurified by column chromatography (silica gel, 230-400 mesh)
3). Instead of electron transfer to another aryl iodide substratejuting with hexane to afford the 4-methylbiphehgl

tbr;zr;’l :‘;c',?f;rxhﬁﬂ'f:i'u%?é‘;”wi';]mggﬁtzfn;h; :‘/ﬁl&ge anion t0.8VG 5 2. with 5 mol% & under air. Gy, (8.1 mg, 0.0112 mmol), 4-
' iodotoluene (48.8 mg, 0.224 mmol), KOH (125 mg, 2.24 mmol),
3. Conclusions 'BUOH (215pL, 2.24 mmol) were dissolved in benzene (2.0 mL,
22.4 mmol). The mixture was heated at 200 °C. After confirming
In summary, G reacts with KOH to give electron rich the complete consumption of the aryl halide by GCMS analysis
Cso(OH)™ for the reduction of aryl iodides, which initiates the the solvent was removed by rotary evaporator. The crude residue
catalytic direct C-H arylation of benzene in air. The large surfacgvas purified by column chromatography (silica gel, 230-400
© mesh) eluting with hexane to afford the 4-methylbiphdayl

4.2.3. With 2.5 mol% & under air. The procedures follow the

X Q v ‘ — Q O O same as 5 mol%dgunder air except & (4.0 mg, 0.0056 mmol)

X=ClF 19 was used.

Scheme 3. Proposed mechanism fpiterphenyl formation 4.2.4. With 1 mol% g under air. The procedures follow the
same as 5 mol%dgunder air except & (1.6 mg, 0.00224 mmol)
area of G greatly enhances the catalytic activity and allowsWas used.

loading down to 0.1 mol%. 4.2.5. With 0.1 mol% & under air. The procedures follow the
same as 5 mol%gunder air except & (0.16 mg, 0.2241mol)
was used.

Scheme 2. Proposed catalytic cycle ofgcatalyzed direct C-H
arylation

4. Experimental section

4.1 General.
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4.2.6. Without & under air. The procedures follow the same as 4.4.7. p-Terphenylig).** *H NMR (400 MHz, CDCJ) § 7.36 (t,

5 mol% G, under air except noggwas added. J=7.3Hz,2H),7.46 ({]=7.6 Hz, 4 H)p 7.65 (dJ=7.6 Hz, 4
4.3 Procedures for the base effects on catalytic direct C-H H), 8 7.68 (s, 4 H).
arylation of benzene. 4.4.8. 4-Fluorobiphenyl1h).”’ 38% yield."H NMR (400 MHz,

4.3.1. With 10 equiv NaOHCg, (1.6 mg, 0.00224 mmol), 4- f'?]cz'a)feifzgz(t'd)‘ffs'ffég 52 Zi? ©=7.2Hz, 1H), 7.44
iodotoluene (48.8 mg, 0.224 mmol), NaOH (89.6 mg, 2.24(’ ) ’ T ’ ' '

mmol), 'BUOH (215pL, 2.24 mmol) were dissolved in benzene
(2.0 mL, 22.4 mmol). The mixture was heated at 200 °C. Afte
confirming the complete consumption of the aryl halide by
GCMS analysis the solvent was removed by rotary evaporato
The crude residue was purified by column chromatograph
(silica gel, 230-400 mesh) eluting with hexane to afford the 4-

rAcknowledgments

We thank the Innovation and Technology Support Programme
ITSP/001/12) of the HKSAR, and the People’s Republic of
hina for financial support.
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Competition Experiment. Cg (1.6 mg, 0.00224 mmol), 4-iodotoluene (48.8 mg,
0.224 mmol), KOH (251 mg, 4.48 mmol), '‘BuOH (215 pL, 2.24 mmol) were added in
benzene (1.0 mL, 11.2 mmol) and benzene-ds (0.991 mL, 11.2 mmol). The mixture
was heated at 200 °C. The isotopic ratio was determined from the relative ratio of the
total absolute intensities of m/z at 168 (1a) and at 173 (1a-ds) from retention time
6.292 min to 6.483 min in GCMS analysis. The intensity ratio of 1a/la-ds gave the

KIE value, e.g. 7388282/6660115 = 1.11.

CSO (1 mOl%)
KOH (20 equiv)
'BUOH (10 equiv)

* Cefle * CeDe —000c dark *

50 equiv 50 equiv air. 3.5 h

CeHs CeDs

1a 1a-ds
total yield = 58%
ko/kp = 1.11£0.01

Product m/z Total absolute intensities
la 168 7388282
la-ds 173 6660115




CCEPTED MANUSCRIP

'H NMR Spectra of Products
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4-Methoxybiphenyl 1e
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4-Fluorobiphenyl 1h
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GCMS Spectrum

Typical spectrum showing the product analysis of Cgo-catalyzed direct C-H arylation

of benzene with 4-iodotoluene
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Quantitative Result Table
Name ID# I.Time R.Time F.Time m/z Area
Naphthalene 1 4.625 4.671 4.975 128.00 7828051
Biphenyl 2 5.733 5777 5.892 154.00 1121653
1,1'-Bipheny 3 6.300 6.337 6.533 168.00 6325634



