An Efficient Synthesis of Pyrimidines from β -Amino Alcohols

Claude Agami, Luc Dechoux,* and Mohand Melaimi

Laboratoire de Synthèse Asymétrique (UMR 7611), Université P. et M. Curie, 4 place Jussieu, 75005 Paris, France dechoux@ccr.jussieu.fr

Received December 22, 1999

ORGANIC LETTERS 2000 Vol. 2, No. 5 633-634

ABSTRACT

Pyrimidinones 3 were chemoselectively reduced by using metal-catalyzed hydrogenation and stereoselectively substituted by various nucleophiles. Starting from β -amino alcohols 1, the overall process allows efficient access to substituted pyrimidines 4 and 6.

The emergence of Acyclovir¹ as a successful antiviral agent has stimulated the synthesis of a wide variety of acyclic nucleosides.² However, no structure—activity relationship has been reported so far for this new potential antiviral agent. Therefore, new pyrimidine acyclonucleosides are of great interest.

We present here an efficient access to acyclonucleosides **4** and **6** starting from β -amino alcohols **1** in three highyielding steps. Reaction of the β -amino alcohol with cyanogen bromide followed by condensation of the resulting heterocycle **2** with ethyl propiolate or ethyl butynoate led to pyrimidinones **3** (Scheme 1).³

We first studied catalytic hydrogenation of substituted pyrimidinones **3** according to the experimental conditions;

this reaction afforded either pyrimidines **4** or dihydropyrimidines **5** (Scheme 2). Results are collected in Table 1.

Palladium- and rhodium-mediated catalysis was investigated in order to cleave the oxazolidine C–O bond. When rhodium was used (entries 7 and 8), hydrogenation affected only the ethylenic double bond, affording compound 5, thus leaving the C–O bond untouched. On the other hand, palladium catalysis⁴ was satisfactory except in the case of

⁽¹⁾ Shaeffer, H. J.; Beauchamp, L.; De Miranda, P.; Elion, G. B.; Bauer, D. J.; Collins, P. *Nature* **1978**, *272*, 583.

^{(2) (}a) Campos, J.; Pineda, M. J.; Gomez, J. A.; Entrena, A.; Trujillo, M. A.; Gallo, M. A.; Espinosa, A. *Tetrahedron* **1996**, *52*, 8907. (b) Gomez, J. A.; Campos, J.; Marchal, J. A.; Trujillo, M. A.; Melguizo, C.; Prados, J.; Gallo, M. A.; Aranega, A.; Espinosa, A. *Tetrahedron* **1997**, *53*, 7319. (c) Chu, C. K.; Cutler, S. J. *Heterocycl. Chem.* **1986**, *23*, 289. (d) Hossain, N.; Rozenski, J.; De Clercq, E.; Herdewijn, P. *Tetrahedron* **1996**, *52*, 13655.

^{(3) (}a) Agami, C.; Cheramy, S.; Dechoux, L.; Kadouri-Puchot, C. Synlett **1999**, 727. (b) Agami, C.; Cheramy, S.; Dechoux, L. Synlett **1999**, 1838. Selected data for compound **3a**: ¹H NMR (250 MHz, CDCl₃) 4.49 (dd, J = 7.8 and 9.2 Hz, 1H), 5.01 (t, J = 9.2 Hz, 1H), 5.23 (dd, J = 7.8 and 9.2 Hz, 1H), 5.01 (t, J = 9.2 Hz, 1H), 5.23 (dd, J = 7.8 and 9.2 Hz, 1H), 5.95 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 7.23–7.31 (m, 5H); ¹³C NMR (63 MHz, CDCl₃) 61.9, 73.9, 109.8, 127.1, 129.7, 130.1, 135.1, 135.8, 160.9, 172.0; mp 186 °C.

Table 1. Chemoselective Reductions of Pyrimidinones 3

entry	substrate	catalyst	yield (%)	ratio 4 /5
1	3a	Pd/C	70	>95/5
2	3a	Pd/BaSO ₄	91	>95/5
3	3a	Pd (OH) ₂	84	>95/5
4	3b	Pd/BaSO ₄	95	>95/5
5	3c	Pd/BaSO ₄	95	>95/5
6	3d	Pd/BaSO ₄	65	< 5/95
7	3a	Rh, Al ₂ O ₃	74	< 5/95
8	3e	Rh, Al ₂ O ₃	78	< 5/95

substrates **3d** and **3e**. Substrate **3d** was stable unless the experimental conditions are forced:⁵ in that case the ethylenic bond was hydrogenated (entry 6). This result indicates that a methylene group α to the oxazolidine C–O bond is necessary to achieve the formation of pyrimidines **4**. Palladium catalysis applied to substrate **3e** resulted in hydrogenolysis of the benzylic carbon–nitrogen bond.

Perusal of the literature showed that 2,2'-anhydronucleosides can be substituted with nucleophiles such as azide anion⁶ and halides.⁷ To obtain functionalized pyrimidines **6**, we investigated the reactivity of compounds **3** with such nucleophiles in acidic conditions (Scheme 3). To this aim,

H₂O, MeOH, thiophenol, and trimethylsilyl halides were reacted with pyrimidinones **3**. Results are presented in Table $2.^{8}$

As shown in Table 2, the reaction was effective for all substrates in nearly quantitative yields (>90%). These nucleophilic substitutions are chemo- and diastereoselective as well. The stereoselectivity was proven for substrate 3f,

Table 2. Regioselective Reactions of Pyrimidinones 3								
entry	substrate	R1	R ²	R ³	conditions	Nu		
1	3a	Ph	Н	Н	TMSCI/THF	Cl		
2	3a	Ph	Н	Н	MeOH/PTSA	OMe		
3	3a	Ph	Н	Н	H ₂ O/THF/PTSA	OH		
4	3a	Ph	Н	Н	TMSI/THF	Ι		
5	3a	Ph	Н	Н	PhSH/THF/PTSA	PhS		
6	3e	Ph	Н	Me	TMSCI/THF	Cl		
7	3f	Me	Ph	Н	TMSCI/THF	Cl		
8	3f	Me	Ph	Н	H ₂ O/THF/PTSA	OH		
9	3f	Me	Ph	Η	MeOH/PTSA	OMe		

whose substitution with three nucleophiles (entries 7-9) afforded only one diastereoisomer. In contrast, trimethylsilyl azide and cyanide were ineffective in these experimental conditions, even in the presence of added fluoride ion.

In summary, a concise and practical synthesis of pyrimidines **4** and **6** has been developed starting from β -amino alcohols. This procedure has a wide scope and should allow for the synthesis of a large variety of acyclonucleosides which are potential antiviral and antitumoral agents.

OL991385X

(4) . General procedure for the hydrogenolysis on palladium. Pd/ BaSO₄ (100 mg) was added, at room temperature, to a solution of compound **3a** (0.47 mmol) in MeOH (10 mL) under an atmosphere of hydrogen. The reaction mixture was stirred at room temperature for 4 h. The suspension was then filtered on Celite and methanol was evaporated. The residue was chromatographed on silica gel (AcOEt/MeOH 98/2) to afford compound **4a** (91 mg). Selected data for **4a**: ¹H NMR (250 MHz, CDCl₃) 1.63 (d, *J* = 7.1 Hz, 3H), 5.58 (d, *J* = 8.0 Hz, 1H), 5.91 (q, *J* = 7.1 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 7.26 (m, 5H); ¹³C NMR (63 MHz, CDCl₃): 18.4, 53.3, 102.7, 127.2, 128.5, 129.1, 138.6, 141.1, 151.2, 163.0

(5) Reaction was performed with Pd/BaSO₄ (5 equiv) over 2 days.

(6) Costa, A. M.; Faja, M.; Farras, J.; Vilarrasa, J. *Tetrahedron Lett.* **1998**, *39*, 1835.

(7) (a) Mercer, J. R.; Knaus, E. E.; Wiebe, L. I. J. Med. Chem. 1987,
30, 670. (b) Kumar, A.; Walker, R. T. Tetrahedron 1990, 46, 3101.

(8) General procedure for the substitution of 3a by trimethylsilyl halides. To a solution of 3a (100 mg, 0.47 mmol) in 10 mL of THF was added TMSCl (0.09 mL, 0.70 mmol). The reaction mixture was stirred at room temperature for 4 h. The reaction was quenched with a saturated solution of NaHCO₃ and extracted twice with 20 mL of dichloromethane. The organic phase was concentrated at reduced pressure to afford quantitatively compound 6a (Nu = Cl). Selected data for 6a (Nu = Cl): ¹H NMR (250 MHz, CDCl₃) 4.07 (m, 2H), 5.63 (d, J = 8.3 Hz, 1H), 5.94 (t, J = 6.5 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 7.28 (m, 5H); ¹³C NMR (63 MHz, CDCl₃) 43.2, 59.1, 102.5, 128.6, 129.2, 129.4, 134.7, 141.7, 151.2, 163.1.